

Copyright © 2009 by The McGraw-Hill Companies All rights reserved Except as permitted under the United States

Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written permission of the publisher

ISBN: 978-0-07-160553-3

MHID: 0-07-160553-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160552-6,

MHID: 0-07-160552-5

All trademarks are trademarks of their respective owners Rather than put a trademark symbol after every occurrence

of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with

no intention of infringement of the trademark Where such designations appear in this book, they have been printed

with initial caps

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use

incorporatetraining programs Tocontact a representative please visit the Contact Us page at www mhprofessional com

Information has been obtained by McGraw-Hill from sources believed to be reliable However, because of the pos-

sibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the

accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the

results obtained from the use of such information

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc (“McGraw-Hill”) and its licensors reserve all

rights in and to the work Use of this work is subject to these terms Except as permitted under the Copyright Act of

1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer,

reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense

the work or any part of it without McGraw-Hill’s prior consent You may use the work for your own noncommercial

and personal use; any other use of the work is strictly prohibited Your right to use the work may be terminated if you

fail to comply with these terms

THE WORK IS PROVIDED “AS IS ” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR

WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE

OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED

THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRAN-

TY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE McGraw-Hill and its licensors do not warrant

or guarantee that the functions contained in the work will meet your requirements or that its operation will be unin-

terrupted or error free Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccura-

cy, error or omission, regardless of cause, in the work or for any damages resulting therefrom McGraw-Hill has no

responsibility for the content of any information accessed through the work Under no circumstances shall McGraw-

Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that

result from the use of or inability to use the work, even if any of them has been advised of the possibility of such

damages This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause aris-

es in contract, tort or otherwise

vii

Contents at a Glance

PART 1 INTRODUCTION 1

Chapter 1. Introduction to the Book 3

Chapter 2. Overview and Basic Concepts 17

PART 2 EVOLUTION OF INTEGRATION PATTERNS 33

Chapter 3. Sockets and Data Sharing 35

Chapter 4. Remote Procedure Call (RPC) 49

Chapter 5. Distributed Objects and Application Servers 69

Chapter 6. Messaging 95

PART 3 SERVICE-ORIENTED ARCHITECTURE–BASED
 INTEGRATION 113

Chapter 7. Web Services Overview 115

Chapter 8. Enterprise Service Bus 133

PART 4 INTEGRATING EXISTING APPLICATIONS 163

Chapter 9. Integrating Mainframe Applications 165

Chapter 10. Integrating Package Applications 197

PART 5 UNDERSTANDING AND DEVELOPING WEB SERVICES 211

Chapter 11. XML 213

Chapter 12. SOAP 233

Chapter 13. WSDL 251

Chapter 14. UDDI Registry 271

Chapter 15. Web Services Implementation 291

Chapter 16. Integration Through Service Composition (BPEL) 311

viii Contents at a Glance

PART 6 APPENDIXES 331

 References 333
 Glossary 337

 Index 347

ix

Contents

Foreword xiii
Preface xvii
Acknowledgments xix

PART 1 INTRODUCTION 1

Chapter 1. Introduction to the Book 3

 Book Objectives 4
 Intended Audience 5
 Organization of the Book 6
 Conclusion 15

Chapter 2. Overview and Basic Concepts 17

 Services in Software 17
 Business Problem Addressed by SOA 21
 Definitions 25
 Some Basic Concepts 29
 Conclusion 32

PART 2 EVOLUTION OF INTEGRATION PATTERNS 33

Chapter 3. Sockets and Data Sharing 35

 File-Based Data Sharing 35
 Common Database 40
 Sockets 43
 Conclusion 48

Chapter 4. Remote Procedure Call (RPC) 49

 Three Types of Function Calls 51
 Types of Functions 53

 Restricted RPC, or Doors 58
 Remote Procedure Call (RPC) 58
 Port Mapper 65
 RPC 65
 Conclusion 66

Chapter 5. Distributed Objects and Application Servers 69

 CORBA Overview 71
 CORBA Model 72
 Sample CORBA Applications 83
 Application Servers 90
 Conclusion 92

Chapter 6. Messaging 95

 Overview 96
 Channels 100
 Messages 101
 End Points 104
 Conclusion 111

PART 3 SERVICE-ORIENTED ARCHITECTURE–BASED
 INTEGRATION 113

Chapter 7. Web Services Overview 115

 Review of Part II (Chapters 3–6) 115
 Heterogeneity Problem 117
 XML 120
 SOAP 122
 WSDL 124
 UDDI Registry 128
 WS-I Basic Profile 130
 Conclusion 131

Chapter 8. Enterprise Service Bus 133

 Routing and Scalable Connectivity 134
 Protocol Transformation 138
 Data/Message Transformation 139
 Core Functionalities 140
 Optional Features 143
 Logical Components 144
 Deployment Configurations 147
 Types of ESBs 150
 Practical Usage Scenarios 153
 Conclusion 160

x Contents

 xi

PART 4 INTEGRATING EXISTING APPLICATIONS 163

Chapter 9. Integrating Mainframe Applications 165

 Mainframe Application Types 167
 Preliminaries 169
 Summary of Point-to-Point Integration 185
 ESB-Based Integration Options 185
 Conclusion 194

Chapter 10. Integrating Package Applications 197

 Adapters 199
 J2EE Connector Architecture (JCA) 201
 Introduction to SAP and Its Interfaces 205
 WebSphere Adapter for SAP Software 206
 Exposure as Web Services 209
 Conclusion 209

PART 5 UNDERSTANDING AND DEVELOPING
 WEB SERVICES 211

Chapter 11. XML 213

 Overview 214
 XML Namespaces 215
 XML Schemas 217
 XML Processing/Parsing Models 221
 Conclusion 232

Chapter 12. SOAP 233

 SOAP Messages 233
 SOAP Elements 235
 SOAP Attributes and Processing Model 238
 SOAP Message Exchange Types 242
 SOAP HTTP Binding 245
 Conclusion 249

Chapter 13. WSDL 251

 Overview 252
 Containment Structure 256
 Elements of Abstract Interface Description 257
 Elements of the Implementation Part 262
 Logical Relationships 264
 SOAP Binding 264
 Conclusion 269

Contents xi

Chapter 14. UDDI Registry 271

 Overview and Basic Data Model 272
 tModel 275
 Categorization and Identification Schemes 278
 Binding Template 280
 Use of WSDL in the UDDI Registry 282
 Summary of UDDI APIs 285
 Commercial Products 288
 Conclusion 289

Chapter 15. Web Services Implementation 291

 Implementation Choices 292
 Building Web Service Clients 296
 Building Web Services 303
 Bottom-Up Approach 305
 Commercial Tools 306
 Conclusion 308

Chapter 16. Integration Through Service Composition (BPEL) 311

 Overview 313
 Detailed Description 315
 Practical Example 323
 Conclusion 330

PART 6 APPENDIXES 331

 References 333
 Glossary 337

 Index 347

xii Contents

xiii

Foreword

Almost everyone is familiar with the popular phrases “In today’s world,
change is the only constant” and the need for the “alignment of busi-
ness and IT.” But when one looks beyond these phrases, it is possible to
see that in today’s world, with enterprises having to deal with chang-
ing market forces and industry imperatives that are truly global in
nature, responsiveness to the demands of these changes separates the
leaders from others. This responsiveness or agility is more often than
not enabled by increased alignment between business and IT. There is
a general misconception that I see exists within the industry concern-
ing business and IT alignment—that this alignment does not exist. I
believe that, given the current level of dependency of business on IT
capabilities, the alignment between business and IT clearly exists in
almost all enterprises today. The million dollar question is, How can
this alignment be improved or enhanced?

Service orientation, at the business and IT architecture levels, is
one of the best ways by which this alignment becomes more robust.
Enterprises have become increasingly global in their operations,
whether it is their own operations expanding across the globe or their
dealings with customers, partners, and suppliers who are distributed
across the globe. Componentization within the business operations,
a trend that we see gaining traction, acts as an enabler for the adop-
tion of service orientation at the business level. Componentization as
a means to achieve service orientation leads to the “separation of con-
cerns” between the business function or service and its implementa-
tion. Complementing this is the service orientation of the IT systems.
Now that the business function and its implementation are separated,
Service-Oriented Architecture (or SOA) becomes a natural means of
realizing the IT implementation of these functions. Naturally, this
increases the alignment between business and IT.

Service-Oriented Architecture is not a piece of technology that is sold
as a standalone black-box capability to be purchased and deployed.
It is a paradigm that is an integral part of the fabric of how business

solutions are built using IT systems. SOA is not a what, it is a how. In
addition, successful adoption of Service-Oriented Architecture is best
accomplished when started from the business level down, not from the
IT level up. Adoption of SOA is gradual and achieved over a period of
time that varies for each enterprise. Invariably, when one looks at the
fundamental reason for adopting SOA, one finds that improved agil-
ity, increased reuse of capabilities or services, and accelerated time to
market are among the top reasons. Several factors are usually taken
into consideration when developing a roadmap for the adoption of
SOA. Such factors include, but are not limited to, expected return of
investment, maturity of the organization (both business and IT), and
complexity of existing legacy systems. Therefore, adoption of SOA has
significant business value, but has to be carefully planned and executed
given the significance of some of these factors.

If agility, flexibility, and increased levels of reuse are critical to
achieving SOA adoption, then naturally the IT systems being devel-
oped should exhibit the same characteristics. When one develops new
applications or systems from scratch—in a green-field environment—
adopting these architecture and design principles and developing to
them is relatively easy. However, rarely does one find green-field devel-
opment opportunities. Enterprises usually have a rich set of complex
and mission-critical legacy applications that support the business. In
such brown-field environments, the role of legacy applications becomes
very critical. When adopting and implementing a Service-Oriented
Architecture–based solution, it becomes necessary to leverage or reuse
functionality that is supported by these legacy applications. Such appli-
cations can be package applications from vendors such as SAP, Oracle,
and J.D. Edwards, or custom applications developed over time within
the enterprise that are currently deployed on platforms such as CICS,
J2EE, and .NET. Regardless of which type of applications they are,
capabilities or functionalities from within these applications need to
be accessed as part of deploying Service-Oriented Architecture–based
applications. In other words, in architecting, designing and deploying
a service-oriented application requires integration with existing enter-
prise legacy applications.

This area of enterprise integration within the scope of an SOA-based
application is very critical to its successful deployment, but this is also
an often-overlooked area. Technical architects, designers, developers,
and project managers need to understand the underlying technology of
how these legacy applications are constructed and what technologies
are used in their deployment so that they can design optimal tech-
niques and patterns on how to integrate with these applications. Short
of this, the approaches adopted and the patterns implemented prove
to be problematic and suboptimal—clearly not a desired outcome in

xiv Foreword

achieving the overall goals of adopting SOA. More often than not, these
integration-related challenges are incorrectly interpreted and miscon-
strued as a failure of SOA itself. When I conduct technical reviews of
large Service-Oriented Architecture deployments, I find that quite often
the enterprise integration approaches and techniques adopted have
been less than optimal, resulting in lower-than-expected performance
characteristics. Addressing this aspect, therefore, is very critical.

Waseem Roshen has addressed this specific area very well through
this book. Readers gain an excellent understanding of what the underly-
ing legacy technologies are from an integration perspective. They can
use this understanding to learn what the various integration techniques
and patterns are and, most importantly, when and where they need to
be applied. In my opinion, simple, easy-to-understand examples with
descriptive code fragments that illustrate the techniques are the high-
light of this book. The practical experience Waseem Roshen has gained
through his interaction with clients and the project situations he has
been exposed to are at the core of what he has eloquently articulated in
this book. The various sections in this book present just enough theory,
substantiated by illustrative and easy-to-understand examples sup-
ported by code fragments that demonstrate the implementation. This
book is a must-read for any technical manager, architect, designer,
developer, or quality assurance practitioner who is engaged in or about
to be engaged in a project that is adopting Service-Oriented Architecture
and needs to integrate with legacy or package applications.

Ray Harishankar
IBM Fellow

Columbus Ohio
March 2009

Foreword xv

xvii

Preface

Making all the applications in an enterprise work in an integrated
manner, so as to provide unified and consistent data and functional-
ity, is a difficult task because it involves integrating applications of
various kinds, such as custom-built applications (C++/C#, Java/J2EE),
packaged applications (CRM or ERP applications), and legacy applica-
tions (mainframe CICS or IMS). Furthermore, these applications may
be dispersed geographically and run on various platforms. In addition,
there may be a need for integrating applications that are outside the
enterprise. SOA-based integration provides a comprehensive solution
to the problem of application integration in an enterprise.

According to the author’s point of view, Service-Oriented Architecture
(SOA) is much more than the Web Services and encompasses many earlier
technologies. According to this definition, a service is simply a functional-
ity or data that is offered by one application to the other applications in
the enterprise. As long as the interface offered by the service provider
application can be described externally, we call this a “service.”

The primary goal of this book is to provide a comprehensive descrip-
tion of the SOA-based integration patterns in an easy-to-understand
manner so that a reader with no previous knowledge of applications’
integration or SOA can benefit from reading the book. For this pur-
pose, a step-by-step approach is adopted by first tracing the evolution
of the basic concepts and features involved in SOA-based integration.
The description starts with the simplest of the integration patterns. The
book also takes a practical approach by providing code samples that can
be used as a starting point by developers/programmers and IT architects
to develop practical integration solutions.

Another central goal of this book is to fill in important gaps that exist
in the current literature. These gaps include the following:

■ A unified description of the integration issues and SOA
■ A detailed and practical description of the Enterprise Service Bus

■ A detailed description of the options for integrating mainframe
applications

■ A description of the methods of integrating a package application

This book is organized in several parts. The first part of the book pro-
vides a general introduction to the field of services-based integration.
This part explains the various basic terms and concepts used through-
out the remainder of the book. This part also includes summaries of all
the chapters in the book as an overview of the book’s material.

The second part of the book introduces the integration patterns and
technologies, starting with the most simple of these patterns. The patterns
and technologies described in this part include sockets, RPC, distributed
objects (ORBs), and messaging. In the third part of this book, an overview
of the standards (XML, WSDL, SOAP, and UDDI) is provided. These stan-
dards help ensure that the patterns and technologies introduced in Part II
of this book can interoperate. In addition, to complete the interoperability
solution, a detailed description of the Enterprise Service Bus (ESB) is pro-
vided. The primary purpose of the ESB is to ensure the interoperability
of services, even when the service provider and service consumer are not
completely matched.

The fourth part of this book describes different options for integrating
mainframe applications, with the primary focus on IMS and CICS appli-
cations. Both point-to-point integration options and ESB-based integra-
tion options are described. Comparison of the various options is shown in
an easy-to-understand tabular format. Next, the integration of package
applications is discussed, taking SAP applications as an example. This
includes integration through the use of adapters and JCA.

The last part of this book contains detailed descriptions of Web
Services and how to expose newer applications (Java/J2EE and .NET)
as Web Services. Both the top-down approach and bottom-up approach
for developing Web Services are described. Lastly, we describe BPEL
(Business Process Execution Language), which is used to compose new
services and business processes from the existing services.

As mentioned previously, this book does not assume any prior knowledge
of integration issues or SOA. However, some familiarity with program-
ming languages such as Java/J2EE and C/C++ would be very helpful in
understanding the sample code provided in this book. The book is intended
for a wide variety of IT-related people, including architects, developers and
programmers, technical managers, and project managers.

The book contains a fair amount of detail on the software and tools
commercially available for use in the enterprise integrations. Most of
the tools and software described in this book naturally are IBM tools
and software. This is for two reasons: First, the author is most familiar
with IBM tools. Second, in the author’s opinion, IBM tools and software
are usually the best tools and software available in the market.

xviii Preface

xix

Acknowledgments

The author acknowledges Professor William F. Saam of Ohio State
University for his support and encouragement throughout his career.
It was due to the urging of Professor Saam that the author work in the
field of IT that this book has become possible.

The origin of this book lies in a series of papers the author wrote
for IBM’s DeveloperWorks website. These papers explained, in a brief
manner, the evolution of the services-based integration patterns. Part
of the reason these papers were well received and won several awards
was due to the excellent editing by the DeveloperWorks editors Patrick
Flanders and Ashleigh Brothers. The work by these two editors helped
crystallize many of the ideas presented in this book.

The person most directly related to make the idea of this book into
a reality is Wendy Rinaldi, an editorial director at McGraw-Hill. She
pushed the idea of this book internally at McGraw-Hill and kept the
project on track throughout the writing, editing, and production of the
book. Thanks are also due to Joya Anthony for assisting Wendy in gath-
ering various materials for the book.

The person who is most directly related to the technical material of
this book is Timothy (Tim) Frommeyer. Tim was the technical editor
for this book. He ensured the material in the book was accurate, and he
made numerous suggestions for improving the book’s material. Many of
his suggestions have been incorporated into the book.

Acknowledgements are also due to the production staff, including
Anupriya Tyagi and Bart Reed. Anupriya acted as the project manger
for the book’s production while Bart corrected the English as well as
the presentation style. Because of the corrections made by these two
people, the book has been rendered more readable.

Lastly, thanks are due to Ray Harishankar, who wrote the foreword
for this book. Ray Harishankar is an IBM Fellow. The author thanks Ray
for taking time from his busy schedule to read the material of the book
and then to write the foreword. In addition, the author is thankful to Sue
Miller-Sylvia and Sandra (Sandy) Carter for reviewing some of the book’s
material and writing the endorsements.

Part

Introduction

1

3

Chapter

 1
Introduction to the Book

A fair number of books that discuss Service-Oriented Architecture
(SOA) are currently available on the market. So the logical question
to ask is, Why there is a need for another book on SOA? The reason for
writing this book is that the books currently on the shelves do not cover
a number of very important aspects of enterprise integration, which are
described in the following list:

■ Although enterprise integration and SOA are very intimately con-
nected, a typical, currently available book does not presents a unified
view of SOA-based patterns of integration. There are books that
describe older patterns of integration. Separately, there are books that
attempt to describe SOA. Some of these SOA books mostly describe
how to develop Web Services by building new applications and ignore
existing or legacy applications. Other books on SOA are too theoretical
and therefore are of little help in building a SOA-based integrated
structure. In other words, these books have lots of text and pictures
but provide little practical guidance and code on how to build SOA.

■ Presently, no book is available that describes the rationale for choos-
ing the SOA-based integration method over other integration methods
in an easy-to-understand, step-by-step manner.

■ Legacy mainframe applications form the backbone of the IT systems
of most large enterprises, including insurance companies, banks, air-
lines, governments, and so on. For such organizations, these main-
frame applications perform all the mission-critical work. Examples
include applications based on CICS and IMS transaction manage-
ment systems. Currently, no book is available that describes how to
integrate these mainframe applications using SOA.

4 Chapter One

■ Enterprise Service Bus is an important element of SOA-based enter-
prise integration, through which applications communicate with each
other in a scalable manner so that a large number of applications can
be integrated. At present, books available on SOA do not describe
Enterprise Service Bus in enough detail to be of practical value.

■ Packaged applications are a common occurrence in large enterprises.
Examples of such applications include Enterprise Resource Planning
(ERP) and Customer Relationship Management (CRM) from vendors
such as SAP, Oracle, Siebel, and PeopleSoft. Currently, no book explic-
itly addresses the problem of integrating these packaged applications
with the other applications in an enterprise.

Book Objectives

The primary purpose of this book is to explain SOA-based applications
integration in a large enterprise in an easy-to-understand manner. For
this purpose, a practical approach is employed, starting with the most
simple integration patterns and introducing the various concepts of
SOA-based integration in a step-by-step manner.

The second objective of the book is to clarify the relationship of SOA
with other integration technologies and patterns for distributed comput-
ing systems. As previously mentioned, SOA is very closely intertwined
with integration technologies. In particular, for the first time, by tracing
the evolution of integration patterns, we show that SOA is mostly an
integration technique that is built on and embraces many of the other
integration technologies for distributed computing systems. Some of
the distributed computing technologies we discuss in relation to SOA
are socket programming, remote procedure call (RPC), Object Request
Broker (ORB), and asynchronous messaging. We show how these tech-
nologies have contributed to the various concepts involved in SOA-based
integration. In this regard, we discuss the evolution of the following
concepts: loose coupling, code reuse, layering, service providers, service
consumers, language and platform independence, language independent
interface, discovery of remote services, invocation of remote synchronous
and asynchronous services, and more.

Another distinguishing feature of this book is that it is heavy on sub-
stance so that the material presented can actually be used to build an
integrated system of applications. For this purpose, the book contains
extensive examples of computer code for each integration technique we
discuss. The examples start with simple file-based data sharing among
applications and end with computer code for Web Services.

Many books on SOA discuss Enterprise Service Bus (ESB), because it
is considered part of SOA. However, almost all of the descriptions of ESB
in these books is very high level and is of little use to technical persons,

Introduction to the Book 5

including IT architects, technical managers, and software developers.
This book provides a much more detailed description of the Enterprise
Service Bus. Developers, technologists, and technical managers will find
our description of the ESB much more useful in their day-to-day work.
Our description of ESB includes an explanation of various functional
and nonfunctional capabilities supported by an ESB, various types of
ESBs, various components of the ESB, and a discussion of deployment
issues.

As mentioned previously, mainframe applications form the backbone
of most large organizations. However, currently it is difficult to find any
book that deals with the subject of integrating these applications with
the rest of the enterprise in an explicit manner. A major aim of this
book is to provide explicit descriptions of the various options available
for integrating mainframe applications with the remaining applications
in an enterprise. A large part of this book is devoted to these types of
applications. In a similar manner, we explicitly discuss the integration
of packaged applications from vendors such as SAP, Siebel, Oracle, and
PeopleSoft.

Intended Audience

The material in this book broadly covers the integration of a large enter-
prise and SOA, and therefore would be of interest to a broad range of
IT professionals. This book provides the following three major benefits
to the reader:

■ No prior knowledge of SOA is assumed.

■ No prior knowledge of applications integration issues is required.

■ All the concepts and features are introduced and explained in an
easy-to-understand, step-by-step manner.

Here’s a list of some of the professionals who will benefit greatly from
reading this book:

■ Enterprise architects

■ Enterprise developers/engineers/practitioners

■ Integration architects

■ Integration developers/engineers/practitioners

■ Application architects

■ Application developers/engineers/practitioners

■ Technical managers

■ Project managers

6 Chapter One

Organization of the Book

The book is organized into six sections. Each of these sections con-
tains multiple chapters. The last section has the references followed
by the glossary. Each section of the book deals with one subject matter.
Following are brief descriptions of contents of the various sections of
the book and the chapters that they contain.

Part I: Introduction

This section contains two chapters.

Chapter 1: Introduction to the Book This chapter provides a brief descrip-
tion of the reasons for writing this book and as well points out the
distinguishing features of the book. In addition, this chapter provides a
summary of the various sections of the book.

Chapter 2: Basic Concepts and Overview The second chapter of Part I
provides an overview of SOA-based enterprise integration. In this chap-
ter, we describe the various terms and concepts used in the book. These
terms and concepts include service, distributed computing, integration,
enterprise, enterprise software, loose coupling and code reuse, as well
as service provider and service consumer. We also provide brief descrip-
tions of all the technologies of distributed computing that contribute to
and are embraced by SOA. In addition, we point out the evolutionary
contributions to SOA made by different programming languages.

Part II: Evolution of SOA-Based Integration

In this section of the book, we trace the evolution of the various concepts
that are basic to the SOA-based integration approach by studying some
of the technologies that preceded SOA but are now part of SOA.

Chapter 3: Sockets and Data Sharing In this chapter, we study the various
methods of data sharing between applications. These methods include
data sharing through reading and writing to a file system, data sharing
through a common database, and real-time data sharing through sock-
ets. Sockets in particular introduced the idea of real-time connectivity
between applications, which is fundamental to the working of almost all
technologies that constitute SOA-based integration. However, raw sockets
themselves do not allow functionality sharing between applications.

Chapter 4: Remote Procedure Call (RPC) In Chapter 4, we describe the
remote procedure call (RPC). RPC was an important step in the prog-
ress toward enterprise integration because it allowed, for the first time,
functionality sharing between applications and specified all the basic

Introduction to the Book 7

steps for the sharing of functionality. In addition, RPC introduced the
following new concepts and features:

■ The concept of interface declaration through the use of a specification
file. The RPC specification file may be considered the “first step” in
the development of the services interface in today’s world, such as a
WSDL file.

■ The concept of a service provider application (called the server) and
the concept of a service consumer application (called the client). The
server provides the implementation of one or more functions that can
be used or invoked by the client application.

■ The concept of the marshalling of arguments for transmission over
the network. This refers to the packaging of arguments into one or
more messages to be transmitted over the network.

■ The encapsulation of all system- and network-related functionality
in a library. This encapsulation led to future systems in which this
functionality was separated out as a program of its own for the purpose
of code reuse.

■ The introduction of client and server stubs that shield the programmer
from the system and network calls.

■ The concept of platform independence via the use of external data rep-
resentation (XDR), which encodes the data in a machine-independent
form.

Chapter 5: Object Request Broker (ORB) In Chapter 5, we describe the
Object Request Broker (ORB) technologies that form the backbone
for all modern application servers, such as WebSphere Application
Server and JBoss Application Server. In this chapter we start by
moving away from procedural languages such as C and Fortran and
into the realm of object-oriented programming using computer lan-
guages such as C++ and Java. We generalize the concepts of objects
in object-oriented programming to distributed objects in which case
the objects can reside on different computers connected by a network.
Furthermore, we describe the CORBA method, which allows remote
objects to interact with one another.

In Chapter 5 we take a big step forward in application integration, by
encapsulating the code for parameter marshalling and unmarshalling and
the code for networking into a separate software component (or applica-
tion). We call this component the Object Request Broker (ORB). This reme-
diates the problem of the lack of code reuse in the case of RPC. Various
implementations of ORB form the backbone of all the modern commer-
cial application servers, which are needed to support distributed objects.
In addition, ORB allows us to move away from point-to-point integration,

8 Chapter One

which is important if a large number of applications need to be integrated.
Also, this move away from point-to-point integration leads to the concept
of Enterprise Service Bus (ESB), as discussed in later chapters.

In addition, ORB introduces the concept of language independence
by the use of an interface definition language (IDL). The interfaces
declared through IDL can be mapped to any programming language
and can allow, in principle, the client and server to be implemented
in two different languages. Another important concept introduced in
this chapter is that of a registry, which is used by the server objects to
register themselves so that they can be located by the client.

Chapter 6: Asynchronous Messaging This chapter deals with asynchro-
nous messaging, where the sender sends a message but does not wait for
a response from the receiving end to continue its work. This increases
the scalability of the solution of applications integration in an enterprise,
which makes this method of applications integration very desirable when
large volumes of messages are involved.

Asynchronous messaging also separates out the code for marshalling
and unmarshalling as well as the networking code as a separate applica-
tion, thus resulting in code reuse because the same communication code
can be used by many different applications for communicating among
them. Asynchronous messaging also results in loose coupling because the
interaction between applications is indirect through message queues.

Another important advantage of messaging is that this method of com-
munication between applications is much more reliable than either the
RPC method or the Distributed Objects method of sharing data and func-
tionality. This reliability is achieved by persisting the data being exchanged
on both sides of the network. In other words, the data being exchanged is
saved on the disks of the two computers involved in the exchange.

As discussed in a later chapter, we can add a few components to the mes-
saging system to turn it into a messaging bus, which is also known as an
Enterprise Service Bus (ESB). The most notable component that needs to
be added to a messaging system for converting it into an ESB is the router
or a message broker. The main function of the message broker is to route
the message based on the message content or message context. In this way,
a further decoupling between the sending and receiving applications is
achieved because the sending application does not need to know the address
of the final destination. An ESB based on a messaging system provides a
much more scalable solution than an ESB based on an application server.

Part III: SOA-Based Integration

In this section we discuss the technologies that are more commonly
known as SOA-based integration technologies. These technologies were
mainly the result of the realization that the technologies discussed in

Introduction to the Book 9

Part II lead to the problem of technological heterogeneity in large enter-
prises. This problem refers to the fact that, in a large enterprise or an
inter-enterprise system consisting of an enterprise and its partners,
one usually finds more than one technology used to integrate applica-
tions, and it is literally impossible to impose enterprisewide standards
in this respect.

Generally, a number of different kinds of technological heterogeneity
exist in a large enterprise, including the following:

■ Middleware heterogeneity Generally in a large enterprise, more
than one type of middleware is being used. The two most common types
are application servers and message-oriented middleware (MOM). In
addition there is brand heterogeneity, which requires support for dif-
ferent brands of application servers and MOMs.

■ Protocol heterogeneity This heterogeneity refers to the different
transport protocols being used to access the services offered by various
applications. Examples of such protocols include IIOP, JRMP, HTTP,
and HTTPS. Related to the heterogeneity of communication protocols
is the problem that different applications want to communicate with
each other using incompatible protocols. For example, Application A
might want to communicate with Application B using HTTP. However,
for Application B the suitable protocol might be IIOP. In such cases,
protocol transformation is needed so that Application A can commu-
nicate with Application B.

■ Synchrony heterogeneity There is almost always a need to sup-
port both synchronous and asynchronous interactions between appli-
cations. In addition, there is sometimes a need for callback methods
as well as publish and subscribe. Therefore, many times a situation
arises in which the types of interaction supported by the two applica-
tions that wish to interact do not match. Hence, these applications
cannot interact with one another.

■ Diversity of data formats Sometimes the data format being
exchanged varies. Most of the time the data is dependent on the
middleware being used. This diversity of data can cause a prob-
lem if two applications that wish to interact support different data
formats.

■ Diversity of interface declarations Sometimes there are large
differences in the way service interfaces are declared and used to
invoke a service. For example, the way interfaces are declared in
CORBA and Java RMI are different.

■ No common place for service lookup Sometimes there’s no
common place to look up services to deal with the diversity of services
in a large enterprise.

10 Chapter One

Another common problem is that as soon as a new version of provider
software becomes available, the consumer applications must be modified
to account for the change in the provider application. The solution to
this problem requires that methods be found that allow the services to
be extended (for example, by adding more parameters) without breaking
the previous versions of the consumer application.

This diversity and extendibility have been partly dealt with by develop-
ing standards and partly by further technological development. We provide
an overview of these standards in Chapter 7. The further development in
technology is discussed next in Chapter 8.

Chapter 7: Web Services In Chapter 7 we provide an overview of the
various standards that have been developed to partly deal with het-
erogeneity problems. These standards are composed of a collection of
specifications, rules, and guidelines formulated and accepted by the
leading market participants and are independent of implementation
details. Some of the standards we review are

■ XML XML is a common data communication language that is inde-
pendent of different middleware technologies.

■ SOAP SOAP defines a common format for messages between appli-
cations.

■ WSDL WSDL is language- and platform-independent standard that
defines the interface for a service offered by a given application.

■ UDDI UDDI provides a common way to publish and discover
a service.

All these standards are further explained in Chapters 11–15.

Chapter 8: Enterprise Service Bus In this chapter we deal with the
remaining heterogeneity problems as well as provide a scalable
applications-integration solution in terms of the number of applications.
The two most important remaining heterogeneity problems we discuss
in this chapter are

■ Communication protocol mismatch This problem refers cases
where the service consumer is set up to use one communication pro-
tocol while the proper communication protocol for the service provider
is another protocol.

■ Data or message format mismatch This problem relates to situ-
ations where the message or data format required by the service pro-
vider is different from the format used for data/messages employed
by the service consumer.

Introduction to the Book 11

The solution to these two (and other) heterogeneity problems is the
Enterprise Service Bus (ESB), which provides a large number of facili-
ties and functionalities, including protocol transformation and data/
message transformation. We discuss the functionalities provided by the
Enterprise Service Bus in much more detail than can be found in any
other book. These details include Quality of Service (QoS) and location
transparency. Location transparency means that the service consumer
does not need to know who the service provider is or where they are
located. Similarly, the service provider does not need to know where the
service request is coming from.

In addition to a detailed discussion of the various functionalities
offered by the ESB, we show how it provides a much more scalable solu-
tion in terms of the number and kinds of applications being integrated.
We also discuss the structure and the various components essential for
an ESB to work. Furthermore, we discuss the various ESB deployment
patterns and the various kinds of ESBs available in the market. We com-
pare and contrast three kinds of ESBs, which are based, respectively, on
the application server technology, the messaging system technology, and
the hardware. Additionally, we provide practical examples involving the
use of ESBs for integrating applications in a large enterprise.

Part IV: Integrating Existing Applications

In this part of the book we describe how to integrate existing applica-
tions. These existing applications fall into two categories: applications
that run on the mainframe and packaged applications (such ERP and
CRM applications) from various software providers, including SAP,
Oracle, PeopleSoft, and JD Edwards. Integration of mainframe applica-
tions is discussed in Chapter 9, whereas integration of package applica-
tions is discussed in Chapter 10.

Chapter 9: Integrating Mainframe Applications We start this chapter by
describing the two major types of mainframe applications, including the
reasons why these applications are so important in most large enter-
prises. The two types of mainframe applications we discuss are applica-
tions based on CICS and IMS transaction management. For each of these
applications types, we describe four different methods of integration
using a point-to-point integration approach. We also provide an easy-to-
read tabular comparison of the four approaches because none of the four
integration approaches is suitable in every situation. For each integra-
tion approach, we discuss a large number of factors that must be con-
sidered when choosing a given approach. Some of the factors discussed
for each integration approach include the work required, technology
constraints, real-time access, guaranteed delivery of messages, operating

12 Chapter One

system requirements, additional hardware requirements, security, and
tools required. In addition to the point-to-point integration approaches,
we describe approaches based on the different types of ESBs. These ESB-
based approaches are suitable when the mainframe applications are to
be integrated with a large number of other applications in the enterprise.
We also provide an easy-to-read tabular comparison of the integration
approaches based on the different types of ESBs.

Chapter 10: Integrating Packaged Applications In this chapter, we describe
the integration of package applications, sometimes referred to as enter-
prise information systems (EISs), with other application types in the
enterprise. We focus on the use of adapters, which can be used along with
brokers (application servers or ESBs), to integrate these types of applica-
tions. We start out with the general description of the adapters and then
we discuss the J2EE Connector Architecture (JCA), which reduces the
number of different adapters needed for a given package application.
Compliance of both the broker and the adapter with the JCA specifica-
tion greatly simplifies the integration of packaged applications.

Next, we illustrate the use of adapters for integration by considering
a specific package application system, namely SAP. For this we first
discuss the SAP application and the various interfaces used to connect
to the application. Then we describe the WebSphere adapter for SAP
applications, which provides a very compressive way to access the func-
tionality and data embedded in an SAP application.

Lastly, we discuss how to indirectly expose the functionality and data
pertaining to a package application as a Web Service. This indirect
method involves first integrating the package application with J2EE/
Java components in an application server via the use of an adapter.
Then the Java/J2EE component is exposed as a Web Service using the
methods described in Chapter 15.

Part V: Understanding and
Developing Web Services

In this part of the book we take a detailed look at what Web Services
are and how they are developed. In particular, we discuss in detail the
four standards that are typically known as the Web Services, namely
XML, SOAP, WSDL, and UDDI. We also describe methods for develop-
ing Java/J2EE-based Web Services and how services can be composed
using BPEL.

Chapter 11: XML XML is a standard data description language that can
be used for exchanging messages between the service provider and the
service consumer. XML is middleware as well as programming language
independent. In this chapter we describe the concepts and techniques

Introduction to the Book 13

for XML use that are important in implementing Web Services and their
clients. We start with an overview of the XML language. This overview
subsection includes the basic concepts as well as a description of the
basic structure of an XML document. Next, we discuss namespaces,
which are used to avoid the collision of names in different spaces and
to extend the use of the vocabulary defined in one specific domain to
other domains. Schemas, which define the structure and grammar for
a particular type of XML document, are discussed next. Finally, we
describe the various models used for parsing, processing, creating, and
editing an XML document.

Chapter 12: SOAP Simple Object Access Protocol (SOAP) is an XML-based
messaging specification. It describes a message format and a set of serial-
ization rules for data types, including structured types and arrays. This
XML-based information can be used for exchanging structured and typed
information between peers in a decentralized, distributed environment.
In addition, SOAP describes the ways in which SOAP messages may be
transported in various usage scenarios. In particular, it describes how
to use the Hypertext Transfer Protocol (HTTP) as a transport for such
messages. SOAP messages are essentially service requests sent to some
endpoint on a network. The endpoint may be implemented in a number
of different ways. In this chapter, we describe in detail the structure of a
SOAP message, SOAP attributes, and the associated processing model
and its binding with HTTP.

Chapter 13: WSDL In order for a service consumer (application) to use the
service provided by a service provider application, a formal description
of the service is required that contains the description of the interface
exposed by the service and information on where that service can be
found on the network. Such a formal specification is provided by the
Web Services Description Language (WSDL). A WSDL document is an
XML-based document that describes a formal contract between the
service provider and the service consumer.

A WSDL document describes two aspects of a service: the abstract
interface exposed by the service, and the description of the concrete
implementation. The abstract interface describes the general interface
structure, which includes the operations (that is, methods) included in
the service, the operations parameters, and the abstract data types.
This description of the interface does not depend in any way on a con-
crete implementation, such as a concrete network address, concrete data
structures, and the communication protocol. An abstract interface can
have many corresponding implementations, giving the service consumer
an implementation choice and allowing it to pick the implementation
that best suits its technical capabilities. The concrete implementation

14 Chapter One

description binds the abstract interface description to a concrete net-
work address, communication protocol, and concrete data structures.
The concrete implementation description is used to bind to the service
and invoke its various operations (methods).

In this chapter, we provide an overview of the WSDL document by
considering the simple example of a weather service. Then we describe
in more detail the general structure of the WSDL document, including
the parts of a WSDL document that correspond to the abstract interface
and the parts that correspond to the concrete implementation. We also
provide a description of the logical relationships among the different
elements of the WSDL document as well as provide a description of some
of the SOAP extensibility elements.

Chapter 14: UDDI and Registry Concepts In addition to the WSDL
description of a service and the SOAP message format, a central place
is needed where the service provider can advertise the services they
offer and the service consumers can find the services they require. Such
a central place is called a service registry. The Universal Description,
Discovery, and Integration (UDDI) specification defines a standard way
for the registering, deregistering, and looking up of Web Services. First,
a service provider registers a service with the UDDI Registry. Then the
service provider looks up the service in the UDDI registry. Lastly, the
service consumer binds to the service provider and uses the service.

In this chapter, we describe in detail the basic data model of a UDDI
registry. This basic model consists of five entities: businessEntity, busi-
nessService, bindingTemplate, publisherAssertion, and tModel. A busi-
nessEntity is used to store information about a service provider, such
as its name and address. Nontechnical information about a service is
stored in the businessService structure. Technical information related
to a service and its endpoint is stored in the bindingTemplate entity.
Perhaps the most important entity is the tModel, which serves the
dual purpose of providing the technical fingerprint of a service and an
abstract namespace. In this chapter, you will learn how to store catego-
rization and identification information in a tModel using categoryBags
and identifierBags. In addition, you will learn how to author or partition
a WSDL document related to a service so that it can be easily referenced
in a bindingTemplate and in a tModel. Finally, we briefly discuss the
two APIs offered by the UDDI specification for publishing and inquiring
about an exiting service.

Chapter 15: Web Services Implementation In this chapter we address the
core subject of Part V of the book, which is how to develop new Web
Services. We describe two approaches for the development of new Web
Services in the Java/J2EE environment. The first approach is the top-
down approach, which is the recommended approach. In this approach,

Introduction to the Book 15

a WSDL document is either constructed or acquired first. Then auto-
mated tools are used to create skeleton code both for the server side
and the client side. The server code is then completed according to the
given requirements. The second approach is the bottom-up approach
of developing Web Services. In the bottom-up approach, either a Java
class or Enterprise Java Bean (EJB) is developed first and then auto-
mated tools are used to expose the class or EJB as a Web Service. The
automated tools also generate the required WSDL document, which is
used to generate the service clients through the use of automated tools.
Because all the messages in the Web Services are exchanged through
SOAP messages, we start this chapter with a discussion of the two major
choices for a SOAP engine, which is simply a framework for constructing
SOAP processors such as clients, servers, and gateways.

Chapter 16: Integration Through Service Composition (BPEL) Web Services
clients’ construction is suitable if the interaction of the client applica-
tion with the service provider is isolated and simple. Such activities
are simple and stateless. However, in many scenarios the interaction
of the services’ clients with the service providers is not so simple. Such
is the case of business processes. A business process is a collection of
related, structured activities. Such complex structured activities require
a stateful environment for the invocation of a chain of Web Services.
BPEL (Business Process Execution Language) is a language to describe
such long running, stateful interactions. We describe BPEL in some
detail in Chapter 16.

In Chapter 16, we start by providing a brief overview of BPEL. The
overview is followed by a detailed description of the various elements and
structure of BPEL. Then we describe a practical example of a business
process to demonstrate how various elements are used together. The last
section of this chapter summarizes the contents of the chapter.

Part VI: Appendixes

This section contains the references and the glossary of terms used in
the book.

Conclusion

In this chapter we described the rationale for writing this book by point-
ing out some of the gaps in the existing books on the market and describ-
ing how this book covers those gaps. We also identified the people who
would be interested in the subject of this book, which would include
practically anyone who is interested in enterprise integration through
the use of services. We pointed out that no prior knowledge of either
SOA or applications integration is required. This chapter ends with
brief summaries of each of the 16 chapters of this book.

17

Chapter

 2
Overview and Basic Concepts

We start this chapter with a brief history of the evolution of the idea of
service in software and the associated Service-Oriented Architecture
(SOA). Whereas the development of various programming styles has
contributed only indirectly to the development of the idea of service in
software, the major contribution to the present notion of service in soft-
ware has come from distributed computing. It is important to note that
distributed computing almost always requires a computer network.

Next, we outline the business case for the use of services-based
integration. In other words, we explain why it is important for large
enterprises to use this method of integration. We go on to provide brief
descriptions of some terms that are commonly used in this book. These
concrete definitions will help to avoid confusion later in the book. Finally,
we explain some key concepts, including loose coupling, reusability, and
interface and payload semantics.

Services in Software

The word service ordinarily refers to one person performing some work
or task for somebody else. A slightly more general definition of service is
a person or an organization performing some work for another person or
organization. A common example is the U.S. Post Office, which delivers
letters or mail on behalf of some person or organization.

So the question to ask is, What are the advantages of a service? In
the case of a letter being delivered by the post office, it is easy to see
that it saves time, money, and effort for the person needing the letter to
be delivered. What’s more, in the absence of the service provided by
the post office, the task of delivering the letter may never be completed
because the person needing the service may not have the resources to

18 Chapter Two

take the letter to its destination and deliver it. Furthermore, it is also
easily concluded that because the post office specializes in the task
of delivering letters and mail, it does so in a very efficient manner
making the whole system—including the post office organization itself
as well as the people and organizations using the mailing service—very
efficient and cost effective. This efficiency and cost effectiveness are
the result of the reusability of the mail-delivery service offered by
the post office. Reusability means that the same service can be used
by many different persons and organizations. Another advantage
of the U.S. postal service is that very loose coupling exists between
the service requester and the service provider. In other words, how
the post office delivers the letter or package is transparent to the ser-
vice requester. The post office is free to change the implementation of
the service—that is, the post office can change the means by which
the letter or package is delivered without the service requester ever
knowing about the change.

The notions of reusability and service in the software field are similar
to their meanings in real life. In the case of software, the current simplest
definition of service is one application or computer program perform-
ing some work for another application or computer program. This work
may include some functionality or data sharing. Most frequently, the
applications run in a distributed manner, which means that the service
provider application and the service consumer application run on differ-
ent computers or machines connected by a network. Sometimes these
two applications may run on the same machine. However, when the
consumer and server applications are running on the same machine, the
method that the two applications use to communicate is the same as (or
similar to) the method employed if the two applications were distributed
across a network. This idea of service in software has evolved over sev-
eral decades. The major contribution to this evolution has naturally come
from distributed computing, but progress in programming languages has
also contributed indirectly.

Before the advent of procedural languages such as FORTRAN, C,
COBOL, and BASIC, there were sequential languages. These languages
offered no reuse at all because they were designed to process instructions
in sequence. Thus, if a set of code had to be executed in the program a
number of times, the programmer had to type in that code that many
times at the right places within the program’s code. This was a very inef-
ficient and somewhat risky method of coding because it made the code
difficult to maintain. If a certain change needed to be made to the code
repeatedly, it had to be made in all the places where the code appeared.
This method of programming was also inefficient in the use of computer
memory because the repeating code had to be stored a number of times
in the address space of the computer’s memory.

Overview and Basic Concepts 19

With the advent of the procedural languages such as FORTRAN, C,
COBOL, and BASIC, the most rudimentary form of service notion took
hold. The code that needed to be repeated was separated out as a simple
procedure, such as a method, function, or subroutine. This method/
function/subroutine could then be called by the computer code at differ-
ent places to perform some “service” for the calling code. This increased
the reusability of this portion of the code. Furthermore, the code could
be easily maintained because the changes needed to be made only in
one place instead of in several different places. It also increased the
execution efficiency because the repeatable code exists only in one
place in the address space of the computer’s memory. An equally impor-
tant benefit of this separation of repeating code in a method/function/
subroutine was that the repeating code became more accurate because
it was tested over and over when called by the different portions of the
computer program.

After the procedural languages came object-oriented languages such
as C++ and Java. Such programming languages introduced the concept
of classes, which are encapsulated behavior and data. These classes can
be used anywhere in the program. Because all the code is encapsulated
in classes, which can be used anywhere in the program code, code reuse
increased quite substantially.

Although the introduction of procedural and object-oriented lan-
guages increased the reuse of code, the reuse was limited to individ-
ual computer programs or executables. In other words, the procedure
(meaning the method, function, or subroutine) could not be used outside
of the program that contained it. Because, as you will see in this book,
services and Service-Oriented Architecture are mostly about applica-
tion integrations—which require the sharing of functionality and data
across applications or computer programs—these developments in pro-
gramming languages did not directly contribute to the development
of services and SOA as they are known today. Instead, the major and
the most fundamental contribution to the development of the idea of
a service and SOA came from distributed computing, which requires
interapplication communications.

Distributed computing started with the development of socket pro-
gramming, which allowed applications to establish live connections and
share data in real time. This establishment of connectivity through
sockets was fundamental to the development of the idea of services and
SOA. Because most, if not all, of the further development in services
and SOA came on the top of sockets, it is hard to imagine that the cur-
rent ideas of services and SOA would have evolved without the advent
of sockets.

Sockets only allowed data sharing—they did not allow functionality
sharing directly. Therefore, further developments were needed to allow

20 Chapter Two

applications to share functionality. This development came in the form
of remote procedure call (RPC), which is also known as client/server
programming. RPC is built on top of sockets and hides the low-level
network programming that is required from the developer or programmer.
In addition, concerning the sharing of functionality between applica-
tions, RPC also introduced a rudimentary way of declaring a service
interface and the idea of platform independence through the use of XDR
(see Chapter 4 for a description of XDR).

After RPC came the Object Request Broker (ORB) technology, which
introduced object-oriented programming ideas into the realm of dis-
tributed computing. In particular, ORB technology extended the idea
of objects in object-oriented programming to remote objects, where
the objects can reside in different applications running on different
computers. ORB technology provided for these remote objects to com-
municate with each other. These remote objects were able to share
functionality and data in much the same way as applications were
able to share functionality and data in the case of RPC. The most
well-known examples of ORB technologies are CORBA and Java RMI.
CORBA, in particular, introduced a number of new ideas related to
services and SOA, such as a language-independent service interface,
the initial concept of a registry, and the separating into different appli-
cations of network-related functionality and the code for marshalling
and unmarshalling, which enormously improved code reuse because
the same code could be used by a number of different applications.
Most of the current application servers, such as WebSphere Application
Server and JBoss, are based on the ORB technology.

In parallel with the development of ORB technology, asynchronous
messaging was also developed. This technology also relied on sockets in
the background but provided some advantages in terms of the scalability
of application integration. This scalability primarily resulted from the
asynchronous nature of the messaging, which allowed sending applica-
tions to continue their work without waiting for a response from the
receiving application. What’s more, this method of exchanging messages
between applications used queues for sending and receiving messages.
This indirect method of exchanging messages provided loose coupling
between the sending and receiving applications. Yet another advantage
is that the delivery of messages can be guaranteed by persisting them
on both side of the network. Furthermore, synchronous messaging can
be simulated by using correlation IDs to compare the request message
to the response message. A closely related development was the develop-
ment of message routers/brokers, which can route messages based on
their content or context.

Then came Web Services, which introduced standards in order to
reduce the heterogeneity caused by the use of multiple technologies

Overview and Basic Concepts 21

(such as RPC, ORBs, and messaging). Specifically, they introduced a
standard, middleware-independent data format called the Extensible
Markup Language, or simply XML. In addition, the previous services
interface definitions were refined by introduction of WSDL (Web
Services Description Language), which allowed the services interface
to be declared in a language-, platform-, and middleware-independent
form. Similarly, the previous ideas of service registry were refined by
the introduction of Universal Description, Discovery, and Integration
(UDDI) interface. Finally, a standard format for message exchange was
introduced in the form of SOAP.

In many cases, it was soon discovered that Web Services alone were
not enough to deal with all the heterogeneity problems. In particular,
Web Services were not able to handle the situation of a communication
protocol mismatch between the service provider and the service con-
sumer. Similarly, Web Services were unable to provide a satisfactory
solution for a mismatch of the data/message format between the service
provider and service consumer. Enterprise Service Bus (ESB) came to
the rescue. An ESB provides many functions, including protocol and
message transformation, message routing based on content and context,
location transparency, Quality of Service (QoS), data enrichment, and
other functions. We will discuss these functions in detail in Chapter 8.

In addition to Web Services, which employ new applications and the
Enterprise Service Bus, SOA must provide a means of integrating exist-
ing applications (such as legacy mainframe applications and package
applications) in order to offer a complete integration solution for an
enterprise. Many times this requires wrapping existing applications
into Web Services or using adapters, which allow these existing applica-
tions to communicate with other, more modern applications. We discuss
in detail the integration of mainframe and packaged applications in
Chapters 9 and 10 of this book.

Web Services standards are discussed in detail in Chapters 11–14,
whereas the creation of new Web Services is described in Chapter 15.

To conclude this section, refer to Figure 2.1 for a summary of the
development of services and SOA. This figure shows the contributions
made by different distributed technologies to the development of SOA.
It also shows the many earlier technologies SOA has embraced, start-
ing from sockets.

Business Problem Addressed by SOA

SOA addresses a very common and specific business problem. In the past,
business requirements did not change very fast. The product line offered
by a company and the methods of marketing and selling those products
were fixed. Therefore, IT requirements were also more or less fixed.

22 Chapter Two

However, in the 1990s this situation changed. The lifetime of a product
became shorter and the organization started to change very quickly.
There are five main reasons for these changes:

■ Mergers This refers to two or more companies or organizations
joining to form a single, new company.

Figure 2.1 Evolution of services-based integration and SOA. The contributions of various
distributed technologies are shown in yellow boxes.

Sockets

RPC

ORBs

Messaging

Web Services

• Connectivity
• Real-time data sharing

• Functionality sharing
• Interface description
• Platform independence

ESB

• Language-independent
 interface
• Initial concept of registry
• Separate component for
 network and marshalling
 functionalities

• Separate component for
 network and marshalling
 functionalities
• Scalable connectivity
• Guaranteed delivery

• Middleware-independent data
 format (XML)
• Refined concept of registry
• Refined interface definition
• SOAP

• Protocol transformation
• Data/message transformation
• Content or context based
 routing
• QoS

SOA

Overview and Basic Concepts 23

■ Acquisitions This refers to a company increasing its size substan-
tially by buying or acquiring another company.

■ Changing market conditions In particular, this involves the fast
introduction of new products and the repackaging of existing products
in order to survive in a highly competitive market.

■ New technological advances Advances such as the Internet and
voice response systems provided new opportunities for marketing,
sales, and procurements.

■ The nature of business relationships A large organization typi-
cally has many relationships with external business entities such
as business partners and suppliers. These relationships are fluid in
nature and frequently change.

These fast-changing business conditions meant that the require-
ments for the IT systems that supported these business operations also
started to change very quickly. In the past, applications were developed
to address a specific business need. This required developers to make
assumptions related to the problem being solved, the data being used,
and the hardware on which the software was supposed to run. New
problems required the development of new programs. However, the fast-
changing IT requirements meant that the old methods of developing
and deploying software systems were no longer sufficient due to the
difficulty in developing a large number of computer programs in a short
period of time. A new approach was needed to provide flexible, agile IT
systems that could meet the fast-changing business needs of the time.

As an answer to this problem, SOA emphasizes agile IT systems through
the use of reusable components. In this architecture, computer programs
or components are not developed to solve a specific business problem.
Instead, they provide some generic functionality. Then, these components
can be threaded, linked, or integrated in a specific order or configuration
to meet a specific business need. If the business requirement changes,
there’s no need to develop a new computer program. Instead, the system
can be reconfigured to meet the new business requirement.

This is illustrated in Figures 2.2 and 2.3. Figure 2.2 shows a particular
configuration of reusable software components that meets a specific

Figure 2.2 A loosely coupled arrangement of reusable components

Component A Component B Component C

Component D Component E

24 Chapter Two

business need for a given time period. Figure 2.3 shows that the same
components can be reused in a different configuration to meet the chang-
ing business needs. Perhaps an analogy will help to make this point
clear. In this analogy, the old approach of developing a new application
whenever the business requirements change corresponds to neon sign
technology, which can advertise only a fixed commercial product. If the
product changes, the old neon sign must be discarded and a new neon
sign designed and built. On the other hand, the new SOA approach can
be compared to a changeable letter board, which employs reusable letters.
These letters can be configured to advertise one product today, and if
the product changes tomorrow, the letters can be easily rearranged to
advertise the new product.

This analogy also helps to explain another important aspect of SOA:
reusability. This aspect relates to the concept of loose coupling. Using
the preceding example, notice that we cannot reuse the letters in the
neon sign technology because they are strongly linked or coupled. In
other words, we cannot easily separate the letters in a neon sign. On
the other hand, in the case of the changeable letter board, there is very
little (or “loose”) coupling between the letters. That is the reason we can
separate the letters easily and then reconfigure them to meet changing
requirements on a short notice.

In addition to providing agility to IT systems to meet changing business
needs, reusable components offer the following advantages:

■ They save development and testing time and resources because few, if
any, new components need to be developed if the requirements change.

■ They provide more consistent functionality and data to the internal
and external consumers by eliminating redundant code.

■ The code is easy to maintain because changes can be localized to one
place in a component.

Figure 2.3 A reconfiguration of reusable components for changing requirements

New Component

Component C Component A Component E

Component F

Component D

Component B

Overview and Basic Concepts 25

■ The code is well tested because it is used many times in different
arrangements and situations.

Definitions

A number of terms are important in discussing the subjects of services
and SOA. However, some variations in the use of these terms exist. In
other words, these terms have been used with slightly different meanings
in the past. Therefore, in order to avoid confusion, this section provides
concrete definitions of these important terms to give you a more consis-
tent picture of services and SOA. The second reason for discussing these
terms this early in the book is that you might not be familiar with these
terms. If this is the case, you will find these descriptions helpful as a way
of introduction to the ideas these terms represent. We’ll start with the
most simple of these terms (but still very important): application.

Application

The term application has different meanings in different contexts. Some
define an application as a single computer program, which means a
single executable. Others define an application as a collection of more
than one computer program that work together to provide some function-
ality. Such is the case for many Internet-based applications. However,
in this book we will use the term in the more restricted sense to mean
only a single executable or computer program. This will help avoid any
confusion concerning its usage.

Distributed Computing

By distributed computing, we always mean more than one application
(or executable). These programs or applications typically run on sepa-
rate hardware or machines, but they work together to achieve some
function. The different applications running on different computers use
some method of communicating among themselves over a computer
network. Some of these communication methods include sockets, RPC,
ORBs, and asynchronous messaging. We will discuss these methods of
communication in detail later in this book.

Enterprise

Among other definitions, the Merriam-Webster online dictionary pro-
vides two meanings of enterprise that are relevant for our discussion. The
first is “a business entity,” and the second is “a project or undertaking
that is especially difficult, complicated, or risky.” These two definitions
taken together give a good sense of the entities we are interested in. To be

26 Chapter Two

more specific, by enterprise we mean any large and complex organization
that has an equally large and complex IT system. The large organization
comes in many different forms:

■ Large businesses or commercial organizations Prime examples of
such organizations are IBM, General Electric, and large financial insti-
tutions such as banks. Each of these organizations has multiple lines of
business, which makes their organization and the supporting IT systems
very complex. For example, here are some of the lines of business for IBM:

■ Hardware (including mainframe and midrange servers)

■ Software (including all the WebSphere, System z, and Tivoli products)

■ Global business services (which provide IT consulting services)

Some of the lines of business for General Electric are listed next:

■ GE Aircraft Engines (makes and sells engines for aircrafts)

■ GE Home Appliances (makes and sells appliances such as washers,
dryers, refrigerators, and so on)

■ GE Medical (makes and sells medical equipment such as X-ray and
MRI machines)

■ GE Financial Services (provides financial products such as depart-
mental credit cards)

■ GE Lighting (sells light bulbs and other lighting products)

Similarly, a large bank might offer the following lines of business:

■ Retail banking (including checking and saving accounts)

■ Mortgages

■ Other loans (such as loans for buying cars, appliances, and so on)

■ Individual retirement accounts

■ Investment accounts

■ Credit cards

■ Departments of the federal government These include the
Department of Defense, Department of Energy, Department of
Commerce, and so on. In the same category are the departments run
by the various state (or provincial) government agencies. In addition,
city governments are sometimes very large and complex.

■ Nonprofit organizations These include the Institute of Electrical
and Electronics Engineers (IEEE), the American Physical Society
(APS), the American Chemical Society (ACS), and so on. All these
nonprofit organizations have large and complex IT systems.

Overview and Basic Concepts 27

In addition to the internal lines of business, usually a large enter-
prise has many working relationships with external business entities,
such as business partners and suppliers. These are commonly known as
business-to-business (B2B) relationships and add a new dimension to
the workings of the company’s IT systems because these relationships
are fluid in nature and frequently change. Therefore, the IT systems of
these organizations need to be very flexible and agile.

Most of our discussions are centered on enterprise integration, and
much of what is discussed also applies to medium-size organizations,
which also have a need to provide consistent data and functionality to
their internal and external customers.

Enterprise Software

Enterprise software is designed for a large organization that typically
has its own internal organization, processes, and business model. The
software must take into account both cross-departmental dependen-
cies and external business relationships, such as business partners
and external vendors. Therefore, enterprise software must meet a large
number of different types of requirements. Many of these requirements
are incomplete, unclear, or otherwise conflicting. Furthermore, the
requirements keep changing due to the market conditions and orga-
nizational changes. Because of these reasons, enterprise software is
typically very complex.

One thing that makes the lives of enterprise software developers
somewhat easier is that the coding of the business logic is usually not
very complicated compared to other types of software, such as software
for embedded systems. Similarly, the data structure for enterprise soft-
ware is also not very complicated compared to other software, such as
software for geographic information systems.

Here are some of the distinguishing features of enterprise software:

■ The business data and other contents will have a very long lifecycle
compared to data for other types of applications.

■ A diverse set of technologies will be involved, including different
middleware and many different applications.

■ Functional requirements will be in a constant state of flux.

■ The number of users of enterprise software could potentially be very
large. Numbers in the order of tens of thousands of users are not
uncommon.

■ The number of stakeholders for such software could be large and may
include different IT projects, IT maintenance, operations, and differ-
ent business units.

28 Chapter Two

On the other hand, consider a desktop application such as word pro-
cessor. The technologies involved in developing such applications are
limited in number, and as a result the application will be developed by
a more homogeneous team of developers. The application logic is not
pervasive but is confined to the application itself. The data involved is
more transitory in nature.

Integration

With separate applications that operate in their individual silos, it
becomes difficult to provide a consistent and unified view of the func-
tionality and data in an organization. Of course, large organizations
usually have a large number of applications, and the problem becomes
even harder for these large organizations. In order to solve these prob-
lems, the applications must be able to communicate with each other and
be able to share functionality and data with each other. This sharing of
data and functionality helps avoid duplicating data and functionality
and hence provides more consistent and unified data and functional-
ity to the end user. Designing new applications or modifying existing
applications so that they are able to share data and functionalities is
called software integration.

Software Architecture

Usually only a few computer programs are sufficient to service a small
company or organization. These small programs are easy to manage, and
there is no need for an overall design. However, as we consider bigger
and bigger organizations, the number of computer programs grows, and
there is greater need for an overall design or design strategy in order
to avoid chaos. This overall design or design strategy is called software
architecture.

Software architecture is similar in nature to building architecture.
Both types of architecture require planning according to some prin-
ciples. For example, in building architecture the steel structure must
be designed to support the current floor as well as future additions.
In a similar manner, software architecture must be designed for both
the current requirements and any upcoming requirements that can be
foreseen.

In the past a business application or a computer program was devel-
oped whenever a specific need arose. These applications of the past
era catered to the specific requirements of the problem being solved,
the data being employed, and even the specific hardware on which the
application would run. Thus, these applications more or less ran inde-
pendently of each other in separate silos. There was no need for these
commuter programs to talk to each other. However, as the number of

Overview and Basic Concepts 29

applications grew, it became difficult to provide a consistent view of the
functionality and data, and the management of these applications, each
with its own silo, became very difficult.

It is at this stage that a need arose for an architecture that not only
could easily meet the current requirements of a software system involv-
ing a large number of applications but could also meet the needs of
tomorrow via (mostly) simple reconfigurations of the IT or software
system. Service-Oriented Architecture is an architecture that meets the
requirements of an agile, large IT system. SOA emphasizes agility and
reuse of software assets through the use of software components that
can be rethreaded or relinked easily in different configurations.

Some Basic Concepts

In this section we describe two fundamental concepts that are essential
for a proper understanding of services and SOA. We start with loose
coupling.

Loose Coupling

Of all the concepts, the idea of loose coupling is the major driving prin-
ciple of the march toward SOA-type integration patterns. This drive for
loose coupling has occurred because the number and kinds of applications
being integrated have progressively become very large. This requires
integration patterns to minimize the effect on other applications due
to the changes made to one application. However, the most important
business reason for requiring loose coupling is that businesses require
agility to meet today’s changing business needs. Thus, the integration
schemes must allow for this agility and must be flexible.

In software, especially in distributed computing, coupling can occur at
many different levels. For distributed systems, the way the remote appli-
cations are connected is possibly the most obvious technical factor when
examining the problem of coupling. A direct network connection (for
example, through sockets) can be thought of as tight coupling, whereas a
physical intermediary enables loose coupling. Therefore, use of a messag-
ing system (also called a MOM) results in loose coupling on the physical
level because message queues are used as the intermediary. RPC-type
applications, on the other hand, are tightly coupled because they rely
on direct connections among themselves through sockets. This requires
both the application that makes the request and the application that
receives the request to be running and accessible at the same time.

Related closely to the issue of physical connection is the subject of
synchronous versus asynchronous communications, as indicated in
the last paragraph. Asynchronous generally results in loose coupling.
However, this assumes that the underlying middleware, such as a MOM,

30 Chapter Two

is able to support the asynchronous messaging in a loosely coupled manner.
Another way one can simulate an asynchronous call is through a one-way
RPC call, in which the client does not wait for the reply from the server.
However, this asynchronous call still results in tight coupling between the
client and the server because the client and the server have to be running
at the same time with a direct physical connection between them.

At the next level of coupling, the stronger the type of system, the stron-
ger the coupling between the different components of the system. For
example, in the case of interface semantics, tight coupling exists between
different components of the system because interface semantics provide
an explicit interface with operation names and strongly typed arguments.
This tight coupling means that if the interface changes, a ripple effect
occurs throughout the system of applications.

Another important factor that can affect the coupling between com-
ponents is the interaction patterns of the distributed components.
For example, an object-oriented (OO) distributed system will require
OO-style navigation of complex object trees. The client would have to
understand how to navigate across objects, which results in a fairly tight
coupling between the client and the server. On the other hand, RPC-style
interfaces do not require such complex navigation, thus resulting in
much looser coupling between the server and the client.

Yet another factor that has an effect on the degree of coupling between
the components of a system is the control of process logic. A central
control of the processes will result in tight coupling between the differ-
ent subprocesses and transactions. For example, database mechanisms
might be used to enforce the referential integrity and general consistency
of data owned by different subprocesses. This is often the case with large
monolithic applications such as an Enterprise Resource Planning (ERP)
or Customer Relationship Management (CRM) system. On the other
hand, if the business processes are highly distributed, this results in
much looser coupling between different components of the system. An
example might be the B2B environments.

The last factor to consider is the method that is used by the client to
locate a service. Statically bound services result in tight coupling, whereas
dynamically bound services yield loose coupling. Looking up services in a
directory or naming server reduces the coupling between components.

The different factors we have discussed and how they affect coupling
between components of a system are summarized in Table 2.1.

Interface and Payload Semantics

The interaction between a client application and a server application
usually results in the execution of a transaction or activity on the server
side. The client must specify the activity that needs to be performed on

Overview and Basic Concepts 31

the server side. This specification usually is done in two different ways.
The requested transaction or activity can be encoded in the operation
signature of the server component’s interface, or it can be embedded in
the message itself. In the first case, the requested transaction or activ-
ity is specified by using a self-descriptive function/method name such
as updateBalance() or retrieveBalance(). This is referred to as interface
semantics and is common in RPC-style interfaces. Figure 2.4 shows this
kind of semantics in a schematic manner.

In the second case, the transaction or activity to be performed is
embedded directly in the message. This is usually done in two ways.
The name of the operation/activity can be included in the header of the
message, if the underlying MOM provides such a field as part of the
message header. Alternatively, the name of the activity/operation can
be part of the application-specific payload. This we refer to as payload
semantics. Payload semantics is common when MOMs are employed.
These MOMs provide a generic API with functions such as MQGET()
and MQPUT(). The semantics of these functions is purely technical.
Payload semantics is shown schematically in Figure 2.5.

Factor Loose Coupling Tight Coupling

Physical connection Indirect connection through
an intermediary

Direct connection

Communication style Asynchronous Synchronous

System type Weakly typed system Strongly typed system

Interaction pattern Distributed logic Centralized logic

Service binding Dynamic binding Static binding

TABLE 2.1 Loose Versus Tight Coupling

Figure 2.4 Interface semantics with meaningful names for each function

Application A Application B

returnBalance ()

retrieveBalance ()

getBalance ()

32 Chapter Two

Conclusion

We started this chapter with overview of the development of services and
SOA. We pointed out that although the development of programming lan-
guages indirectly contributed to the evolution of services and SOA, the major
and most direct contribution came from the development of various distrib-
uted computing technologies. This development of distributed computing
started with sockets. The contribution also came from the development of
RPC, ORBs, and asynchronous messaging. The most recent advancement in
the area of services came from the development of Web Services standards
and Enterprise Service Bus. Once again, we’ll point out that SOA is based
on and embraces all these different distributed computing technologies.

Next, we defined various terms common in the area of SOA and SOA-
based integration, including application, distributed computing, enter-
prise, enterprise software, integration, and software architecture.

Finally, we discussed some of the key concepts related to SOA and
SOA-based integration. Of all the concepts, the major driving principle
of the march toward SOA-type integration patterns is the idea of loose
coupling. This drive for loose coupling has occurred both for technical
reasons and for business reasons, which demand agility and flexibility
from the IT systems. We pointed out that coupling can occur at different
levels, including the physical connection (network connection), commu-
nication style (RPC versus asynchronous messaging), system type (weak
versus strong type), interaction pattern (distributed versus centralized
logic), and service binding (static versus dynamic binding).

In Part II of this book, we start to discuss the various distributed tech-
nologies that have contributed to the evolution of services and services-
based integration. We start out in Chapter 3 with the simplest concept of
data sharing by applications. In this context, we discuss sockets, which not
only allow data sharing among applications in real time but also provide
connectivity between applications. This connectivity is a fundamental con-
cept and lays the foundation of all services-based integration schemes.

Figure 2.5 Payload semantics in which the remote functionality required is encoded in
the message that is sent

Application A

Application B

Part

Evolution of
Integration
Patterns

2

35

Chapter

 3
Sockets and Data Sharing

We start out in this chapter by describing the different methods of shar-
ing data between applications. In later chapters we will discuss how
applications can share functionality as well. Data sharing is discussed
first for two reasons: The first reason is historical in that applications
started sharing data long before they started sharing functionalities.
The second, and more important reason is that a discussion of data
sharing introduces the concept of connectivity between applications.
Connectivity is required not only for sharing data in real time but also
for sharing functionality.

The three significant methods of sharing data between applications
are file-based data sharing, the use of a common database, and sockets.
The file-based method of sharing data is the oldest and will be discussed
first. Next we will look at the common database method of sharing data.
Both of these methods are suitable if the applications are not required to
share data in real time. However, if there is a need to share data in real
time, we must use the third method (sockets), which provides a real-time
connection between applications. The discussion of sockets will lead us
into the area of sharing functionalities between applications, which will
be covered in the next chapter.

File-Based Data Sharing

The first method of sharing data is through files. This is perhaps the
most common method of sharing data because storing data in files is
universal. This type of storage is allowed by all hardware systems and
operating systems. In this method of data sharing, one application writes
data to a file while the other application reads data from the same file.
If the two applications are running on the same machine, they can
use the machine’s disk to read and write. This is shown in Figure 3.1.

36 Chapter Three

In the case that the two applications are running on two different
machines or servers, a file-transfer mechanism between the machines’
two disks must be used. One common method of file transfer is the File
Transfer Protocol (FTP). The data sharing between two applications
running on two different machines is shown in Figure 3.2.

The most common types of file-based data sharing use text files. The
reason for using text-based data transfer is that a character is repre-
sented by one byte in almost all the important operating systems and
languages, unlike numeric quantities such as integers and floating-
point numbers. For numeric quantities, different operating systems and
languages may use a different number of bytes and a different order
of bytes to represent the same numeric quantities. Thus, for example,
one system may use two bytes to represent an integer whereas another
system might use four bytes to represent the same quantity.

Examples of common types of text files include flat files and XML
files. Flat files come in two varieties: fixed-length record files and
variable-length record files. Fixed-length files contain data in which the

Figure 3.1 Schematic representation of two applications running on the same computer,
exchanging data through a file on the computer’s disk.

Application A Application B

File

write read

Server (machine)

Figure 3.2 Schematic representation of two applications running on two different computers,
exchanging data through a file. The file is transferred from one computer to the other by
the use of the File Transfer Protocol.

Application A

File

Application B

File

write read

file transfer (ftp)

Server 1 Server 2

Sockets and Data Sharing 37

length of each field is fixed and the order in which different fields appear
is also fixed. While writing such files, the developer must ensure that
all field data has the required length by inserting some filler, such as
blanks or zeros, if required. An example of such a file, which describes
the color, length, and width of a paper, is shown in Listing 3-1. In this
small file, data for three fields is being used. The first field must have a
length of six, the second field must have a length of four, and the third
field must also have a length of four. For the second field, fillers (zeros)
are used to ensure the field has the required length of four.

Listing 3-1

/* An example of fixed length flat file, which describes the color,
length, and width of a sheet of paper. */
Yellow01452456

The second type of flat file contains variable-length records, and con-
sequently the files themselves have variable lengths, even though they
contain the same type of records. Such files use a delimiter such as
comma or semicolon to separate various fields in the record. Each field
can be of any length, but fields must occur in a predetermined order.
An example of a variable-length record flat file is shown in Listing 3-2,
which describes the same paper as Listing 3-1. Note in this case that
there’s no need to use fillers and that the delimiter is a comma.

Listing 3-2

/* An example of variable length flat file which describes the color,
length, and width of a sheet of paper */
Yellow,145,2456

Recent types of text files use XML. XML uses tags to describe dif-
ferent fields in a record. The advantages of using XML are that the
tags are self-describing and the file is human readable. A portion of
an XML file, which describes the same sheet of paper, is shown in
Listing 3-3.

Listing 3-3

/* A portion of an XML file, which describes the color, length,
and width of a sheet of paper. */
<paper>
 <color>Yellow</color>
 <length>145</length>
 <width>2456</width>
</paper>

38 Chapter Three

An important thing to note from these listings is that even the
numeric quantities, such as length and width, are written and read
from the file as character strings. Therefore, the software developer
for the application, who is writing to the file, must first convert the
numeric quantities into a character string and then write to the file.
In a similar manner, the software developer for the application who is
reading from the file must convert the character string to the appropri-
ate numeric quantities, such as integer or floating-point number. This
could be considered a disadvantage of using the file-based data-sharing
approach.

However, writing and reading text from a file are usually simple
tasks, and most programming languages provide good facilities to per-
form these tasks. This is illustrated in Listings 3-4 and 3-5. These two
Java code snippets show how to write text to and read text from the files,
respectively. Note that the file is named “testFile” and the data that is
being written and read is “This is a test for writing to a file.”

Listing 3-4

/* Java code for writing text to a file */
try
{
 FileOutputStream fos = new FileOutputStream ("testFile");
 DataOutputStream dos = new DataOutputStream (fos);
 dos.writeUTF ("This is a test for writing to a file");
 dos.close();
 fos.close();
}
catch (IOException ex)
{
 System.out.println(ex.getMessage());
}

Listing 3-5

/* Java code for reading text from a file */
try
{
 FileInputStream fis = new FileInputStream ("testFile");
 DataIntputStream dis = new DataIntputStream (fos);
 dos.readUTF ("This is a test for writing to a file");
 dis.close();
 fis.close();
}
catch (IOException ex)
{
 System.out.println(ex.getMessage());
}

Sockets and Data Sharing 39

Although data sharing through files may be the most common method
of sharing data between applications, this method has a number of
disadvantages.

The most important disadvantage of this method is that the data
is not shared in real time. Generally a substantial lag exists between
the time that one application writes to a file and the time the second
application reads from the file. This lag in time is usually determined
by a business cycle, which may be a few hours, a day, or a week. Many
times this lag in reading is not a problem, in which case it is proper to
rely on this method of data sharing. However, in many other cases the
lag in time is a serious problem, which makes this method of sharing
data unsuitable in such circumstances. Consider the situation where
a business client has changed their address and reports that change
to the business through Application A, which then writes this change
of address to a file for Application B to read. However, Application B
reads such files only once a week. In the meantime, Application B sends
a bill to the wrong address. Thus, the bill might not get paid in time or
even paid at all. In such situations, the staleness of data is a serious
problem.

Another serious problem with file-based data transfer between
applications is that this method is unreliable if a large number of files
are involved. File-based data transfer requires a substantial amount
of bookkeeping, including when and how to delete files, and a locking
mechanism so that a given file is not read from and written to at the
same time. These and other issues are discussed further in the next
paragraph.

The bookkeeping tasks that need to be performed for file-based data
sharing significantly increase the workload for the software developers.
These tasks include the following:

■ The software developers for both the application writing to the file
and the application reading from the file must agree on the format of
the file.

■ The software developers for both the application writing to the file
and the application reading from the file must agree on a file-naming
convention.

■ The software developers must agree on the directory in which the file
must be created and/or transferred if need be.

■ Software developers for data-sharing applications must agree on the
application responsible for deleting the file when it is no longer needed.

■ Software developers must implement a locking mechanism that disal-
lows other applications from reading from the file when one application
is writing to the file.

40 Chapter Three

■ If the two applications sharing data through files are running on two
different servers (machines), the software developers must decide on
which application will be responsible for transferring files from one
server to the other.

Sharing data using files is straightforward when the data is in text
form. However, if the data is numerical, you must account for the two
systems used: big endian and little endian. For example, SPARC is big
endian whereas Intel is little endian. In this case, you must explicitly
program to account for this difference, which is commonly known as the
“big endian versus little endian” issue.

Another serious problem with this type of data integration is that
the method is not suitable when a large number of applications need
to be integrated because this type of integration is “point to point.” The
number of point-to-point integrations basically increases as follows:

N(N–1) / 2

In this calculation, N is the number of applications involved in the
integration.

Common Database

This method of sharing data between applications is similar to the previ-
ous file-based data-sharing method. In this case, one application writes
data to a common database, and other applications read the data from
that database. This is shown schematically in Figure 3.3. An important
difference from file-based data sharing to note from this figure is that
the database almost always runs on its own separate machine. This
means the data transfer between applications always occurs via a net-
work, even though the applications sharing the data might be running
on the same machine. Therefore, this method of sharing data is gener-
ally slower than the file-based method. An advantage of this method of
data sharing is that the connection between applications in not “point to
point,” as is the case for file-based data sharing. Any number of applica-
tions can share data once it is written to the database. Thus, the data is
always consistent across any number of applications.

The use of a common database for application integration is popular
due to the widespread use of SQL-based relational databases. Almost all
development platforms support SQL, so you don’t need to worry about
multiple file formats. Therefore, once you learn SQL, you can use it on
all different platforms.

Some sample code for reading from a database in Java is shown in
Listing 3-6. In this sample code, an application reads the names and
phone numbers of employees from a database and displays them on

Sockets and Data Sharing 41

the console. The names and phone numbers are stored as two columns
in a table named “employee.” The code for writing to the database is
similar.

Listing 3-6

/* Sample Java code for reading from the database */

import java.io.*;

import java.sql.*;

public class TestClass {

 public void getEmployees (){

 Connection con = null;

 Statement stmt = null;

 ResultSet rs = null;

 try

 {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 con= DriverManager.getConnection ("jdbc:odbc.somedb", "user",

"password");

 stmt = con.getStatement ();

 rs = stmt.executeQuery ("SELECT NAME, PHONE FROM EMPLOYEES");

 while (rs.next())

Figure 3.3 Schematic representation of multiple applications-sharing data through a
common database. Note that communications always occur over the network. The applica-
tions sharing the data could be running on the same computer or separate computers.

Database

Application A

Application B

Application C

Application D

write

read

read

read

Server 1 Server 2

Server 3

42 Chapter Three

 {

 System.out.println (rs.getString("name") + " "

+rs.getString("phone");

 }

 catch (ClassNotFoundException e)

 {

 System.out.println (e.getMessage());

 }

 catch (SQLException e)

 {

 System.out.println (e.getMessage ());

 }

 finally

 {

 con.close();

 }

}

Although data sharing via a common database is an improvement
over file-based data sharing in some respects, there are still some
disadvantages to this method.

The greatest disadvantage of the common database approach is, just as
in the case of file-based data sharing, the data is not shared in real time.
This is because when an application writes data to the database, other
applications are not informed of the changes. Thus, even though the data
is available to other applications for reading, right after an application
writes to the database, other applications are not aware of the changes
and therefore cannot take advantage of the updates in real time.

Another serious problem of the common database approach is that it
is very difficult, and sometime impossible, to come up with a suitable
design for the common database. Defining a unified database schema
that can meet the needs of multiple applications is very difficult.
Furthermore, for the application programmers, the resulting database
schema is difficult to work with. There are also severe political difficulties
in designing a unified schema. If a critical application is likely to suffer
delays due to working with a unified schema, often there is pressure to
separate the databases.

The problem of designing a unified database schema is exacerbated
if externally packaged applications are part of the system of applica-
tions that need to be integrated. Most packaged applications have their
own database schema, and these schemas will not work with any other
schema. Even if there is room for changing the database schema of a
given packaged application, it is likely to be limited to an extent that
is not suitable for general integration. In addition, software vendors
reserve the right to change the schema with every new release of the
software. When vendors change the schema of their packaged appli-
cations, interfacing applications encounter a ripple effect that causes

Sockets and Data Sharing 43

development and maintenance issues—or worse, production issues—if
schema changes are not advertised properly.

The use of a common database is also not suitable when a number
of applications need to be integrated and is therefore not a scalable
solution to the problem of application integration. This is because if a
fair amount of applications frequently read and write to the common
database, the database can be a bottleneck as each application locks
others out of the database.

This integration method is also not a suitable solution if the applica-
tions are distributed across multiple locations. This is because accessing
a single, common database across a wide area network (WAN) is typically
too slow to be practical.

Sockets

In order to avoid the problem of stale data, a real-time connection
between applications is needed. This is called connectivity. The most
rudimentary way to establish a connection between two applications is
through sockets. A socket is a communications connection point (end-
point) that you can name and address in a network. The processes that
use a socket can reside on the same system or on different systems on
different networks. Sockets are useful for both standalone and network
applications. Socket APIs are the network standard for TCP/IP. A wide
range of operating systems support socket APIs.

Sockets allow one application to listen at a given port on a given
machine for the incoming data, while another application can write
to the same socket using the IP address and port address of the first
application. The listening application can read the data as soon as
the second application writes the data. Thus, the data is shared in
real time and the problem of stale data is eliminated. The listening
application is usually called a server whereas the other application is
called a client.

Because the overhead associated with applications that communicate
through sockets is very low, direct socket programming leads to a very
efficient way of communication. It is also interesting to note that most
of the modern methods of communications (such as MOM/messages)
as well as other methods (such as distributed objects) rely on socket
programming under the hood.

Listing 3-7 illustrates typical C language code on the server side. Note
that the code listing contains the system header files (<sys/socket.h>,
<sys/types.h>, and <netinet/in.h>) as the include files. This inclusion
allows all the systems-related files to be compiled along with the code
shown in Listing 3-7, and it allows the code to make system-level calls
related to the sockets.

44 Chapter Three

Listing 3-7

/* Typical code for sockets on the server side in C language */

#include <stdio.h>

/* for EXIT_FAILURE and EXIT_SUCCESS */

#include <stdlib.h>

/* network functions */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main()

{

 int socket_desc;

 struct sockaddr_in address;

 int addrlen;

 int new_socket;

/* create the master socket and check it worked */

 if ((socket_desc=socket(AF_INET,SOCK_STREAM,0))==0)

 {

/* if socket failed then display error and exit */

 perror("Create socket");

 exit(EXIT_FAILURE);

 }

/* type of socket created */

 address.sin_family = AF_INET;

 address.sin_addr.s_addr = INADDR_ANY;

/* 7000 is the port to use for connections */

 address.sin_port = htons(7000);

/* bind the socket to port 7000 */

 if (bind(socket_desc,(struct sockaddr *)&address,sizeof(address))<0)

 {

/* if bind failed then display error message and exit */

 perror("bind");

 exit(EXIT_FAILURE);

 }

/* try to specify maximum of 3 pending connections for the master socket */

 if (listen(socket_desc,3)<0)

 {

/* if listen failed then display error and exit */

 perror("listen");

 exit(EXIT_FAILURE);

 }

/* accept one connection, wait if no connection pending */

 addrlen=sizeof(address);

 if ((new_socket=accept(socket_desc,(struct sockaddr *) &address,

&addrlen))<0)

 {

/* if accept failed to return a socket descriptor, display error and exit */

 perror("accept");

 exit(EXIT_FAILURE);

 }

/* inform user of socket number - used in send and receive commands */

 printf("New socket is %d\n",new_socket);

Sockets and Data Sharing 45

 sleep(10);

/* shutdown master socket properly */

 close(socket_desc);

}

The flow of code is summarized in Figure 3.4. The basic sequence is
that first a socket is created by invoking the socket() method. The type
of socket address family needs to be specified. In our case, the address
family is AF_INET, which is suitable if TCP is used. This address family
provides interprocess communications between processes that run on
the same system or on different systems. Addresses for AF_INET sock-
ets are IP addresses and a port number. In the code listing, the port
number is 4000. This is the port where the server side will listen for
incoming requests. We also specify that the incoming call could be from
any machine on the network. Next, we bind the listener to the port by
using the bind method. The next step is to accept the connection request
from the client. Now both the client and the server can read and write
from the socket. After exchanging data, the server finally closes the
socket using the close method.

The client-side code is similar to the server-side code and is shown
in Listing 3-8. The flow of the code is summarized in Figure 3.5. First,
a socket is created. Then the IP address and the port of the server are
specified. The next step is to make the connection by using the connect()
method. Now the client is ready to read from and write to the socket and
thus exchange data with the server.

Figure 3.4 Server-side code flow for sharing data in real time between applications using
sockets

Create a Socket

Bind to a Port

Listen for Connection Request

Accept a Connection Request

Read and Write to the Socket

Close the Socket

46 Chapter Three

Listing 3-8

/* Typical client side code for the sockets in C language */
include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
void error(char *msg)
{
 perror(msg);
 exit(0);
}
int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;
 char buffer[256];
 if (argc < 3) {
 fprintf(stderr,"usage %s hostname port\n", argv[0]);
 exit(0);
 }
 portno = atoi(argv[2]);
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 server = gethostbyname(argv[1]);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(portno);
 if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");
 printf("Please enter the message: ");
 bzero(buffer,256);
 fgets(buffer,255,stdin);
 n = write(sockfd,buffer,strlen(buffer));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(buffer,256);
 n = read(sockfd,buffer,255);
 if (n < 0)
 error("ERROR reading from socket");
 printf("%s\n",buffer);
 return 0;
}

Sockets and Data Sharing 47

There are a number of shortcomings of the socket programming
approach, including the following:

■ The major problem with socket programming is that only data can be
shared directly, not the functionality.

■ The API for socket programming is rather low level and is therefore
difficult to use.

■ Because the API is low level, socket programming is not suitable for
dealing with complex data types.

■ The connectivity code is buried in the applications and cannot be
easily reused.

■ Socket programming is not platform independent if numeric quantities
are involved. This is because applications on both ends must explic-
itly account for the byte ordering differences (little endian versus big
endian) on different platforms such as mainframe and UNIX.

■ Tight coupling exists between the two applications because the socket
connection is “point to point.”

In spite of these shortcomings, sockets are the most essential element
of many other integration schemes that allow applications to share
functionality in addition to data. As you will see in the next chapter, the
remote procedure call (RPC) method of sharing functionality is built on
top of sockets. Furthermore, distributed objects and asynchronous mes-
sages also rely on sockets. These two methods of sharing functionality
are discussed in Chapters 5 and 6.

Figure 3.5 Client-side code flow for sharing data in real time between applications using
sockets

Create a Socket

Build the Address Struct
for the Server

Connect to the Server

Read and Write to the Socket
(i.e. Exchange Data with Server)

48 Chapter Three

Note that if the applications are running on the same machine and
using the same operating system, there are three other ways of shar-
ing data—especially if the operating system being used is some form of
UNIX/Linux. These three methods are shared memory, pipes, and name
pipes (or FIFO).

Shared memory may be simultaneously accessed by multiple programs,
with the intent to provide communication among them. One process or
application will create an area in RAM that the other applications can
access. This is shown schematically in Figure 3.6. Shared memory is prob-
ably the fastest way to share data in real time. Shared memory remains
in existence until the system reboots. Pipes and FIFO are similar but
they remain in existence only until the last application that is holding
the object open finally closes it. It should be noted that the use of shared
memory requires both applications to be running on the same server.

Conclusion

In this chapter we discussed three methods of sharing data between
applications: the file-based method, the use of a common database, and
sockets. The first two methods do not allow for sharing data in real time,
but the third method (sockets) does. While discussing sockets, we intro-
duced the important concept of connectivity between applications.

The major drawback of these three methods is that they do not allow
the applications to share functionalities. In the next chapter, we will
further develop the concept of connectivity between applications to
allow applications to share functionalities—as well as data—among
themselves in real time. We have discussed a number of other disad-
vantages of the three methods of sharing data. In later chapters, we
cover other methods of integrations, which progressively remedy these
shortcomings.

Figure 3.6 Two applications exchanging data by using a common area in memory (RAM)

Application A
Shared
Memory

Application B

49

Chapter

 4
Remote Procedure Call (RPC)

In Chapter 3, we discussed techniques for sharing data between applica-
tions. The first two techniques—the file-based data transfer and the use
of a common database—are suitable for sharing data when there’s no
requirement for sharing data in real time. The third technique—using
sockets—is employed when data needs to be shared by applications in
real time. Sockets can be used when the applications are running on
the same machine or on different machines connected by a network.
In Chapter 3, we also briefly mentioned pipes and FIFO, which can be
used by applications running on the same machine for sharing data in
real time.

All these techniques are restricted to sharing data only and do not
allow applications to share functionality. However, our discussion of
sockets introduced the concept of connectivity between applications,
which is required for sharing functionality. Therefore, sockets are almost
always involved in the background when applications are sharing func-
tionality, regardless of the method of integration.

In this chapter we begin to address the core subject of this book: how
to integrate enterprise applications so that they can share function-
ality. We start by describing techniques that allow functions defined
in one application to be called by other applications in an enterprise.
Note that the terms methods and procedures have the same meaning
as the term functions in this book. Remember that enterprise applica-
tions integration is a difficult process because it involves many different
types of applications written in many different languages and running
on many different types of platforms, which may be distributed geo-
graphically. To understand the underlying problems and their solutions,
a step-by-step approach is the best approach. Therefore, the methods
described in this chapter should be considered a first step in the study of

50 Chapter Four

enterprise integration. Later chapters will build on the material covered
in this chapter.

The main topic of this chapter is remote procedure call (RPC). RPC is
also known as “client/server” and “two-tier architecture” and is a rung
above socket programming. It eliminates the need for network program-
ming. RPC provides a function-oriented interface. The developer defines
a function—much like those in functional languages such as C—and
generates code that makes the function look like a normal function to
the caller. RPC is powerful enough to be the basis of client/server appli-
cations. The client/server model has become one of the central ideas of
network computing. Most business applications being written today
use the client/server model. So does the Internet’s main application
protocols, including HTTP, SMTP, telnet, and DNS. The most common
example is the interaction between a web browser and a web server,
where the browser acts as a client and the web server fills the role of a
server in the client/server architecture.

RPC was an important step in the progress toward enterprise inte-
gration because it introduced some important concepts and features
and specified the basic steps necessary for sharing functionality. Recall
that Web Services and enterprise integration are mostly about sharing
functionality between applications or software components. The new
concepts and features introduced by RPC are listed here:

■ The concept of interface declaration through the use of a specification
file. The RPC specification file may be considered the “first step” in
the development of the services interface in today’s world, such as a
WSDL file.

■ The concept of a service provider application (server) and the concept
of a service consumer application (client). The server provides the
implementation of one or more functions that can be used or invoked
by the client application.

■ The concept of marshalling of arguments for transmission over the
network. This refers to packaging of arguments into one or more
messages to be transmitted over the network.

■ The encapsulation of all system- and network-related functionality
in a library. This encapsulation led to future systems in which this
functionality could be separated out as a program of its own, thus
leading to code reuse.

■ The introduction of client and server stubs, which shield the programmer
from system and network calls.

■ The concept of platform independence via the use of external data
representation (XDR), which encodes data in a machine-independent
format.

Remote Procedure Call (RPC) 51

We start our discussion of RPC by first clarifying the differences
between the three possible types of function calls: local function calls,
restricted remote function calls (restricted RPC) involving two applica-
tions running on the same computer, and more general remote procedure
calls between two applications that may be running on two different
computers connected by a network. Then we describe how restricted RPC
works. Restricted RPC does not involve any network connections and is
therefore the simpler of the two kinds of RPC. Next, we discuss more gen-
eral remote procedure calls. This second type of RPC is the most common,
and it includes two applications running on two different computers.

Three Types of Function Calls

Functions can be synchronous or asynchronous. In the case of synchro-
nous functions, the calling code is blocked from doing further work until
after the function returns. In the case of asynchronous calls, the calling
code can continue to perform other work, without waiting for a return
(because there is no return). In this chapter, we restrict our discussion
to synchronous functions because RPC involves only synchronous calls.
Asynchronous calls are discussed in detail in Chapter 6.

Synchronous functions come in three different types. The first type
is the local function call. In this case, the code calling the function and
the function being called are part of the same application. This is shown
schematically in Figure 4.1. This type of function call is the most familiar
because most programming languages allow for this feature. Typically
some machine instruction is executed that transfers control to the new
function, and the called function saves machine registers and allocates
space on the stack for the local variables.

The second type of function call is the restricted RPC type. In this
case, the code calling the function and the function code being called
reside in two different applications running on the same machine.
This second type of function call is shown schematically in Figure 4.2.

Figure 4.1 Local function call

Application

Computer

function call

return

52 Chapter Four

This type of function call is similar to the remote function call described
in the next paragraph. However, this type of function call does not
involve any network routines because both applications are running
on the same machine and may be considered a type of interprocess com-
munication (IPC). The particular implementation of this type of call we
discuss is called Doors. We discuss Doors later in this chapter.

The third type of functional call generally involves a client application
on one host calling a function in another application running on another
host, as long as the two hosts are connected by some form of network.
This type of function call is depicted in Figure 4.3. We refer to this type
of function call as RPC. We discuss this type of function call in detail
later in this chapter. This type of call relies on sockets under the hood.

Historically, the RPC type shown in Figure 4.3 was developed before
the type shown in Figure 4.2. However, we will discuss the second type
of call first because it is simpler to understand because there are no
network routines.

Normally, with Doors and RPC, the application calling the function is
referred to as the client and the application in which the function resides

Figure 4.2 Remote procedure call on a single host

function call

return

Application A
(client)

Application B
(server)

Computer

Figure 4.3 Remote procedure call between different hosts

function call

return

Application A
(client)

Application B
(server)

Network

Remote Procedure Call (RPC) 53

is called the server. In other words, the application calling the function
is the service consumer whereas the application where the function
resides is the service provider. Thus, both RPC and Doors involve the
concept of services, and we may consider this to be the beginning of the
services-based integration pattern.

Doors: Restricted Remote Procedure
Calls (Restricted RPC)

In this section we discuss the case where one application (the server)
makes a function available to the other applications (clients) running on
the same computer, as shown in Figure 4.2. The particular implemen-
tation of this type of functionality exchange we discuss here is called
Doors. Doors is restricted to Solaris systems and cannot be used on other
systems. In addition, there are no other RPC systems of this type that
can run on other platforms.

When applications are running on a common host, they all share the
same operating system, so it is natural to use the kernel of the operating
system to provide communication between the applications. Thus in
Doors, the kernel of the operating system is used to provide communica-
tion between the applications, which make system calls into the kernel.
This is shown in Figure 4.4.

Types of Functions

Local function calls involve one piece of code in one application invoking another
piece of code in the same application. Restricted remote procedure calls (restricted
RPC or Doors) involve a piece of code in one application calling a piece of code
in another application. The two applications must be running on the same host.
RPC calls are similar to the restricted RPC, with the difference being that the two
applications may be running on separate hosts connected by a network.

Figure 4.4 Applications running on the same system using the kernel to communicate.
A network is not involved.

Application A Application B

Computer

kernel

54 Chapter Four

The major contribution of Doors is that all the systems calls are
encapsulated in a library with a header file called <door.h>. Therefore,
the programmer doesn’t need to know any system-level programming.
The Doors library consists of a few functions, a couple of data struc-
tures, and a simple protocol to implement this restricted type of remote
procedure call. It is a very intuitive and the most efficient way to share
functionality if the applications are running on the same host. In fact,
Doors can be considered a type of interprocess communication.

In order to understand how Doors works, we start by looking at a
simple example. In this example, one application (the server) provides a
function to another application (the client) to invoke. The function pro-
vided by the server takes a long integer as an input and returns the cube
of the input. The server-side code for this example is discussed next.

Server-Side Code for Doors

The server program, server1.c, is shown in Listing 4-1. It consists of
server function called cube_proc and a main function. Following this
listing is a brief description of the various pieces of code.

Listing 4-1

 Listing 4.1: Example server side code for Doors – File: server1.c

1 #include <unistd.h>

2 #include <sys/types.h>

3 #include <sys/stat.h>

4 #include <fcntl.h>

5 #include <door.h>

6 #include "ssp.h" //Solaris stuff

7 static void cube_proc(void * pcookie,

8 char * dataptr,

9 size_t argsz,

10 door_desc_t *dp,

11 uint_t ndesc);

12 (

13 long arg, result;

14 arg = *((long *) dataptr) ;

15 result = arg * arg * arg ;

16 Door_return ((char *) &result, sizeof(result), NULL, 0);

17 }

18 int main(int argc, char * argv[])

19 {

20 int fd;

21 int tempfd;

Remote Procedure Call (RPC) 55

22 /* get descriptor and bind cube_proc to it */

23 fd=door_create(serv_proc, NULL, 0);

24 unlink(argv[1]) ; /* delete this file if it already exists from a

25 previous run */

26 tempfd=creat(argv[1], FILE _PERMS); /* create the file associated

27 with the door */

28 close (tempfd); /* close the file before attaching it to fd */

29 fattach(fd, argv[1]); /* associate door descriptor with an

30 existing file */

31 while(1)

32 pause(); /* do nothing; the real work is implemented in the server

33 threads */

34 }

Header Files The listing starts with some header files that include the
main library header file <door.h> (see lines 1–6). Header files include
only the declaration of various functions. The actual implementations of
these functions appear in separate files, which are used when the code
is compiled and linked.

Server Function cube_proc() In lines 7–17, a server function named
cube-proc() is defined. This server function takes five arguments as
input, but the only one we use is dataptr, which points to the first byte
of the argument. The long argument is obtained through this pointer
and cubed. Control is passed back to the client, along with the result, by
invoking the Door_return function. The first argument to this function
points to the result, the second argument is the size of this result, and
the remaining two arguments deal with the returning descriptors.

Create a Door Descriptor and Attach It to a Pathname Lines 18–29 describe
a main function that takes a pathname as input. This pathname is
supplied at the time the server is started. In this function, first a door
descriptor is created for the function cube_proc() by calling the function
Door-create(). The first argument to this function is a pointer that’s
called for this door, namely cube-proc(). Next, the door descriptor is
associated with a pathname in the file system, because this pathname
is how the client identifies the door. This association is performed by
creating a regular file in the file system. After this, we call the function
fattach(), which associates a descriptor with a pathname.

Main Server Thread Pauses In lines 31–34, the main server thread blocks
by calling the pause() function. Now, cube_proc() is ready to do its work
on the client request. All the work is done by the server function cube_
proc(), which executes in a separate thread in the server process each
time a client makes a request.

56 Chapter Four

Next, the code is compiled and linked to create an executable called
server1. To run the server we use the following command which starts
the server in a separate window:

Solaris % server1 /tmp/server1

Client-Side Code

A sample client program, called client1.c, is shown in Listing 4-2.
The program has a main function that takes in two arguments. The
first argument, argv[1], is the pathname that specifies the door and
is supplied at the time the client is started. The second input on the
command line is the number (a long type), which will be cubed by calling
the server function. The program starts with a number of header files,
including the most important library, <door.h>, which encapsulates all
the system-level calls. The client1.c program involves the steps detailed
in the following subsections.

Listing 4-2

Listing 4.2: Doors' sample client side code: File: cleint1.c

1 #include <unistd.h>

2 #include <sys/types.h>

3 #include <sys/stat.h>

4 #include <fcntl.h>

5 #include <door.h>

6 #include "ssp.h"

7 int main (int argc, char **argv)

8 {

9 int fd;

10 long input, output;

11 door_arg_t arg;

12 fd = Open (argv[1], O_RDWR); /* open the door */

13 /* set up input arguments and pointer to the result */

13 input = atol (argv[2]);

14 arg.data_ptr = (char *) &input; /* pointer to input */

15 arg.data_size = sizeof(long); /* size of data argument */

16 arg.desc_ptr = NULL;

17 arg.desc_num = 0;

Remote Procedure Call (RPC) 57

18 arg.rbuf = (char *) &output; /* pointer to the output */

19 arg.rsize = sizeof (long) /* number of bytes for the result */

20 /* call the server function and print result */

21 Door_call (fd, &arg);

22 printf ("The result is : %1d\n", output);

23 exit (0);

24 }

Open the Door In line 12, the door is opened by calling the library function
Open(). It takes as an argument the pathname specified at the command
line when the client program is started. It returns a door descriptor.

Set Up the Input Parameters and a Pointer to the Output In lines 13–19, the
arg structure contains a pointer to the inputs and a pointer to the result.
The member data_ptr of the structure arg points to the first byte of
input data, and data_size specifies the number bytes in the input data.
The two members—desc_ptr and desc_num—deal with passing descrip-
tors. These two members are not very important for our discussion here.
rbuf points to the first byte of the result buffer, and rsize is its size.

Call the Server Function and Print the Result In lines 22–24, the server
function is called by invoking the Door_call () function, specifying as
arguments the door descriptor and the pointer to the arguments struc-
ture. When the function returns, an output variable will have the result,
which we print using a printf statement.

After the client program is compiled and linked to produce an execut-
able called client1, the client program is started in a separate window
using the following command line with the same pathname argument
we passed to the server:

solaris % client1 /tmp/server1 3

The result is 27.

Doors Process

In Doors, one application makes a function available to other applica-
tions running on the same machine by creating a door. The application
providing the function is considered a service provider and is called a
server. The other applications using the function are considered service
consumers and are called clients. Inside the server, each door is identified

58 Chapter Four

by a descriptor. Inside the clients, doors are identified by paths—much
like ordinary files. A server creates a door by calling the door_create()
function. The first argument of this function is an address of a callback
function associated with that door. The return value of door_create() is
the descriptor of the new door. Next, the server calls fattach() to associate
a door with a pathname. The client opens a door by calling open() with
the door’s pathname as the argument. The return value of the open() call
is a descriptor that the client uses locally as the door’s descriptor. Finally,
the client invokes the server function by using the door_call() function.

Door calls are synchronous. Therefore, when the client calls door_
call(), this function doesn’t return until the server procedure returns.
Whenever a client calls a server function, a new thread in the server
process handles that request. A door-based server can handle multiple
requests simultaneously. Such a server is known as a concurrent server.
The thread allocation and deallocation are transparent to the client
because the Door library manages its thread allocation automatically.

Doors Summary

In summary, Doors provides an efficient way for applications to share
functionality if the applications are running on the same host machine.
In the process of discussing Doors, we introduced the concepts of service
provider and service consumer, as well as the concept of encapsulating
all system-level calls in a library.

However, Doors has two major disadvantages: First, Doors is specific
to Solaris and is not platform independent. Second, applications run-
ning on separate hosts cannot share functionality. In the next section we
discuss the full-blown remote procedure call, which allows applications
to share functionality even when they are running on different hosts.
RPC is also platform independent.

Restricted RPC, or Doors

Restricted RPC (of which Doors is an example) is the most intuitive and efficient
way for two applications to share functionality. The communication between the two
applications is through systems calls to the kernel, and these calls are encapsulated in
a library. There are two important restrictions on the use of Doors: First, applications
sharing functionality must be running on the same host. Second, Doors is not platform
independent and can only be used on Solaris systems.

Remote Procedure Call (RPC)

We’ll now discuss the third type of function call—most commonly known
as remote procedure call (RPC) or client/server architecture. RPC further
developed the concepts introduced in the last section to enable calls to be

Remote Procedure Call (RPC) 59

made to applications running on separate hosts and connected by a net-
work. RPC introduced for the first time, although in a rudimentary way,
the declaration of the service interface. RPC also introduced the concept
of marshalling and unmarshalling of parameters, which is required for
communication over the network. In addition, RPC further developed
the idea of a runtime library so as to include calls to the kernel that
involve network routines.

We describe how RPC works with a view toward these new concepts.
Therefore, we will consider an example similar to the one discussed
in the last section on Doors. The server will expose a function for the
client applications to call, which will take as an input a long integer and
return the cube of the input to the caller.

Interface Declaration and Use

We begin with the discussion of interface declaration. RPC introduced
a rudimentary way of defining an interface between the client and the
server through the use of a specification file. The RPC specification file
may be considered the “first step” in the development of the services
interface (for example, WSDL files) in today’s world. A configuration file
(cube.x) for the example covered here is provided in Listing 4-3. This file
is used to generate the skeleton code for both the server and the client
using a tool such as rpcgen. Note that the specification is written in a
specific language, such as C, and therefore requires both the server and
the client to be written in the same language.

Listing 4-3

Listing 4.3 : File: cube.x

1 struct cube_in { /* input (argument) type */

2 long input;

3 };

4

5 struct cube_out { /* output (result) type */

6 long result;

7 };

8

9 program CUBE_PROGRAM {

10 CUBE_VERS {

11 cube_out CUBEPROC (cube_in) = 1; /*func. No.*/

12 } = 1; /* version number */

13 } = 0x312; /* program number */

Note that the specification file’s name ends in .x. The specification
file defines the input and output arguments and a single server func-
tion, which is exposed to the client. The following subsections provide a
brief description of the contents of the sample file shown in Listing 4-3.

60 Chapter Four

This description illustrates the basic steps involved in declaring an
interface.

Declare the Input and Output Arguments Lines 1–3 define a structure
for the input, which is of the type “long.” Lines 5–7 define an output
structure that is also of type long.

Define the Program, the Version, and the Function In lines 9–13, we
declare an RPC program called CUBE_PROG that consists of one ver-
sion (CUBE_VERS), and in that version is a single function named
CUBEPROC. The input argument to this function is a cube_in structure,
and its return value is a cube_out structure. A number 1 is assigned to
this function. We assign the version number a value of 1, and we assign
the program number a hexadecimal value.

This specification is used to generate four files when it is compiled
with the tool rpcgen, as shown in Figure 4.5. One of those files, cube_
clnt.c, produces (when compiled by a C compiler) a client stub that
is used to marshal and unmarshal the arguments on the client side.
Similarly, a file called cube_svc.c produces a server stub that does the
same marshalling and unmarshalling of the arguments to the function
on the server side. Marshalling refers to the packaging of arguments
into one or more network messages. The third file produced by compiling
cube.x is a header file called cube.h. It must be included in a number of
files that are used to compile both the client and the server code. The
fourth file, cube_xdr.c, is also very important and is included while the
client and server code is being compiled. The inclusion of this file in
the client and server code ensures that byte-ordering differences on
different platforms are handled automatically by the runtime library,
using a standard called XDR (external data representation). Thus, it
makes RPC platform independent.

Figure 4.5 Use of a specification file

cube .x

rpcgen

cube_clnt.c cube_svc.c

cube.h cube_xdr.c

Remote Procedure Call (RPC) 61

Next, we briefly discuss the server-side and client-side code for the
current example.

RPC Server-Side Code and Compilation

Unlike the server-side code for Doors, the server-side code for RPC is
very simple. All we have to do is write the implementation of the server
function that’s called by the client. The main() function is automatically
generated by rpcgen in the file cube_svc.c. The server implementation
code for this example is shown in Listing 4-4. We briefly explain the
content of this listing in the following subsections.

Listing 4-4

Listing 4.4 : file – server.c

1 #include "unpipc.h"

2 #include "cube.h"

3

4 cube_out * cubeproc_1_svc (cube_in * in, struct svc_req *rqstp)

5 {

6 static cube_out out;

7

8 out.output = in->input * in->input * in->input;

9 return (&out);

10 }

Function Name and Arguments In lines 4-5, you can see that the
version number and '_svc' are appended to the named of the function.
This allows for two overloaded function prototypes in the header file
cube.h. One of these two functions is called by the client and will be
discussed later. The second of these two functions is the actual server
function. These two functions have different arguments. When the
actual server function is called, the first argument is a pointer to
the input structure, and the second argument is a pointer to a struc-
ture passed by the RPC runtime that contains information about this
invocation. We ignore this information about the invocation for this
simple example.

Execution and Return Value After the input argument is obtained, the
argument is cubed and the result is stored in a static structure. The
address of this static structure is the return value. Note that we cannot
use an automatic variable for the result because the automatic variables
exist only during the execution of the function.

This server program is compiled along with the three other files and
runtime library files. The three files are generated by the rpcgen tool

62 Chapter Four

with the specification file as the input (refer to Figure 4.5). This compila-
tion of the server program is shown schematically in Figure 4.6.

Client-Side Code and Compilation

The client-side code for this example is shown in Listing 4-5. It con-
tains the main() function that calls the remote function defined in the
server-side code (Listing 4-4). The following subsections provide a brief
explanation of the code.

Listing 4-5

Listing 4.5: file – client.c

1 #include "unpipc.h"

2 #include "cube.h"

3

4 int main (int argc, char *argv[])

5 {

6 CLIENT *cl;

7 cube_input in;

8 cube_output out;

9

10 cl = Clnt_create (argv[1], CUBE_PROGRAM, CUBE_VERSIONS, "tcp");

11

12 in.input = atol (argv[2]);

13 out =cubeproc_1 (&in, cl);

14

15 printf ("The result is : " %1d\n", out->output);

16 exit (0);

17 }

Figure 4.6 Compiling server side code

ccruntime
library

server
(executable)

server.c

cube.h

cube_svc.c

cube.h

cube_xdr.c

cube.h

Remote Procedure Call (RPC) 63

Include the Files In lines 1–2, two header files are included. The file
cube.h is generated by rpcgen.

Declare the Variables In lines 6–8, we declare three variables, including
the client handle (named cl). Client handles are like standard I/O file
pointers. We also declare two other structure variables to hold the input
and the output.

Obtain the Client Handle In line 10, we obtain the client handle by calling
the function clnt_create(). The first argument is the IP address of the
host running our server. The second argument is the program name, and
the third argument is the version number, both from the specification
file. The final argument is our choice of network protocol. The protocol
is normally TCP or UDP. Note that the IP address does not include
the port number where the server would be listening for the incom-
ing requests. How the client obtains this port number for the server is
explained in the upcoming section “RPC Process.”

Call the Remote Function and Print the Result In lines 12–13, we call
the remote function, passing two arguments as inputs. The first argu-
ment is a pointer to an input structure, and the second argument is
the client handle. The return value is a pointer to the output struc-
ture declared in the specification file cube.x. We finally print the
result.

The client code is compiled along with three other files generated by
rpcgen and the runtime library, as shown schematically in Figure 4.7.
(Note that in this figure, “cc” is the C compiler.)

Figure 4.7 Compilation of the client code

ccruntime
library

client
(executable)

client.c

cube.h

cube clnt.c

cube.h

cube xdr.c

cube.h

64 Chapter Four

RPC Process

Having discussed briefly the code and its compilation, we will now outline
the basic steps involved in a remote function call. Figure 4.8 summarizes
the steps that take place. The steps are numbered in the order in which
they occur.

The very first steps are not shown in this figure. To begin, the server
is started and registers a temporary port with what is called the port
mapper. The server listens for the incoming call at this port on the host
on which the server is running. Next, the client is started. When the
client invokes the function clnt_create, it contacts the port mapper to
find the temporary port of the server. Then the client establishes a TCP
connection with the server at this port. These steps are not shown in
the Figure 4.8 for the sake of brevity.

One of the important components introduced in Figure 4.8 is the client
stub. To the client, the client stub appears to be the actual procedure it
calls. The purpose of the stub is to package up the arguments to the remote
procedure (possibly), put them into a standard format, and then build

Figure 4.8 The complete remote procedure call process

Client
Routines

Client Stub

RPC
Runtime

Network
Routines

Client Application

kernel

Client Machine

Server
Routines

Server Stub

RPC
Runtime

Network
Routines

Server Application

kernel

Server Machine

1

2

3

4

56

7

8

9

10

Remote Procedure Call (RPC) 65

one or more network messages. This packaging of arguments is called
marshalling. An important aspect of this marshalling is that the byte-
ordering differences among the different platforms are handled automati-
cally using a standard XDR, thus making RPC platform independent.

Another important component RPC has introduced is the RPC run-
time library. The client stub uses the functions provided in the RPC
runtime library to make a systems call into the local kernel in order
to send the packaged message over the network to the server machine
using a protocol such as TCP. In other words, the RPC runtime encapsu-
lates all the systems calls necessary for the connectivity (that is, to send
the packaged arguments over the network). Therefore, the programmer
doesn’t need to know any systems programming.

On the server side, as the network message is received by the net-
work routines in the kernel, it is sent to the server stub via the RPC
runtime. The server stub unmarshals the input parameters and invokes
the requested local procedure in the server routines. After the local pro-
cedure is completed, the server stub marshals the return value into one
or more network messages and sends the packaged return value to the
server kernel via the RPC runtime. The server kernel sends the mes-
sage over to the client machines using a network protocol such as TCP.
The client stub reads the network messages from the kernel through
the use of RPC runtime routines. After possibly converting the return
values, the client stub finally returns to the client function. This step
appears to be a normal procedure returned to the client.

Port Mapper

The port mapper is a software component that must be started before any RPC
server is invoked. When an RPC server is started, it will tell the port mapper what
port number it is listening to, and what RPC program numbers it is prepared to
serve. When a client wishes to make an RPC call to a given program number, it will
first contact the port mapper on the server machine to determine the port number
where RPC packets should be sent.

RPC

RPC was an important step in the development of an integration pattern because
it outlined (for the first time) all the steps necessary for applications to share
functionality. RPC can be used between any two applications to share functionality.
The applications may be running on separate machines connected by a network.
Many of the concepts and components introduced by RPC continue to be used in
more modern methods of sharing functionality, as discussed in later chapters. Some
of these concepts include the marshalling and unmarshalling of arguments, client
and server stubs, and the encapsulation of all system and network calls within a
library or a separate software component.

66 Chapter Four

RPC Summary

RPC has further extended the concepts introduced with Doors by
including applications running on separate machines. The machines
are connected by a network. We further consolidated the concept of
encapsulating all system-level calls in a library. This library now
includes network-associated calls as well. The discussion of RPC also
introduced the concept of marshalling of arguments, which packages
the arguments in a system-independent manner for transmission over
the network. We also introduced client and server stubs. The client
stub acts as a proxy for the server-side code and makes it transparent
for the client-side programmer to call the exposed server function. In
summary, RPC for the first time outlined all the steps necessary for
sharing functionality between applications that may be running on
different hosts.

Conclusion

RPC—and the associated Doors—allowed for the first time real dis-
tributed computing by allowing applications to share functionality. A
number of new concepts were introduced in this chapter (including
service provider (server) and service consumer (client), platform inde-
pendence, interface definition, the marshalling of input and output
parameters, and the encapsulation of systems calls in a library) that
are necessary for communication over the network.

However, RPC has a number of shortcomings, including the following:

■ There is little room for code reuse because the code for marshalling
and unmarshalling and the code for network communication are
buried in the client and server applications.

■ RPC is not language independent, and the client and the server must
employ the same programming language.

■ Tight temporal coupling exists between the applications. Because the
calls are synchronous, the client application must wait for the server
to complete the procedure before it can proceed further.

■ The integration of the client and server is “point to point” and therefore
not suitable when a number of applications need to be integrated.

■ RPC is not suitable if a large number of remote calls are involved.
Because of the synchronous nature of the call, the client cannot
proceed further before the server completes its work. (Note that this
problem can be overcome by using multithreading programming.
However, this increases the complexity level of the programming
and introduces some risks.)

Remote Procedure Call (RPC) 67

To improve on RPC, two paths have been taken. The first method
involves distributed objects, also known as Object Request Broker
(ORB), and the second method involves asynchronous messaging. The
distributed objects approach focuses on code reuse and language inde-
pendence, whereas asynchronous messaging addresses the problem of
tight coupling between applications.

We discuss the distributed objects (or ORBs) approach in the next
chapter because it is more closely aligned with RPC. ORB essentially
takes the encapsulation of all system-level calls into a library a step
further by making this a separate software component (or executable).
Today, most of the application servers such as WebSphere, WebLogic,
and JBoss are based on ORB technology.

69

Chapter

 5
Distributed Objects and

Application Servers

In Chapter 3 we discussed the methods that allow sharing data only.
In Chapter 4 we discussed remote procedure call (RPC), which for the
first time allowed two applications to share functionality (in addition
to sharing data). RPC is powerful enough to be the basis of client/
server architecture, which is commonly used for Internet and network
applications.

However, RPC has a number of shortcomings that prevent it from
being a complete and satisfactory solution for integrating all applica-
tions in a large enterprise. In this chapter, we will begin to address some
of these shortcomings, including the following:

■ There is little room for code reuse because the code for marshalling
and unmarshalling and the code for network communication are
buried inside the client and server applications.

■ RPC is not language independent. In other words, the server and
client applications must be written in the same programming
language. Servers and clients written in two different programming
languages cannot share functionality.

■ RPC integrates the client and server applications in a point-to-point
manner, which is not appropriate if a large number of applications need
to be integrated. The number of integrations you need to perform in a
point-to-point approach increases rapidly (roughly N2, where N is the
number of applications in an enterprise that are being integrated).

■ On a related note, in RPC the roles of client and server are fixed, and
the relationship between the client and the server is not “peer to peer.”
In other words, the client can access the functionality embedded in
the server, but not the other way around.

70 Chapter Five

In addition to addressing these issues, in this chapter we will look at
the need for a directory and naming service. This need for a directory
eventually led to the SOA Registry and Repository, which is one of the
very important components of SOA.

In order to address these issues, we seek a solution that allows code
reuse by separating out the code for marshalling and network com-
munication into a standalone component (application). This separation
also allows us to move away from the point-to-point approach because
many applications can connect to each other using this new compo-
nent. Furthermore, we will see a peer-to-peer relationship between the
applications rather than a client/server relationship. Two other impor-
tant features of the solution we seek are language independence and
platform independence. Language independence is desired because we
would like applications written in different programming languages to
be able to communicate and share functionality. Thus, a program writ-
ten in C++ should be able to communicate with a program written in
Java. Platform independence is desired because we would like applica-
tions running on different platforms to be able to share functionality
and data. For example, an application running on a UNIX system should
be able to share functionality and data with an application running on
a Windows system or a mainframe system.

A class of solutions that begins to address these requirements is dis-
tributed objects. The distributed objects extend the concepts of classes
and objects introduced by object-oriented programming (OOP). Examples
of OOP are the C++ and Java languages. Classes are user-defined type
constructs that encapsulate data and behavior (functionality) related
to a certain entity. The main advantages of encapsulation include more
reliable and robust programming. In addition, OOP includes inheritance,
which leads to code reuse at the programming level. The third pillar of
OOP is polymorphism, which basically means that functions that per-
form similar work can have the same name. However, this third charac-
teristic is not very important for our discussion here. An object in OOP
refers to a particular instance of a given class at runtime. Previous to
distributed objects, only objects belonging to the same application could
interact with each other at runtime. With distributed objects, objects
belonging to different applications can also interact and exchange data
and functionality among themselves at runtime.

With distributed objects, three different models are available: Common
Object Request Broker Architecture (CORBA), Microsoft’s Distributed
Component Object Model (DCOM), and Java’s Remote Method Invocation
(RMI). Out of these three, CORBA is most general. DCOM is mostly lim-
ited to one type of platform—namely, the Windows operating system.
RMI is not limited to any platform but can only be used with the Java
language. Most of this chapter is devoted to discussing CORBA because

72 Chapter Five

The second important contribution of CORBA is a method for
declaring interfaces in a language-independent manner. Recall that
with RPC, the interface is declared in a specific language such as C.
CORBA introduced the interface definition language (IDL), which is
not a programming language and can only be used to define interfaces.
Because interfaces declared in IDL can be mapped to any programming
language, the IDL specification is responsible for ensuring that data
is properly exchanged between dissimilar languages. Standard map-
pings for a number of popular programming languages exist, including
mappings for C, C++, Java, COBOL, and Smalltalk. IDL is discussed in
greater detail later in this chapter.

CORBA also defined a standard protocol for the ORBs from various
vendors to communicate. This protocol is known as the Internet Inter-
ORB Protocol (IIOP). IIOP is built on top of TCP/IP and ensures, in
principle, true interoperability among products from different vendors,
thus enabling CORBA applications to be more vendor independent.

Just like RPC, CORBA includes a client stub. However, the client stub
has reduced functionality because the code for marshalling has been
taken out of it. It only serves to act as a proxy for the server object and
makes the remote calls look like a local call for the client. In addition,
CORBA includes a server skeleton, which is a piece of skeleton code
that is used to fill in for implementing the server. Of course, the server
skeleton is used on the server side.

CORBA maintains the notion of client and server. However, the
distinction between the client and server is blurred somewhat. Unlike
in RPC, in CORBA a component can simultaneously provide and use
various services provided by the other objects. These other objects may
have remote locations.

CORBA also has a distinct object model, which we discuss in detail
in the next section. In CORBA, all communications between objects is
done through object references. These references are known as interop-
erable object references (IORs). In other words, remote objects in CORBA
remain remote, and objects are not passed by value.

Additionally, CORBA provides a number of services, including naming,
security, transaction, and persistent object services. We discuss these
facilities later in the chapter.

CORBA Model

In this section, we discuss the major components of the CORBA model
in detail. The aspects we discuss are

■ The Object Request Broker (ORB)

■ The Interface Definition Language (IDL)

Distributed Objects and Application Servers 73

■ The CORBA object model

■ The CORBA communication model and IIOP

■ The roles of clients and servers in CORBA

■ The roles of client stubs and server skeletons in CORBA

■ The CORBA services

The Object Request Broker (ORB)

The most important component of CORBA is the Object Request Broker
(ORB). ORB is also fundamental to the core functionality of all com-
mercial application servers, including WebSphere, WebLogic, and JBoss.
Simply stated, ORB provides all the communication and marshalling
(of arguments and return values) needs of the distributed objects. The
basic working of an ORB is as follows:

■ When an object or component wants to use the services of another
object or component, it first obtains a reference for the object provid-
ing the service. How this reference is obtained will be discussed later
in “The CORBA Object Model” section.

■ After this, the ORB locates the corresponding object implementation
(that is, the server) on behalf of the client.

■ As the server is located, the ORB ensures that the server is ready to
receive the request.

■ The ORB on the client side accepts the parameters of the method/
function being invoked and marshals the parameters to the network.

■ The ORB on the server side unmarshals the parameters and delivers
them to the server object.

■ The return value is marshaled and unmarshaled at the server side
and the client side, respectively, in a similar manner.

Figures 5.2 shows the major steps schematically.
An important point to note about the marshalling/unmarshalling

process is that, because parameters are converted upon transmission
into a platform-independent format and converted back into a plat-
form-specific format upon reception, the communication between com-
ponents is platform independent. In addition to platform independence,
differences in hardware (such as processor byte ordering) are also made
irrelevant because ORB automatically makes these conversions as nec-
essary. Because the process of marshalling and unmarshalling is com-
pletely handled by the ORB, developers need not concern themselves
with the details of marshalling and unmarshalling.

Distributed Objects and Application Servers 75

is achieved through language mappings. Standard mappings exist for
many popular languages, such as Java, C, C++, COBOL, and Smalltalk.
These mappings “map” IDL language constructs to the constructs of a
particular language. For example, in the Java language an IDL interface
maps to a Java interface, whereas in the C++ language, an IDL interface
maps to a C++ class.

Listing 5-1 shows an example of an interface defined through IDL.
This particular listing shows a module containing a single interface
named “square.” The interface declares one variable of type double that’s
named arg1. The interface defines one procedure called getSquare(),
which takes as input arg1 and returns a double type.

Listing 5-1

Listing 5.1: A sample of IDL interface definition
module Test {
 interface square {
 attribute double arg1;
 double getSquare (in double arg1);
 };
};

As with the specification file of RPC, an IDL file is used for generat-
ing different files using an automated tool. The automated tool takes
the IDL file as input and generates a number of files that are used to
develop the client and the server in a given language. For example, a
tool called “idl2j” will generate files suitable for developing the client
and server in the Java language. More details about these generated
files can be found in “Sample CORBA Application” of this chapter.

The CORBA Object Model

Three elements of the CORBA model for objects which may be distrib-
uted over multiple machines connected by a network, are:

■ Support for the near-transparent distribution of objects

■ Object references

■ Object adapters (which allow distributed objects to communicate
among each other through the use of ORBs)

The distribution of objects is transparent in the sense that the client
using the services provided by another object is nearly unaware of
the location of the other object. The other object may be located on a
remote machine or it may be located locally. In other words, to a CORBA
client, a remote method call looks exactly like a local method call.

Distributed Objects and Application Servers 77

obtains a reference to the remote object in Application B. Then Application
A uses the reference to call a remote method on the remote object. Next,
Application B processes the method, and finally the remote object sends
the response back to Application A.

The second method of object communication is called passing by value.
In this case, a copy of the object being called is made, which is then sent
to the client application by a process called serialization. Next, the client
application invokes a method on the copy of the object it has received.
In this method of communication, the operation performed cannot
change the state of the original remote object. The process of passing by
value is illustrated in Figure 5.4. First, Application A invokes a method
on a remote object in Application B. Application B makes a copy of

Figure 5.4 Passing by value

Application A Application B

Application A Application B

Application A Application A

Object

ObjectObject’s
Copy

Object
Object’s

Copy

Processing

Network

Network

Network

Method Invocation

Serialized Object

Step 1

Step 2

Step 3

78 Chapter Five

the object being called through serialization and sends the serialized copy
to Application A. Next, Application A creates a copy of the object locally
and invokes a method on this copy of the object. In this way, the original
remote object state is not changed by the processing of the request.

As mentioned previously, CORBA uses the passing-by-reference
method of communication between object exclusively. However, Java
RMI allows passing by value for communication between remote objects.
Passing by value requires that the object be re-created at the client
application. This, in turn, requires that the client be aware of the imple-
mentation details for the methods of the remote object.

The third element of CORBA’s object model is the object adapter. The
primary purpose of an object adapter is to interface an object’s implemen-
tation with its ORB. Three types of object adapters are provided by the
CORBA specification. We will be mostly concerned with one type: Basic
Object Adapter (BOA). BOA provides CORBA objects with a common set
of methods for accessing ORB functions. These functions include object
activation, authentication, and persistence. Every ORB implementation,
which is CORBA-specification compliant, must provide a BOA.

Roles of the Client and Server in CORBA

As in RPC (or client/server architecture), CORBA maintains the basic
notion of client and server. However, the distinction between the two is
blurred somewhat, as we discuss in this section, thus moving toward a
more peer-to-peer relationship. In CORBA, any application that creates
an object and provides other applications with visibility to the object is
termed server whereas other applications that use the services provided
by the server are called clients. However, an application can act as a
client to some applications while acting as a server to other applications.
This is illustrated in Figure 5.5, which shows that Application A acts as
a client to Application B. At the same time, Application B also acts as a
client to Application C. Thus, Application B is simultaneously a CORBA
server and a CORBA client.

The second situation that blurs the distinction between server and
client is when the client passes a reference to an object it owns to

Figure 5.5 Client and server roles in CORBA

Application B
(client & server)

Application A
(client)

Application C
(server)

Network Network

Distributed Objects and Application Servers 79

the server when it makes a remote procedure call and then the server,
in turn, calls a method on the object owned by the client. This is called
the client callback method and is illustrated in Figure 5.6. In this exam-
ple, Application A (acting as a client of Application B) first obtains a
reference to an object (Object 1) located on the server in Application
B. However, when the client uses the object reference to call a remote
method, it also passes a reference to an object (Object 2) it owns to
Application B on the server. In the process of executing the method,
Application B calls a method on the client object (Object 2) using the
object references it received from Application A, as shown in Step 3 in
Figure 5.6. Again, this calling of the method on the client object is known
as the client callback method.

Figure 5.6 Client call method: the server calling a client method

Application B

Object 1

Application A

Object 2

Object 1 ref.

Application A

Object 2

Object 2 ref.

Application B

Object 1

Object 2 ref.

Application A

Object 2

Object 1 ref.

Application B

Object 1

Object 2 ref.

Object 2 ref.

Method Invocation

Obtaining Reference

Method Invocation

Callback

Network

Network

Network

Step 1

Step 2

Step 3

80 Chapter Five

Roles of Client Stubs and Server Skeletons

An IDL file is used with an IDL compiler by developers to generate
what are called client stubs and server skeletons. The IDL compiler is
language specific, and the client stubs and server skeleton it creates
serve as the glue that connects the language independent IDL interface
definition to the language-specific implementation code. Note that, in
principle, the server skeleton and client stubs can be generated in two
different programming languages by using two different IDL compilers.
Client stubs for each interface are used in the client code, and client
stubs for a particular interface provide a dummy implementation for
each method in that interface. Client stubs do not execute the server
functionality but rather communicate with the ORB to marshal and
unmarshal parameters.

On the server side, the sever skeleton provides a framework on which
the server implementation is built. For each method of the interface, the
IDL compiler generates an empty method in the server skeleton, which
the developer then uses to provide an implementation. The roles of the
client stub and server skeleton are illustrated in Figure 5.7.

The roles of each will become clearer in the next section, where we
develop a sample CORBA server and a sample CORBA client.

CORBA Communication Model

In a distributed environment, the application will have to communicate
over a network. A network consists of a physical layer at the bottom. In
turn, this physical layer may consist of a wired network, such as a tele-
phone line, a fiber-optic cable, a wireless link, or a combination of these

Figure 5.7 The roles of the client stub and server skeleton

Client Application

Client
Stub

Client
Stub

Server Skeleton

Server
Implementation

Server Skeleton

Server
Implementation

82 Chapter Five

CORBA Services

The Object Management Architecture (OMA), of which CORBA is a
part, defines a number of services that are useful for applications being
integrated. These services include a naming service, security service,
concurrency control service, transaction service, and life cycle service.
We briefly discuss some of these services in this section, starting with
the naming service, because this service is almost indispensable.

Naming Service The naming service allows CORBA objects to register
and get located by name. It uses the notion of a naming context, which
consists of a set of unique names. This service also supports a feder-
ated architecture in which the named servers can be distributed across
the network and work in cooperation with each other. As previously
mentioned, this naming service could be considered as containing the
seeds of the future development of the SOA registry. It should be noted
that as part of the standard binding mechanism, CORBA objects are
given names by which other objects can look them up, as you will see
later in the sample code. This feature can be thought of as a rudimen-
tary naming service. However, the actual naming service is much more
scalable.

Security Service Security in an integrated environment takes on an
added importance because an application, in principle, can be accessed
from any other application in the enterprise. The security service
provides interfaces for the following security features:

■ Authentication Used to verify that the user is who they claim to be

■ Authorization Controls the access to various services or objects

■ Security auditing Keeps a record of all the user actions

■ Nonrepudiation Provides capabilities similar to digital signatures,
which means the origin of the data and/or the receipt of the data can
be proven irrefutably

Concurrency Control Service The concurrency control service provides
an interface for managing concurrency in shared CORBA objects. The
management is done through support for several types of locks. The
common types of locks supported are readers-writers locks and inten-
tion locks.

Transaction Service Transaction services are an integral part of any
nontrivial application. A transaction requires a set of tasks to be
atomic. For example, in the case of a bank application, to coordinate
the transfer between two accounts, a transaction should be initiated

Distributed Objects and Application Servers 83

that causes the accounts involved either to both commit or to both abort
the transaction; otherwise, inconsistent data would result.

Life Cycle Service Life cycle services are responsible for creating, delet-
ing, copying, and moving CORBA objects.

Sample CORBA Applications

In the last section, we described various components of the CORBA
architecture. In order to see how these components fit together, we will
next develop a simple CORBA client and a simple CORBA server.

This example will be a simple savings account. For this saving account,
an object in the CORBA server application will expose three methods,
which will allow the account holder to check the balance, deposit an
amount, and withdraw an amount from the account using a CORBA
client application.

IDL Interface Declaration

The development process starts by defining the account interface using
IDL. It is clear that the interface should include three methods that the
server exposes. These methods may be named getBalance(), deposit(),
and withdraw(). It is also clear that the getBalance() method should
have no input parameter and return a floating-point number. On the
other hand, the other two methods should both take in a floating-point
number as input and return the new balance, which should also be a
floating-point number.

It is easy to define the interface using IDL syntax. The resulting
IDL file, account.idl, is shown in Listing 5-2. First, we define a module
named SavingAccount. Modules are used to group related interfaces. In
our case, there is only one interface, named Account. In this interface,
we define three methods. The first method is getBalance(). This method
does not take any parameters as input but returns the balance as a
float type. The second method, withdraw(), takes as input a param-
eter of the float type; we have named this input withdrawalAmount.
This second method returns the new balance as a float type. The third
method, deposit(), is defined similarly.

Listing 5-2

Listing 5.2
1 // account.idl
2
3 module SavingAccount {
4

84 Chapter Five

5 interface Account {
6
7 // define the method for obtaining the balance
8 float getBalance ();
9
10 // define the method for withdrawing money
11 float withdraw (in float withdrawalAmount);
12
13 // define the method for depositing money
14 float deposit (in float depositAmount);
15 };
16 };

The next step in the development process is to choose a development
language. In the last chapter on RPC we used C as the programming
language, so here we will use Java for the sake of diversity.

In a method similar to that used in RPC, the IDL file is compiled
using an automated tool such as idl2j, which produces the client stub,
the server skeleton, and a few other files, as shown schematically in
Figure 5.9. For the file account.idl, the following files are produced upon
using the idl2j compiler:

■ AccountServer.java

■ AccountServerHolder.java

■ AccountServerHelper.java

■ _AccountServerImplBase.java

■ _AccountServerStub.java

Figure 5.9 Results of compilation of the IDL file

account.idl

idl2j

_accountServerStub.java _accountServerImplBase.java

accountServer..javaaccountServerHelper.java

accountServerHolder.java

Distributed Objects and Application Servers 85

The first four files are used in implementing the server. The file
_AccountImplBase.java is the server skeleton we have talked about.
The file _AccountServerStub is the client stub; this file is used while
implementing the client application. We discuss the server implemen-
tation next.

Server Implementation

The Java interface definition of the services provided by the server is
contained in the file AccountServer.java. The contents of the file appear
in Listing 5-3. Notice from this listing that idl2j translated the module
name, SavingAccount, as the Java package name. Furthermore, notice
that the interface extends the org.omg.CORBA.Object interface. All
CORBA object interfaces extend this interface. You can also see that
the interface contains the three methods we declared in the IDL file.
Note that IDL types have been mapped to the corresponding Java types.
The interface declared in this file will be implemented by the server, as
you will see shortly.

The implementation of the server starts from the server skeleton
generated by idl2j and is fairly straightforward. The entire server imple-
mentation class, AccountServerImpl.java, is shown in Listing 5-3. Next
we discuss this code, line by line.

Listing 5-3

Listing 5.3: AccountServerImpl.java

1 package SavingAccount;

2

3 import org.omg.CORBA.ORB;

4 import org.omg.CosNaming.NamingComponent;

5 import org.omg.CosNaming.NamingContext;

6 import org.omg.CosNaming.NamingContextHelper;

7

8 public class AccountServerImpl extends _AccountServerImplBase

implements

9 AccountServer {

10

11 private float balance;

12

13 public AccountServerImpl () {

14 balance = 0.0;

15 }

16

17 public float getBalance () {

18 return balance;

19 }

20

21 public float withdraw (float withdrawalAmount) {

86 Chapter Five

22 balance = balance – withdrawalAmount;

23 return balance;

24 }

25

26 public float deposit (float depositAmount) {

27 balance = balance + depositAmount;

28 return balance;

29 }

30

31 public static void main (String args []) {

32

33 try {

34 // Initialize the ORB

35 ORB orb = ORB.init (args, null);

36

37 // instantiate an AccountServerImpl object and

register it with the ORB

38 AccountServerImpl accountServer = new

AccountServerImpl ();

39 orb.connect (accountServer);

40

41 //Obtain the root naming context

42 org.omg.OCORBA.Object obj = orb.

43 resolve_initial_references ("NameService");

44 NamingContext namingContext = NamingContextHelper.

narrow (obj);

45

46 // Bind the accountServer object reference in the

naming context

47 NameComponent nameComponent = new NameComponent (

48 "AccountServer", "");

49 NameComponent path [] = { nameComponent };

50 namingContext.rebind (path, accountServer);

51

52 //wait for method invocation requests from the clients.

53 java.lang.Object waitObject = new java.lang.Object ();

54 synchronized (waitObject) { waitObject.wait (); }

55 }

56 catch (Exception ex) {

57 System.out.println ("Could not bind accountServer:

" + ex.getMessage());

58 }

59 }

60 }

Package Declaration Because the AccountServer interface is the part of
the SavingAccount module, the IDL compiler places the Java class and
interface definition into the SavingAccount package (see line 1). For
convenience, we place the AccountServerImpl also in the same package.

Imported Classes Lines 2–5 contain the commonly imported files
in a CORBA application. The first file provides the functionality to

Distributed Objects and Application Servers 87

communicate through the ORB. The other three files are related to the
CORBA naming service. The naming service enables CORBA objects to
register and be located by name. This service uses the notion of a naming
context, which contains a set of unique names. The naming service may
be considered the first step toward the development of a service registry,
which is required in SOA.

Extending the Base Class In lines 8 and 9, the base implementation
class, AccountServerImplBase, and the interface, AccountServer, are
generated by the IDL compiler. Our server implementation class extends
the base implementation class and implements the generated interface.
The base implementation class contains all the functionality the server
needs to communicate with its ORB.

Server Class Member In the example we are considering, we need to
track only one quantity, namely the account balance. Therefore, we have
defined exactly one class member, named balance, which is of Java type
float (see line 11).

Methods Implementation Lines 13–29 contain the implementation code
for the three methods declared in the AccountServer interface. The
first method, getBalance(), returns the current balance amount as a
Java float type. The second method, withdraw(), takes the withdrawal
amount and subtracts it from the balance. The new balance is the
return value. Similarly, the third method, deposit(), takes the deposit
amount and adds it to the balance. This method also returns the new
balance.

Main Method In the main method, shown in lines 31–60, we create an
instance of the AccountServerImpl class, bind the instance to a naming
context, and then wait for the clients to make method invocation
requests. Some of this code is explained in more detail in the upcoming
subsections.

ORB Initialization, Object Instantiation, and Registration In lines
35–39, we first initialize the ORB and then create an instance of the
AccountServerImpl class. The newly created object is then registered
with the ORB.

Locating the NamingContext Object In order for clients to connect to
AccountServerImpl, they must have some way of locating the service
on the network. One way to do this is through the CORBA naming ser-
vice. In lines 42–44, a NamingContext object is located by resolving a
reference to an object named NameService.

88 Chapter Five

Binding the AccountServer In lines 47–50, we bind the server with the
naming context using the name AccountServer. After this binding, the
clients can query the naming service for an object by this name, which
will return a reference to this AccountServerImpl object.

Waiting for the Clients to Make Requests Because the AccountServerImpl
object is now registered with the naming service, the only thing left to do is
to wait for the clients to invoke methods on this object. The actual handling
of these requests for method invocation occurs in a separate thread, so the
main() method simply needs to wait indefinitely (see lines 53–55).

Catching Exceptions Lines 56–58 simply catch any exception thrown
by the preceding code and print out an error message.

All that’s left to do on the server side is to compile the Java server
code using the Java compiler (javac) and then run the server.

Client Implementation

The client implementation is similar but simpler than the server imple-
mentation. It was a conscious design decision to put the complexity on
the server side in order to keep the client-side programming as simple as
possible. Listing 5-4 shows sample code for a client implementation. This
client first obtains a reference to the server and then invokes two methods
on the server. The following subsections explain some of the client code.

Listing 5-4

Listing 5.4: SavingAccountClient.java

1 // SavingAccountClient.java

2

3 package SavingAccount;

4

5 import org.omg.CORBA.ORB;

6 import org.omg.CosNaming.NameComponent;

7 import org.omg.CosNaming.NamingContext;

8 import org.omg.CosNaming.NamingContextHelper;

9

10 // simple client of the AccountServer

11 public class SavingAccountClient {

12 // constructor for the client class

13 SavingAccountClient () {

14 }

15

16 public static ORB ourORB;

17 private AccountServer ourAccountServer;

18

19 public static void main (String args []) {

20

Distributed Objects and Application Servers 89

21 // initialize the ORB

22 ourORB = ORB.init (args, null);

23

24 SavingAccountClient client = new SavingAccountClient ();

25

26 try {

27

28 ///Obtain the root naming context

29 org.omg.CORBA.Object obj = ourORB.

30 resolve_initial_references

("NamingService");

31 NamingContext namingContext = NamingContextHelper.

narrow(obj);

32

33 // Try to locate the Accountserver in

the naming context

34 NameComponent nameComponent = new NameComponent (

35

 "AccountServer", ""):

36 NameComponent path [] = { nameComponent };

37 ourAccountServer = AccountServerHelper.narrow

(namingContext,

38

 resolve (Path));

39 }

40 catch (Exception ex) {

41 System.out.println ("Could not locate the server : "

+ ex.getMessage ());

42 return;

43 }

44 // check the initial balance

45 System.out.println ("The balance before deposit was : " +

46

 ourAccountServer.getBalance ());

47 //deposit $10 and check the balance again

48 System.out.println ("The balance after the deposit is : $ " +

49 ourAccountServer.

deposit (10.0));

50 }

51 }

Package, Imports, and Class Name In lines 3–14, we first declare the
package name and list the classes that need to be imported. The package
name and the import classes are the same as those in the server class.
We can choose any class name for the client class. We have chosen the
class name SavingAccountClient and defined a no-argument constructor
for the class.

Class Members In lines 16 and 17, we declare two class variables. The
first is the reference to the ORB we are going to use and the second is a
reference to the server on which we are going to invoke two methods.

90 Chapter Five

Main Method and Class Instantiation Every Java program has a main
method with standard signature. We declare the main method in
the usual way and then initialize our ORB. Next, we instantiate the
SavingAccountClient class (see lines 19–24).

Obtaining a Reference to the Server In lines 26–43, we obtain a refer-
ence to the server by using the naming service. This code is similar to
the code on the server side, so it will not be explained further. The code
is enclosed in a try/catch block in order to deal with any exceptions
that may be thrown in the process of obtaining the reference to the
server class.

Invoking Methods on the Server Lines 44–49 are used to invoke two
methods on the server. First, we invoke the method getBalance() and
print the result. Next we add $10 to the account using the method
deposit(). This method returns the new balance, and we print the return
value. Note that the method invocation looks like a local method call.
This is because the code for marshalling and unmarshalling has been
taken out of the client application and incorporated in the ORB.

Application Servers

We now turn our attention to the commercial products that support
distributed objects. These commercial products are commonly known
as application servers. Currently, a large number of products are avail-
able, including IBM’s WebSphere Application Server, IBM’s WebSphere
Application Server Enterprise Edition, BEA WebLogic Server, JBoss,
VisiBroker for Java, VisiBroker for C++, Orbix for Java, and Orbix for
C++. The two most common application servers are IBM’s WebSphere
Application Server and BEA’s WebLogic Server.

The backbone of all these products consists of some implementation
of CORBA’s ORB. In addition, these products also support a number of
other features of CORBA, including security and transaction services.
However, most of these products have been specialized to one particular
language or a particular type of application.

The most common type of application servers are those that support
J2EE applications and the Java development environment. J2EE con-
sists of different types of components, such as Enterprise Java Beans
(EJBs), servlets, JSPs, and Java clients. These components, except for
the Java client, run in containers that run on top of the underlying ORB.
For example, the servlets and JSPs run in a web server, whereas EJBs
run in an EJB container. The containers handle system functions for
the EJB component and use the underlying ORB to handle the proto-
cols required for client and server interaction. In addition, an EJB can

Distributed Objects and Application Servers 91

directly access the CORBA ORB, if required for communication with
other CORBA applications that may be written in a different language.
Figure 5.10 summarizes some of the interactions an EJB component
can have with other J2EE components and other CORBA applications
that may be written in a language other than Java. However, this kind
of interaction is assured only by some implementation vendors. Notable
among these vendors is IBM, who ensures interoperability between
their various ORB products.

In the context of J2EE-specific application servers, it is interesting
to consider the parallels between the CORBA and J2EE programming
models. Java has another independent method of distributed objects,
called Remote Method Invocation (RMI). The RMI architecture is very
similar to the CORBA architecture but is limited to the Java language.
In other words, RMI provides functionality and services very similar to
CORBA for applications written in Java only. To use services provided
by RMI, the client first must obtain a reference to the remote object.
To do that, the client must know where to find the remote object, what
it is called, and what method call it provides. These location services
are provided by an RMI registry, to which the remote object must
register first. Java provides an interface called the Java Naming and
Discovery Interface (JNDI), which is used to locate and bind to the
server object. Table 5.1 summarizes some of the parallels between
CORBA and RMI.

Figure 5.10 Interoperation of the Java/J2EE application server

EJB
Component

ORB

EJB Container

EJB
Component

EJB Container

ORB

CORBA
Application

ORB

Servlet
and JSPs

J2EE
Client

92 Chapter Five

CORBA Programming
Model

EJB Programming
Model

Interface definition
language

IDL Java EJB home and remote
interface or IDL

Object invocation IDL code RMI code or IDL code
Communication
protocols

IIOP IIOP and RMI-to-IDL
mapping (if required)

Security protocol CORBA security interface CORBA security interface
Naming service CosNaming Service JNDI or CosNaming Service
Transaction service Object Transaction Service Java Transaction Service or

Object Transaction Service

Table 5.1 Parallels Between the CORBA and RMI Programming Models

The second most common type of application servers are those that
cater to C++ applications and components. Notable among this type of
application server is IBM’s WebSphere Application Server Enterprise
Edition and VisiBroker for C++. In general, various products from a
given vendor interoperate quite well. For example, IBM’s WebSphere
Application Server works together with IBM’s WebSphere Application
Server Enterprise Edition quite well.

In theory, the various ORB products from different vendors should
also interoperate quite well. However, in practice, the following factors
restrict or limit the full interaction between CORBA applications from
different vendors:

■ Proprietary extensions Some ORB implementations have added
proprietary extensions to the CORBA specifications.

■ Specification levels Some ORB implementations conform to
different levels of the CORBA specifications, and these different levels
are not always compatible with each other.

■ Ambiguities Some ORB implementations differ in the way they
implement parts of the CORBA specifications because of ambiguities
in the specifications.

■ Bugs Some CORBA ORBs simply have bugs.

■ Interpretability problems Problems with interpretability are
more serious if the products are designed to be used with different
languages.

Conclusion

In this chapter, we introduced the concept of distributed objects by
moving away from procedural languages such as C and into the realm
of object-oriented programming (OOP) and object-oriented design
(OOD). Examples of object-oriented languages include Java, C++,

Distributed Objects and Application Servers 93

and Visual Basic (VB). We extended the concept of objects to include
distributed objects, where the objects can be distributed over a network.
Furthermore, we described the standard CORBA, which allows remote
objects to interact with one another.

We took a big step forward in application integration by encapsulating
the code for parameter marshalling and unmarshalling and the code
for networking into a separate software component (or application). We
called this component Object Request Broker (ORB). This remediates
the problem of the lack of code reuse in the case of RPC, which was
described in the last chapter. Various implementations of ORB form the
backbone of all the modern commercial application servers, which are
needed to support distributed objects. In addition, ORB has allowed us
to move away from point-to-point integration, which is important if a
large number of applications need to be integrated. Also, this move away
from point-to-point integration leads to the concept of the Enterprise
Service Bus (ESB), as you will see later.

In addition, we introduced the concept of language independence via
an interface definition language (IDL). The interfaces declared through
an IDL can be mapped to any programming language and can allow,
in principle, the client and server to be implemented in two different
languages. Another important concept introduced in this chapter is the
registry, which is used by the server objects to register themselves so
they can be located by the client.

The major issue we did not address in this chapter that was men-
tioned in Chapter 4 as a shortcoming of RPC, is the issue of scalability.
This lack of scalability in cases of RPC and distributed objects results
from the synchronous nature of the interaction between the server and
the client. For synchronous method calls, the client is blocked from per-
forming further work until the server completes its work and returns
control to the client. In the next chapter, we discuss asynchronous mes-
saging and address this issue in detail.

95

Chapter

 6
Messaging

In the last chapter we discussed distributed objects, which have overcome
many of the shortcomings of RPC, described in Chapter 4. In particular,
distributed objects allowed for code reuse by separating out the code
for marshalling and networking into a separate software component.
This separation also allowed us to move away from point-to-point
integration patterns. In addition, distributed objects introduced the
concept of language independence, which is important for large enterprise
integration projects. Distributed objects also blurred the distinction
between the client (or service consumer) and the server (or the service
provider). Thus, a more peer-to-peer type of relationship can be estab-
lished between applications. Finally, distributed objects allowed us to
develop a rudimentary concept of a registry.

Although distributed objects provided a big step forward on many
fronts in the battle for enterprise applications integration, they failed
to address two very import shortcomings of RPC:

■ Both RPC and distributed objects employ synchronous interaction
between the applications being integrated. This means that the client
application is blocked from doing further work until the server appli-
cation completes its work and returns control to the client application.
This leads to strong coupling between applications and a lack of scal-
ability in the integration solution. In other words, if a large number
of applications need to be integrated, neither RPC nor distributed
objects is the proper solution.

■ RPC- and ORB-based communication is not reliable and there is no
guarantee that the messages and return values will be delivered to
the intended targets. Thus, the client application may experience a
hang-up in its operation under certain circumstances (such as a break

98 Chapter Six

Another important feature of a messaging system is that it can
guarantee delivery of a message to the target application by persist-
ing the message. The messaging system achieves this by trying again
and again until the message is delivered (if it is unable to deliver the
message to the intended target the first time). The messaging system
may not be able to deliver the message in the first few tries for various
reasons. For example, the server application may not be running or the
network is down.

Yet another important problem that asynchronous messaging solves
relates to applications specifically designed to run disconnected from
the network, yet synchronize with servers when a network connection is
available. Examples include applications deployed on laptop computers
and PDAs. Messaging fits in very well for enabling this synchroniza-
tion. Data to be synchronized is queued as it is created, waiting until
the applications connects to the server.

The decoupling between the client and server application achieved
through messaging also helps to avoid another serious problem that
can occur with RPC and distributed objects. That problem is throttling,
which refers to the fact that with RPC and distributed objects, a single
server can be overloaded with requests from different clients. This can
lead to performance degradation and even cause the server to crash.
Because the messaging system queues up requests until the server
is ready to process them, the server can control the rate at which it
operates on the requests so as not to overload itself by too many simul-
taneous requests. The clients are unaffected by this throttling because
communication is asynchronous, so the clients are not blocked from
continuing their work.

The three elements of a basic messaging system are

■ Channels or queues

■ Messages

■ End points

Channels are used to transmit data, and each channel acts as a
virtual pipe that connects a receiver with the sender. Channels do not
come preconfigured in a newly installed messaging system; rather,
you must determine how your applications need to communicate and
then create the appropriate channels. There are two basic types of
channels. The first is called the point-to-point channel, in which only
one receiver can receive a given message. The second is called pub-
lish-and-subscribe. In this second type, any number of receivers can
get and act on a message. We describe these two types of channels in
detail later in this chapter.

Messaging 99

Messages encapsulate the data to be transmitted. A message con-
sists of a header and a body. The information contained in the header
is primarily for the messaging system to use. The header contains
information regarding destination, origin, and more. The body con-
tains the actual data the receiver consumes. The data contained in the
body can be of different types. It can be a command message, which
is used to invoke a procedure (method) in the receiving application,
or it can be a document message, which is used to transfer data from
one application to another. It can also be an event message, which is
used to inform the receiving application of an event in the sending
application.

A messaging system acts like a server, and the application sending
or receiving a message acts as a client of the messaging system. The
messaging system usually supplies a client API for the client to interact
with the messaging system. For example, IBM’s WebSphere MQ sup-
plies an API called MQI, which the applications can use to connect to
the MQ messaging system and to send and receive messages. The API
is not application specific. The client therefore must contain a set of
code that uses this API to connect to the messaging system to exchange
messages with other applications. This additional set of code is called
a message end point, which the rest of the application uses to send or
receive messages. A messaging end point can be used either to send or
receive messages, but not both.

JMS is a standard vendor-neutral API that can be used to access
messaging systems. JMS is analogous to JDBC: Whereas JDBC is an
API that can be used to access many databases; JMS provides the same
vendor-independent access to messaging systems. Many enterprise mes-
saging systems support JMS, including IBM’s WebSphere MQ. Software
applications that use the JMS API for sending or receiving messages
are portable across JMS vendors. Java applications that use JMS are
called JMS clients, and the messaging system that handles the rout-
ing and delivery of messages is called the JMS provider. A JMS client
that sends a message is called a producer, whereas a JMS client that
receives a message is called a consumer. A single JMS client can be both
a producer and a consumer.

In addition to IBM WebSphere MQ, other products in this category
include WebMethods, TIBCO, SeeBeyond, Microsoft’s BizTalk, and
many others. Many application servers, such as the IBM WebSphere
Application Server, also offer the basic capability to send and receive
asynchronous messages. In many cases, this provides a cheaper alter-
native to a full-blown messaging system. However, if the number of
applications to be integrated is large, as is usually the case in a large
enterprise, application server asynchronous messaging capabilities are
limited in scalability.

100 Chapter Six

Channels

As mentioned previously, there are two basic types of channels. We dis-
cuss these in some detail in this section. In particular, we discuss how
point-to-point channels can be used for synchronous messaging between
two applications.

Point-to-Point Channel

The point-to-point messaging model allows messaging system clients to
send and receive messages asynchronously via virtual channels known
as queues. The point-to-point messaging model has traditionally been
a pull- or polling-based model, where the messages are requested from
queues, instead of being pushed to the client automatically. The point-to-
point messaging model is intended for one-to-one delivery of messages,
as shown in Figure 6.3.

As shown in this figure, a queue may have multiple receivers, but only
one receiver may receive each message. The message system (sometimes
called the JMS provider) will take care of doling out messages among
the receivers, thus ensuring that each message is consumed by only
one receiver.

The point-to-point asynchronous messaging model can also used to
simulate synchronous messaging or interaction between two applica-
tions. This is shown in Figure 6.4, where one queue (the request queue) is
used to deliver the request while the return values are obtained through
another queue. The request queue is the output queue for the request-
ing application (Application A), while at the same time it serves as the
input queue for the receiving application (Application B). Similarly, the
response queue is used as an output queue for Application B and as an
input queue for the return value for Application A. In order to correlate
the request with the response, a correlation ID is included in the header
of the response. The value of this correlation ID is usually the request
message ID.

Figure 6.3 Point-to-point messaging

Sender
Application

Queue

Potential
Receiver

Potential
Receiver

Point-to-Point (1 to 1)

Messaging 101

Publish-and-Subscribe

In publish-and-subscribe messaging, one producer can send a message
to any number of consumers through a virtual channel called a topic.
Consumers can choose to subscribe to a topic. Any messages addressed
to a topic are delivered to all the subscribers. Every subscriber receives a
copy of each message, as shown in Figure 6.5. The publish-and-subscribe
messaging model is mostly a push-based model, where messages are
automatically broadcast to consumers without the topic being polled
for new messages. In the publish-and-subscribe messaging model, the
publisher may not care if everybody is listening, or even if nobody is
listening. For example, consider a publisher that broadcasts stock
quotes. If any particular subscriber is not listening and misses out on a
great quote, the publisher is not concerned.

Messages

A message consists of a header and a body. The body contains the data
to be processed by the receiving application. The header contains the
message identification and control information, intended to be used

Figure 6.4 Simulating a synchronous exchange using the messaging system

Application A Application B

Request
Queue

Response
Queue

Figure 6.5 Publish-and-subscribe model

Publisher Queue Subscriber

Subscriber

Publish-and-Subscribe (1 to n)

Subscriber

102 Chapter Six

mostly by the messaging system. A typical header would have a number
of attributes. Some of the commonly occurring attributes are

■ Message ID/correlation ID

■ Persistent/nonpersistent

■ Return address

■ Priority

■ Segmenting/grouping information

■ Date and time

■ Lifetime of a message

■ Version

The message ID and correlation ID are used to identify a specific
request or reply message. As the programmer, you can move a value
in one or both fields or have the messaging system create a unique
ID for you. Before you put the request message in the queue, you can
save the ID(s) and use it in a subsequent “get” operation for the reply
message. The program that receives the request message copies this
information into the reply message. This allows the originating pro-
gram (the one that gets the reply) to instruct the messaging system
to look for a specific message in the queue instead of getting the first
one in the queue.

Persistent messages always arrive at their destination, even when the
system fails. They are “hardened” (that is, saved on disk). You can make
a specific message persistent or all messages on a particular queue
persistent.

You can assign a priority to a message and thus control the order in
which it is processed.

The return address is important for request/reply messages. You have
to tell the server program where to send the reply message. Clients and
server have a one-to-many relationship and usually the server program
cannot find out from the user data where the request message came
from. Therefore, the client provides the reply-to queue and reply-to
queue manager in the message header.

Messages can be segmented or grouped. Message segmenting can
be transparent to the application programmer. If permitted, the queue
manager segments a large message when it does not fit in a queue.
On the receiving end, the application has the option to either receive
the entire message in one piece or each segment separately. This may
depend on the buffer size available for the application.

A second method of segmenting leaves you as the programmer in
control so that you can split a message according to logical boundaries or

Messaging 103

the buffer size available for the program. The programmer puts each
segment as a separate physical message; thus, several physical messages
build one logical message. The queue manager ensures that the order of
the segments is maintained.

To reduce traffic over the network, you can also group several small
messages together and build one larger physical message. This mes-
sage is then sent to the destination and is disassembled there. Message
grouping also guarantees that the order in which the messages are sent
is preserved.

You can also specify an expiration date. When this date is reached
and a read request is issued, the message will be discarded. There is no
“daemon” that checks a queue for expired messages. Expired messages
can stay in a queue for weeks, until a program attempts to read it.

As mentioned previously, the body of a message contains the data to
be processed by the receiving application. In the case of Web Services,
this message may be a SOAP message. An example of a SOAP message
is given in Listing 6-1.

Listing 6-1

Listing 6.1: A SOAP message
1 <SOAP-ENV:Envelope xmlns:SOAP-ENV="SOAPEnvelopeURI"
2 SOAP-ENV:encodingStyle="SOAPEncodingURI">
3 <SOAP-ENV:Header>
4 </SOAP-ENV:Header>
5 <SOAP-ENV:Body>
6 <m:GetLastTradePrice xmlns:m="ServiceURI">
7 <tickerSymbol>IBM</tickerSymbol>
8 </m:GetLastPrice>
9 </SOAP-ENV:Body>
10 </SOAP-ENV:Envelope>

It is interesting to note that in JMS, a message is represented by the
type (class) Message, which has several subtypes. In each subtype the
header structure is the same; it is the body that varies by type. Here
are the different message types supported by JMS:

■ TextMessage This is the most common type of message. The body
is a string such as literal text or an XML document. A SOAP message
is an example of an XML document.

■ BytesMessage This is the simplest and most universal kind of mes-
sage. The body is a byte array.

■ Object Message The body is a single Java object. The Java object
must implement the serializable interface.

■ StreamMessage The body is a stream of Java primitives such as
char, int, and long.

104 Chapter Six

■ MapMessage The body behaves like a java.util.Map, where the
keys are String objects.

In discussing SOAP messages, which are transmitted through the
messaging system (such as IBM WebSphere MQ), it is interesting to
note the recursive nature of the messages. This means that a messaging
system object contains the SOAP message as the body. The messaging
system itself employs a transport protocol such as TCP to transmit
the data.

End Points

A message end point contains a set of code that is used to connect to
the messaging system and to send or receive a message. The rest of the
application uses the end points whenever it needs to send or receive a
message. Message end points are of two general types. The first type
is used to send a message whereas the second type is used to receive
messages. Within the first general type are two subtypes: The first sub-
type is used to send the message in a point-to-point model, whereas the
second subtype is used to send a message in a publish-and-subscribe
model. In addition to these types of end points, message-driven beans
can also serve as consumers of messages. We will discuss examples
of these end points using JMS because JMS is a vendor-neutral API.
Message-driven beans will be described separately.

Sending a Message (Point-to-Point)

In a point-to-point model, a message is not sent directly to the intended
receiver. Instead, the message is sent to a queue, as shown previously in
Figure 6.3. As discussed in the “Messages” section, there are different
kinds of messages. For the sake of simplicity, we will demonstrate the
working of this type of end point by sending a message of the type text:
“Hello World”. The general flow of the code is shown in Figure 6.6, and
the actual code is shown in Listing 6-2.

Listing 6-2

Listing 6.2: Code snippet for sending a message to a queue in

a point-to-point model

1 String message = "Hello World";

2 QueueConnectionFactory factory = (QueueConnectionFactory)

3 jndiContext.lookup("java:comp/env/jms/QueueFactory);

4 Queue queue = (Queue)

5 jndiContext.lookup("java:comp/env/jms/MyQueue");

6 QueueConnection connect = factory.createQueueConnection();

7 QueueSession session = connect.createQueueConnection (true, 0);

Messaging 105

8 QueueSender sender = session.createSendor (Queue);

9 TextMessage textMsg = session.createTextMessage ():

10 textMsg.setText (message);

11 sender.send (textMsg);

12 connect.close ();

We now walk through this code snippet, line by line:

■ Line 1 This line simply defines the data for the message. In this
case, the data is a String: “Hello World”. This is the message body we
want to send to the queue.

■ Lines 2–3 In order to send a JMS message, we need a connection
to the JMS provider. The connection to the JMS provider is obtained
through a JMS connection factory. This factory is obtained through
an environment variable called QueueFactory.

■ Lines 4–5 Next we look up the queue to which we will send the
message by name using JNDI. Our queue is named MyQueue. Once
again, behind the scenes it looks up the environmental variable for
the queue.

Figure 6.6 Flow of code for sending a message in a point-to-point model

Get the connection factory reference

 Get the reference to the queue

Get the actual connection to JMS provider

Create a queue session

Create a sender for specific queue

Create a text message

Send the text message

Close the connection

106 Chapter Six

■ Line 6 Next we use the connection factory to obtain a connection to
the JMS provider by calling the method createQueueConnection().

■ Line 7 Once a queue connection is obtained, it is used is create
a QueueSession, which is used to group the actions of sending and
receiving messages.

■ Line 8 Next we use the QueueSession to create a QueueSender for
the specific queue we are interested in.

■ Line 9 From the QueueSession we also create a message object. In
this case the message is a text message, so we create a message object
of type text.

■ Line 10 Next we set the content of the text message object by using
the String “Hello World”.

■ Line 11 We send the message using the send() function.

■ Line 12 As a last step, we close the connection in order to conserve
resources.

Sending a Message in
Publish-and-Subscribe Model

In the publish-and-subscribe model, the message is sent to a topic
instead of a queue, as was done previously with the point-to-point model.
Any number of receivers can subscribe to a given topic, and each of the
subscribers will receive a copy of the message to act upon. A snippet
of the code that sends a message to a topic is shown in Listing 6-3,
and the flow of the code is shown in Figure 6.7. As can be seen from
the code listing as well as from the code flow diagram, the code is very
similar to the code used in the point-to-point model. Thus we will not
explain the code here.

Listing 6-3

/Listing 6.3: Code snippet for sending a message to a queue

in a publish-subscribe model

1 String message = "Hello World";

2 TopicConnectionFactory factory = (TopicConnectionFactory)

3 jndiContext.lookup("java:comp/env/jms/TopicFactory);

4 Topic topic = (Topic)

5 jndiContext.lookup("java:comp/env/jms/MyTopic");

6 TopicConnection connect = factory.createTopicConnection();

7 TopicSession session = connect.createTopicConnection (true, 0);

8 TopicPublisher publisher = session.createPublisherr (topic);

9 TextMessage textMsg = session.createTextMessage ():

10 textMsg.setText (message);

11 publisher.publish(textMsg);

12 connect.close ();

Messaging 107

End Points for Receiving Messages

In this section, we provide the skeleton code for receiving a message.
Once again we will employ JMS API because it is vendor neutral. To get
a better idea of how JMS is used to receive and process a message, we
develop a simple JMS client application. The application just receives
text messages and prints the message to the standard output device.

In general, there are three subtypes of message end points for receiv-
ing messages. The first type receives messages in a point-to-point sce-
nario; the second type receives messages in a publish-subscribe scenario.
These two subtypes contain similar code; therefore, we describe only one
of these subtypes—namely, the publish-and-subscribe message receiv-
ing end point. The third subtype, which is becoming very common, is the
message driven bean. Message driven beans will be described separately
in the next section.

The skeleton code for receiving a text message in a publish-and-sub-
scribe scenario is shown in Listing 6-4. In this case, the application
takes as input a name for the topic factory and a name for the topic.

Figure 6.7 Flow of code for sending a message in a publish-and-subscribe model

Get the connection factory reference

 Get the reference to the topic

Get the actual connection to JMS provider

Create a queue session

Create a sender for specific topic

Create a text message

Publish the text message

Close the connection

108 Chapter Six

These names are used by the application for lookup purposes. Much of
this code is similar to the code used for sending messages in the publish-
and-subscribe model. Therefore, we only briefly describe the code.

The constructor JmsClient() of the class JmsClient obtains the
TopicConnectionFactory and Topic from the JNDI InitialContext. This
context is created with vendor-specific properties. After this, the client
application creates a TopicConnection and a TopicSession, as you have
seen previously. Then a TopicSubscriber is created, which is designed
specifically to process incoming messages that are published to its
specified Topic. The TopicSubscriber can receive messages directly, or
it can delegate the processing of the messages to a MessageListener. We
have chosen to implement the MessageListener interface so that the
JmsClient class can process messages itself. MessageListener imple-
ments a single method, onMessage(), which is invoked every time a new
message is sent to a subscriber’s topic.

Listing 6-4

Listing 6.4: A Java class for receiving a text message in a publish

subscribe scenario

1 import javax.jms.Message;

2 import javax.jms.TextMessage;

3 import javax.jms.TopicConnectionFactory;

4 import javax.jms.TopicConnection;

5 import javax.jms.TopicSession;

6 import javax.jms.Topic;

7 import javax.jms.Session;

8 import javax.jms.TopicSubscriber;

9 import javax.jms.JMSException;

10 import javax.naming.InitialContext ;

11

12 public class JmsClient implements javax.jms.MessageListener {

13

14 public static void main (String [] args) throws Exception {

15 if (args.length != 2)

16 throw new Exception ("Wrong number of arguments");

17 new JmsClient (args[0], args[1]);

18 while (1) { Thread.sleep (20000); }

19 }

20

21 public JmsClient (String factoryName, String topicName) {

22

23 InitialContext jndiContext = getInitialContext ();

24 TopicConnectionFactory factory = (TopicConnectionFactory)

25 jndiContext.lookup (factoryName);

26 Topic topic = (Topic) jndiContext.lookup(topicName);

27 TopicConnection connect = factory.createTopicConnection ();

28 TopicSession session =

29 connect.createTopicSession (false,Session.AUTO_

ACKNOWLEDGE);

Messaging 109

30 TopicSubscriber subscriber = session.createSubscriber (topic);

31 subscriber.setMessageListner(this);

32 connect.start();

33 }

34

35 public void onMessage (Message message) {

36

37 try {

38 TextMessage textMessage = (textMessage) message;

39 String text = textMessage.getText ();

40 System.out.println ("Message Received : \n" + text);

41 }

42 catch (JMSException ex) {

43 System.out.println (" JMS ERROR : " +

ex.getMessage());

44 }

45 }

46 }

Message-Driven Beans

Message-driven beans (MDBs) are stateless, server-side, transaction-
aware components for processing asynchronous messages. MDBs are
part of J2EE components. MDBs provide significant advantages over
traditional JMS clients, such as those described previously. One of the
most important advantages is that MDBs can consume and process
messages concurrently. The MDB containers manage concurrency
automatically, so that the bean developer can focus on the business
logic of processing the messages. The MDB can receive hundreds of
messages from various applications and process them all at the same
time, because a large number of instances of the MDB can execute con-
currently in the container. Thus, they represent a very scalable solution
for message processing.

Although an MDB is a complete enterprise bean, there are important
differences from entity and session beans. In particular, an MDB does
not have component interfaces. The component interfaces are absent
because a message-driven bean is not accessible via the Java RMI API.
An MDB responds only to asynchronous messages.

To provide a concrete example, we consider an MDB that just receives
an asynchronous text message and prints it out on the standard output
device. The code for this MDB is shown in Listing 6-5. We briefly describe
the important parts of this code.

The MDB class implements two interfaces. The javax.jms
.MessageDrivenBean interface defines callback methods similar to
those in entity and session beans. The two methods this interface con-
tains are ejbRemove() and setMessageDrivenContext(), the latter of
which is called at the beginning of the MDB’s life cycle and provides the
MDB instance with a reference to its MessageDrivenContext. The other

110 Chapter Six

method, ejbRemove(), provides the MDB instance with an opportu-
nity to clean up any resources it stores in its instance fields. In our
case, we use it to close the JNDI context and set the ejbContext field
to null.

The second interface that is implemented is javax.jms.MessageListener.
This interface was discussed previously. It defines a single method,
onMessage(). This is where all the business logic goes in order to
process the message received. In our case, because we are assuming a
text type message, we first cast the Message object to a TextMessage
object. Then we invoke the method getText() on the text message object
in order to get the content of the message. Finally, we print the message
on the standard output device.

Listing 6-5

Listing 6.5: A simple message-driven bean for consuming text messages

1 import javax.jms.Message;

2 import javax.jms.TextMessage;

3

4 public class MyMDB implements javax.ejb.MessageDrivenBean,

5 javax.jms.MessageListener {

6

7 MessageDrivenContext ejbContext;

8 Context jndiContext;

9

10 public void setMessageDrivenContext (MessageDrivenContext mdc)

{

11 ejbContext = mdc;

12 try {

13 jndiContext = new InitialContext ();

14 } catch (NamingException namingEx) {

15 throw new EJBException (namingEx);

16 }

17 public void ejbCreate ();

18 public void onMessage (Message message) {

19 try {

20 TextMessage textMsg = (TextMessage) message;

21 String msg = textMessage.getText ();

22 System.out.println ("Received Message : \n" +

msg);

23 } catch (Exception ex) {

24 throw new ejbException (ex);

25 }

26 }

27 public void ejbRemove () {

30 try {

31 jndiContext.close (0;

32 ejbContext = null;

33 } catch (NamingException ne) {}

34 }

35 }

Messaging 111

Conclusion

This chapter described asynchronous messaging, which may provide
the most scalable way for applications to share data and functionality.
It is also suitable for applications integration when large transaction
volumes are involved. This scalability is due to the asynchronous nature
of the messaging, which does not require the client application to suspend
its work until the server completes its work, as is the case for RPC and
distributed objects.

Another important advantage of the messaging described for this
method of communication between applications is that it is much more
reliable than either the RPC or distributed objects method of sharing
data and functionality. This reliability is achieved by persisting the data
being exchanged on both sides of the network.

As you will find in a later chapter, we can add a few components to the
messaging system to turn it into a messaging bus, which is also known
as an Enterprise Service Bus (ESB). The most notable component that
needs to be added to a messaging system for converting into an ESB
is called a router or a message broker. The main function of a message
broker is to route the message based on the message content or context.
In this way, a further decoupling between the sending and receiving
applications is achieved because the sending application does not need
to know the address of the final destination. The ESB based on a mes-
saging system provides a much more scalable solution than the ESB
based on an application server.

It should also be noted that because of the power and popularity of
asynchronous messaging, many of the commercial application servers
provide some facility to send and receive asynchronous messages. This
messaging facility is usually built on top of the systems bus rather than
as a standalone messaging system. Therefore, this messaging capability
is not very scalable.

In spite of the power of messaging, it is important to realize that
messaging is not suitable in all situations, and proper tradeoffs must be
made in arriving at an integration solution for a given situation. Here
are some of the disadvantages of asynchronous messaging:

■ Generally speaking, asynchronous messaging software is costlier in
monetary terms than the ORB-based middleware. For example, the
cost of an ESB based on the asynchronous messaging middleware is
typically more than ten times higher than the cost of an ESB based
on an ORB-based middleware.

■ A learning curve is associated with the asynchronous messaging
environment.

■ A certain amount of overhead and bookkeeping is involved in simulat-
ing a synchronous interaction between two applications.

Part

Service-Oriented
Architecture–Based
Integration

3

115

Chapter

 7
Web Services Overview

In this chapter, we begin to discuss the ideas that are usually considered
the most important components of the Service-Oriented Architecture
(SOA) and related services-based application integration. However,
recall that SOA also encompasses all the integration ideas we covered
in Chapters 3–6. Therefore, we will start this chapter with a recap of all
the important ideas covered so far. Next, we describe the heterogeneity
problem caused by the use of the various technologies described in
Chapters 3–6. As a solution to the heterogeneity problem, we discuss
the Web Services standards and further development of technology—in
particular, the Enterprise Service Bus (ESB) pattern. In the remainder
of this chapter, we briefly review each of these standards, including
XML, SOAP, WSDL, UDDI, and WS-I Basic Profile. The next chapter
deals with the Enterprise Service Bus pattern.

Review of Part II (Chapters 3–6)

Part II of this book began by covering the methods applications use to
share data only (refer to Chapter 3). We discussed three methods of
exchanging data between applications: file-based data sharing, using a
common database approach, and sockets. You learned that the first two
approaches are suitable when the data need not be shared in real time,
whereas the third approach, sockets, allows applications to share data in
real time. Perhaps the most important thing you learned is the idea of the
connectivity of applications through the use of sockets. Sockets not only
allow applications to share data in real time, they are also fundamental to
sharing functionality between applications. Sockets are always present in
the background regardless of the integration approach being discussed.

In Chapter 4 you learned about the remote procedure call (RPC) method
of sharing functionality and data among applications. You learned that

116 Chapter Seven

RPC (also known as client/server architecture), is built on top of sock-
ets technology. RPC was an important step in the progress toward
enterprise integration because it introduced some critical ideas and
features, and for the first time outlined the basic steps necessary
to share functionality among applications or software components.
RPC introduced the following new features and ideas in the realm of
enterprise integration:

■ The concept of interface declaration through the use of a specification
file. The RPC specification file may be considered the first step in the
development of the services interface, such as a WSDL file.

■ The concept of a service provider application (called the server) and
the service consumer application (called the client). The server pro-
vides the implementation of one or more functions that can be used
or invoked by the client application.

■ The concept of marshalling of arguments for transmission over the
network. This refers to the packaging of arguments into one or more
messages to be transmitted over the network.

■ The encapsulation of all system- and network-related functionality
in a library. This encapsulation led to future systems in which this
functionality was separated out as a program of its own, thus leading
to code reuse.

■ Client and server stubs, which shield the programmer from the system
and network calls. These stubs, in various forms, continue to be used
even in a Service-Oriented Architecture.

■ The concept of platform independence via the use of XDR (external
data representation), which encodes the data in a machine-indepen-
dent format.

Chapter 5 introduced the concept of distributed objects by moving
away from procedural languages such as C and into the realm of object-
oriented programming (OOP) and object-oriented design (OOD). In
the case of distributed objects, the objects concept is generalized so
that the objects can be distributed over a network. These objects are
able to interact with each other through the use of a technology called
CORBA.

With distributed objects, we took a big step forward in application inte-
gration by encapsulating the code for parameter marshalling and unmar-
shalling and the code for networking into a separate software component
(or application). We call this component the Object Request Broker (ORB).
This remedies the problem of the lack of code reuse in RPC. Various
implementation of ORB form the backbone of all the modern commer-
cial application servers, which are needed to support distributed objects.

Web Services Overview 117

In addition, ORB allowed us to move away from point-to-point integration,
which is important if a large number of applications need to be integrated.
Also, this move away from point-to-point integration leads to the concept
of Enterprise Service Bus (ESB), as you will see later.

Chapter 5 introduced the concept of language independence via the
use of an interface definition language (IDL). The interfaces declared
through IDL can be mapped to any programming language. They allow,
in principle, the client and server to be implemented in two different
languages. Another important concept introduced in Chapter 5 is the
registry, which is used by server objects to register themselves so they
can be located by the client.

You also learned that the major drawback of both distributed objects
and RPC is the lack of scalability. This lack of scalability results from
the synchronous nature of the interaction between the server and the
client. For synchronous method calls, the client is blocked from perform-
ing further work until the server completes its work and returns the
control to the client.

Another disadvantage is that RPC- and ORB-based communication
is not reliable and there is no guarantee that the messages and return
values will be delivered to the intended targets. Therefore, the client
application may experience a hang-up in its operation under certain
circumstances, such as when the network connection is down or when
the two applications are not up and running at the same time.

Asynchronous messaging is used to overcome these two problems, as
discussed in Chapter 6. In addition, asynchronous messaging has other
advantages. In asynchronous messaging, the client or client object sends
a message to the target application but does not wait for the response
to continue its work, thus leading to a certain amount of decoupling
between the applications involved. Therefore, asynchronous messaging
may be employed as the basis for integration if high transaction vol-
umes are expected. Asynchronous messaging can also guarantee deliv-
ery of messages between applications being integrated. As you will see
in Chapter 8, an asynchronous messaging system can also form the core
of an Enterprise Service Bus.

In the next section we discuss how the introduction of these new and
different technologies for enterprise applications integration led to the
problem of heterogeneity in large enterprises. The various solutions to
this problem are what led to further developments that are most com-
monly associated with SOA and service-oriented integration.

Heterogeneity Problem

Perhaps the development of SOA and services (for example, Web
Services), beyond the ideas discussed in Part II of this book, owes much

122 Chapter Seven

contains a top element named address, which has a single attribute
that’s used to specify the country. This top element has also four child
elements, which provide information on the name of the person, the
street address, the city, and the postal code. Each of these child elements
has data (that is, a payload) contained in them. For example, the data
for the name element is “John Smith”.

Listing 7-1

Listing 7.1: Basic XML document structure
1 <address country="USA">
2 <name>John Smith</name>
3 <street>43 Walcut St</street>
4 <city>Dublin</city>
5 <state>Ohio</state>
6 <postal-code>45561</postal-code>
7 </address>

The grammar and structure of an XML type document is defined
in a schema. Another important concept used in XML is namespaces,
which are used to avoid the collision of names in different spaces and
to extend the use of vocabulary defined in one specific domain to other
domains. We will discuss XML in detail in Chapter 11. The discussion
will include schemas, namespaces, and various models to use for XML
parsing, processing, creating, and editing.

SOAP

Although adoption of XML is an important step forward in dealing with
heterogeneity and extensibility requirements, XML by itself it is not
sufficient for two parties (the service provider and service consumer

Document

Element

Data Attribute

1

n

1 n

Figure 7.5 The general structure of an XML document

124 Chapter Seven

SOAP:encodingStyle indicates the SOAP encoding, and the other
namespace connotes the SOAP envelope. The header element is optional,
but when it is present it should be the first immediate child of the enve-
lope element. The body element must be present in all SOAP messages
and must follow the header element if it is present. The body usually
contains the specification of the actual message. In this example, the
message contains the name (GetLastTradePrice) of the method as well
as an input parameter value (IBM).

Listing 7-2

Listing 7.2: An example of SOAP message
<soap:envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"
soap:encodingStyle="http:/schemas.xmlsoap.org/soap/encoding/"/>
 <soap:header>
 </soap:header>
 <soap:body>
 <m:GetLastTradePrice xmlns:m="http://example.org/
Tradeprice" >
 <tickerSymbol> IBM </tickerSymbol>
 </m:GetLastTradePrice>
 </soap:body>
</soap:envelope>

WSDL

Web Services Description Language (WSDL) is an XML-based lan-
guage for describing the interface and other characteristics of a Web
Service. This is the second application of XML to solve the heterogeneity
problems mentioned earlier in this chapter. WSDL offers the following
advantages in the description of the services as compared to previously
described approaches:

■ Unlike CORBA’s IDL and RPC’s specification files, WSDL is more
completely agnostic toward programming languages and middleware
technologies. This feature of WSDL is the direct result of it being
based on XML, thus making WSDL suitable to describe almost any
type of service.

■ WSDL provides a method of specifying a communication protocol for
invoking a service. Therefore, a service is free to choose any protocol
it can conveniently implement.

■ WSDL also provides a way to specify a message format for communicat-
ing with a given service. Therefore, a service is free to choose any con-
venient message format. An example of a message format is SOAP.

Web Services Overview 125

■ WSDL also provides wide latitude for the service provider to specify
the type of service operations they offer. In general, four different
types of service operations can be specified, including synchronous
operations and asynchronous operations.

■ Finally, WSDL has a method for specifying a service end point. A ser-
vice end point is the network address at which the service is available
for invocation.

It is instructive to look at an example of a WSDL document. A sample
WSDL document is shown in Listing 7-3 that declares a service for get-
ting weather information.

Listing 7-3

Listing 7.3: A example of WSDL document
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="WeatherWebService
 targetNamespace="urn:WeatherWebService"
 xmlns:tns="urn:WeatherWebService"
 xmlns="http:/schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xml.soap.org/wsdl/soap/"
 <types/>

[Abstract data type definitions]

 <message name="WeatherService_getWeather">

[Data that is sent]

 <part name="City" type="xsd:string"/>
 </message>
 <message name="WeatherService_getWeatherResponse">

[Data that is returned]

 <part name="result" type="xsd:string"/>
 </message>
 <portType name="WeatherService">

[Port type containing one operation]

 <operation name="getWeather" parameterOrder="City">

[An operation with input and output messages]

 <input message="tns:WeatherService_getWeather"/>
 <output message="WeatherService_
getWeatherResponse/>
 </operation>
 </portType>
 <binding name="WeatherServiceBinding" type="tns:
WeatherService">

126 Chapter Seven

 <operation name="getWeather">
 <input>
 <soap:body use="literal" namespace="urn:
WeatherWebService"/>
 </input>
 <output>
 <soap:body use:literal namespace="urn:
WeatherWebService"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <soap:binding transport="http://schemas.xmlsoap.ord/
soap/http" style="rpc"/>

[Binding to a specific protocol]

 </binding>
 <service name="WeatherWebService">

[Binding to a specific service]

 <port name="WeatherServicePort" binding="tns:
WeatherServiceBinding">
 <soap:address location=http://mycompany.com/
weatherservice"/>
 </port>
 </service>
</definitions>

As this listing shows, a complete WSDL document consists of a set of
definitions, starting with a root “definitions” element, followed by six
individual element definitions—types, message, portType, binding, and
service/port—that describe a service. The relationships between these
elements and other elements are shown schematically in Figure 7.7.
These elements are discussed in detail in Chapter 13, but here is a brief
description of the top six elements:

■ types This element defines the data types contained in messages
exchanged as part of the service. Data types can be simple, complex,
derived, or array types. Types (either schema definitions or refer-
ences) that are referred to in a WSDL document’s message element
are defined in the WSDL document’s type element.

■ message This element defines the messages the service exchanges.
A WSDL document has a message element for each message that is
exchanged, and the message element contains the data types associ-
ated with the message. For example, in the Listing 7-3, the first mes-
sage contains a single part that is of the string type.

■ portType This element specifies, in an abstract manner, operations
and messages that are part of the service. A WSDL document has one

130 Chapter Seven

different names, depending on the printer name selected by the user.
Another example is the case where a printer service is selected based
on properties such as the floor number and document type.

■ Runtime binding In this case, even the service specification (that
is, the operations signatures) and the protocol are not known at devel-
opment time. The client can still discover a service via properties such
as floor number and document type, but with an unknown service
interface. In this case, some kind of reflection mechanism must be
implemented at the client side that enables the client to dynamically
discover the semantics of the service and format of valid requests.
This type of service discovery is the most complex and is not used
often because it requires very complex client logic to dynamically
interpret the semantics of an unknown service interface.

WS-I Basic Profile

The Web Services Interoperability (WS-I) Organization is an open
industry effort chartered to promote Web Services interoperability
across platforms, applications, and programming languages. The orga-
nization brings together a diverse community of Web Services leaders
to respond to customer needs by providing guidance, recommended
practices, and supporting resources for developing interoperable Web
Services.

The WS-I Basic Profile provides constraints and clarifications to those
base specifications (XML, SOAP, WSDL, and UDDI) with the intent to
promote interoperability. Where the profile is silent, the base specifi-
cations are normative. If the profile prescribes a requirement or con-
straint, it supersedes the underlying base specification. Some of the
constraints imposed by the profile are intended to restrict, or require,
optional behavior and functionality so as to reduce the potential for
interoperability problems. Some of the constraints or requirements are
provided to clarify language in the base specification that may be the
source of frequent misinterpretation and have been a frequent source
of interoperability problems.

Here are some examples of WS-I Basic Profile specifications:

■ The Basic Profile prohibits protocol bindings other than SOAP, because
SOAP binding is the most commonly used and well defined. In this
case, the WSDL standard is being restrained.

■ The Basic Profile limits the transport protocol to HTTP and HTTPS.

■ The Basic Profile vetoes the use of any encoding, including SOAP
encoding.

■ The Basic Profile disallows overloading operation names.

Web Services Overview 131

Conclusion

In this chapter, we reviewed the standards that together are commonly
referred to as Web Services. These standards have been developed to
address some of the heterogeneity problems that resulted from the use
of different technologies, such as the following:

■ No common way to describe the service interface and other
characteristics.

■ No common place to look up what services are available.

■ No common way for a data exchange between applications that is
independent of languages and middleware technologies.

■ No common message format for exchanging information between
applications.

■ No way to specify different communication protocols.

The standards we discussed are XML, SOAP, WSDL, UDDI, and WS-I
Basic Profile. XML provides a middleware-independent format for the
exchange of data and documents. SOAP provides a common message
format for application interaction.

WSDL provides a language- and platform-independent way to specify
the interface offered by a service. A WSDL document consists of two parts.
The first part describes in an abstract manner the operations, input and
output parameters, and data types. The second part, which consists of a
binding and implementation interface, specifies the transport protocol,
message format, and service end point network address. The Universal
Description, Discovery, and Integration (UDDI) specification defines a
standard way of registering, deregistering, and looking up services. The
last standard, WS-I Basic Profile, promotes the interoperability of services
operating on different platforms by specifying additional constraints and
clarifications on the aforementioned standards. In Part IV of this book
(Chapters 11–14), we take a more detailed look at these standards.

Although these standards, known as Web Services, are able to solve
some of the heterogeneity problems, they are not able to solve all of these
types of problems. Some of the heterogeneity problems not addressed by
Web Services standards include the following:

■ Protocol mismatch Related to the heterogeneity of communica-
tion protocols is the problem that different applications want to com-
municate with each other using incompatible protocols. For example,
Application A might want to communicate with Application B using
HTTP. However, for Application B the suitable protocol might be IIOP.
In such cases, a protocol transformation is needed so that Application A
can communicate with Application B.

132 Chapter Seven

■ Message format mismatch Related to protocol mismatch is the
problem of a mismatch of message formats between the service pro-
vider and the service consumer. This problem refers to the situation
where a service provider may be set up to receive messages in one
format (such as SOAP), while the service consumer is set up to use
another message format (such as Java RMI).

These and other problems have been addressed by further devel-
opment in the technologies. In particular, the evolution of Enterprise
Service Bus patterns solves many of the remaining heterogeneity prob-
lems as well as other problems. We discuss these problems and the
Enterprise Service Bus in the next chapter.

133

Chapter

 8
Enterprise Service Bus

Chapter 7 provided an overview of the standards generally known as
Web Services. The main objective of these standards is to provide a solu-
tion to the various heterogeneity problems found in large enterprises.
Toward the end of Chapter 7, you learned that Web Services can provide
only a part of the solution and that some heterogeneity problems are
still left unresolved. In particular, quite often there is a need to provide
a mechanism for a communication protocol switch and to provide a
mechanism for data transformation in order to match the requirements
of a service provider with that of a service client.

In this chapter, we tackle the remaining heterogeneity problems by
discussing the Enterprise Service Bus (ESB) pattern. ESB provides a
comprehensive, scalable way to connect a large number of applications
without the need for each pair of applications to make a direct con-
nection. Such a direct connection between two applications is called a
point-to-point connection. Note that even in the case of Web Services,
the connection between the service consumer application and the ser-
vice provider application is “point to point.” The point-to-point connec-
tion approach does not scale well because the number of applications
involved in the integration increase; therefore, this integration approach
is not suitable for a large enterprise where a large number of applica-
tions need to be integrated.

We start this chapter with a brief overview of the scalability problem
and how an ESB pattern solves this problem by using content- and con-
text-based routing. We also elaborate on the solutions of the heteroge-
neity problems that have not been addressed yet. Then, we summarize
the core functions supported by an ESB and provide a brief discussion
of the optional features that are sometimes available in an ESB. Next,
we describe the various logical components of an ESB and how an ESB
works. The various abstract ESB deployment patterns are discussed next.

Enterprise Service Bus 137

the service provider with an equivalent provider if for some reason
the original provider is no longer able to offer the service. The basic
reason for this ability is that with the service bus structure there is
no need to hard-code the network address of the service end point into
the client application. The bus provides for looking up the service end
point address based on the content and context of the service request
it receives from the client application. This routing capability is one of
the three core capabilities an Enterprise Service Bus offers. In fact, this
capability means that the service client is unaware of who the provider
of the service is, and the service provider is unaware of the identity of
the application making a service request.

You’ve learned that ORBs (or application servers) and asynchronous
messaging provide some form of routing based on the content and
context of the request. Therefore, both these technologies are in a position
to form the backbone of the Enterprise Service Bus. Based on which
of these two technologies is chosen as the backbone of an Enterprise
Service Bus, there can be two types of buses.

The first type of Enterprise Service Bus utilizes ORBs (or application
servers) as the backbone. This type of Enterprise Service Bus has the
advantage of being easy to set up and is comparatively less expensive.
However, the functionality it provides does not scale as well where the
rate of transactions is concerned. Therefore, this type of ESB should
be used when lower volumes of transactions are expected. This type
of ESB is usually designed to deal with Web Services, XML, and Java
RMI only. The ESBs in this category also cannot handle a more diverse
set of applications.

The second type of ESB is based on the asynchronous messaging sys-
tems. It is relatively more expensive and requires a more elaborate setup.
This type of Enterprise Service Bus has three main advantages over the
first type. The first advantage is that this type of ESB provides a highly
scalable solution in terms of the volume of transactions and therefore is
able to support a much higher rate of transactions. The second benefit
is that this type of ESB can be used to integrate a more diverse set of
applications. Probably the most important advantage of this type of ESB
is that it can guarantee delivery of the messages between applications.
It is important to note that the Web Services themselves do not provide
a guarantee of message delivery between applications This guarantee
of message delivery may be required for certain transactions due to
contractual or legal reasons. Also note that in the absence of this guar-
antee, the service consumer application may hang if the network
connection breaks or if the service provider application is not running
at the same time. The asynchronous messaging systems can ensure
the delivery of messages by persisting them on both sides (the service
consumer side and the service provider side) of the network.

142 Chapter Eight

is a deployment-time decision because no change to the application code
is necessary or required.

An ESB supports a number of different types of interactions between
the service consumer application and the service provider application.
These interaction types include synchronous request-and-response oper-
ation, asynchronous interaction, and publish-and-subscribe. Note that
an ESB can convert between these types of interactions. For example, a
service request coming as a synchronous (request and response) opera-
tion can be serviced by an asynchronous service provider. Recall from
Chapter 6 that a correlation ID can be used for servicing a synchronous
call using an asynchronous provider.

So far we have discussed only the functional requirements that are
met by the core functionalities offered by an ESB. However, equally
important are the nonfunctional requirements by the applications being
integrated. These nonfunctional requirements are generally known as
the Quality of (Interaction) Service (QoS) requirements. These QoS
requirements are specified by the service participants, and an ESB
provides services to implement these requirements for the service
participants. Here are some of QoS requirements commonly supported
by an ESB:

■ Performance and reliability Performance requirements may
include that the response time of a service not exceed a certain fixed
amount of time, such as 50 milliseconds. An example of a reliability
(or availability) requirement might be that the service provider is up
99.999% of the time.

■ Security services Security is an important issue in general for
distributed computing, but it is especially important when exter-
nal third-party services are consumed by your system or when your
system provides services to the external third parties. The ESBs that
offer security services do not directly provide security themselves.
They simply provide a framework for security software to plug into
as well as capabilities to help the ESB navigate through the network
without getting blocked by firewalls or any other kind of security
arrangement. An example of security software that can work with an
ESB is Tivoli Suites from IBM. Some security services provided by an
ESB include the following:

■ Data encryption to ensure the privacy of the data.

■ Authorization of service requests. Is the user of a service who they
say they are?

■ Data integrity. Is the data genuine?

■ Auditing service. Automatic auditing of service interactions for
contractual/legal reasons or for billing purposes.

146 Chapter Eight

Dispatcher

The dispatcher component works as the centralized entry point.
Dispatcher is responsible for retrieving input from the adapters and
passing it to a task for appropriate routing, transformation, and enrich-
ment work. The dispatcher sends the request to a request handler and,
along with the request handler, provides basic content-based routing
capability to the ESB.

Request Handler

Each service has specific request handlers. The routing engine receives
service-specific parameters from the request handlers and then the
request handlers hand over the request to the routing engine for appro-
priate task execution.

Routing and Rules Engine

The rules engine and routing task are responsible for executing the
transformation and enrichment tasks and routing them to the appropri-
ate service delegates. Service delegate components are described next.

Service Delegates

Delegates are provider end point–specific components. They communi-
cate with the service provider using adapters. Delegates are specific to
the provider-specific end point because they provide more coarse-grained
abstraction about the semantics of communication with the provider
end point. Adapters, on the other hand, abstract a more fine-grained
protocol mechanism to connect to the end point. Thus, to provide logi-
cal operation delegates, use the appropriate adapters for executing the
service interface.

Transformation Engine

The transformation engine component transforms the incoming
(or source) data/message into a format that’s compatible with the
format required by the service provider. This is one of the core
elements of ESB that facilitates integration between disparate service
interfaces.

Enrichment Component

This component allows an ESB to augment the message payload from
an external source so as to match the requirements of a service provider.
The external source may be a database. A sample situation where such

Enterprise Service Bus 147

an augmentation is needed is an incoming service request containing
an address without containing a country name. However, the service
provider needs the complete address, including the name of the coun-
try, for it to process or service the request. In such a case, an ESB can
augment the incoming payload message with the name of the country
(perhaps a default name) from a data source.

Sometimes the functionalities offered by the transformation engine
component and enrichment component can be combined in a single
component.

Logging Component

This component provides the necessary logging support for the ESB
components.

Exception-Handling Component

This component handles all the exceptions generated by the various
components of an ESB.

Deployment Configurations

Deployment patterns of Enterprise Service Bus depend on many fac-
tors. The main factor determining how ESBs are deployed is the size of
the enterprise. For a small enterprise, a single ESB with a single reg-
istry attached to it might suffice. However, for larger enterprises, more
complex deployment patterns involving several ESBs with a number
of registries might be needed. The type of ESBs needed in each of these
patterns is determined by the specific connectivity requirements of each
of these enterprises. For example, an enterprise needing to connect to
third-party partners and vendors may need an ESB specially designed
to handle the security situations for connecting to the third parties.
Such ESBs are known as gateways. Later in the chapter, we discuss
some specific usage scenarios and how to design different connectivity
solutions for such scenarios.

Note that there are basically four known configurations for deploying
ESBs. The patterns and conditions under which each of these configura-
tions should be employed are discussed next.

Global ESB

In this pattern of deployment, there is a single ESB for the entire enter-
prise. The ESB employs a single registry. This configuration is suitable
for a small enterprise or a single line of business. In this case, all the
services are available to all the participants. There is no requirement

Enterprise Service Bus 151

These products’ strength is in dealing with XML and Java. However,
they offer challenges if a more diverse set of applications need to be inte-
grated. In addition, they are typically used to integrate a comparatively
small number of applications because this type of ESB is not scalable
for a large number of applications.

The prime example of this type of ESB product is IBM’s WebSphere
Enterprise Service Bus (WESB), which is based on IBM’s WebSphere
Application Server (WAS). WESB offers the following features and
advantages:

■ Provides standards-based integration, which allows you to create and
deploy interactions between applications and services quickly and
easily, with reduced number and complexity of interfaces.

■ Offers easy-to-use tools that require minimal programming skills and
are simple to install, configure, build, and manage.

■ Reconfigures dynamically to meet changing business processing loads.
Provides easy interactions with any JMS and HTTP applications.

■ Supported on a large number of operating systems, including AIX, HP
UNIX, I Family, Linux, Sun Solaris, Windows, and z/OS.

■ Increases business agility and flexibility and extends easily to a feder-
ated ESB model.

■ Supports hundreds of independent software vendors (ISVs) through
WebSphere adapters. Adapters are discussed in Chapter 9.

Messaging System–Based ESBs

In this type of ESB, the backbone is a messaging (asynchronous) system
such as IBM’s WebSphere MQ. These Enterprise Service Buses also
support both types of messaging: synchronous and asynchronous. There
are three main advantages of this type of ESB over the other two:

■ They offer the most scalable solution to the problem of applica-
tion integration as far as support for high transaction volume is
considered.

■ They provide for integrating the most diverse set of applications,
including Java, C/C++, and COBOL applications.

■ They guarantee delivery of messages exchanged between the service
consumer and service provider. Note that the two other types of ESBs
cannot provide such a guarantee. However, messaging system–based
ESBs require substantially more work to set up as compared to the
other two types of ESBs. Also, this type of application integration
costs substantially more when compared to the two other integration
schemes.

152 Chapter Eight

The most powerful ESB available today is IBM’s WebSphere Message
Broker (WMB). WMB has IBM WebSphere MQ as the backbone and
provides the most scalable solution in terms of the number of transac-
tions. It has the following salient features:

■ Integrates the most diverse set of applications, including modern
Java/J2EE applications and C/C++ applications, packaged applica-
tions such as CRM applications, and mainframe COBOL applications.
These applications can be running on almost any platform.

■ Can handle very large volumes of transactions.

■ Validates and transforms messages in-flight between any combination
of different message formats, including Web Services, other XML, and
non-XML formats.

■ Routes messages based on (evaluated) business rules to match infor-
mation content and business processes.

■ Provides for dynamically reconfiguring information distribution
patterns without reprogramming end point applications.

■ Supports a powerful security model to address security concerns.

■ Supports virtualization of services through the use of WebSphere
Services Registry and Repository (WSRR).

■ Mediates (provides routing, transformation, and logging) between
Web Services requesters and providers.

■ Works with the latest implementations of standards, such as WSDL,
SOAP, SOAP with attachments, any JMS, HTTP, HTTPS, MTOM/
XOP, and MQ.

■ Includes WebSphere MQ transports for Enterprise, Mobile, Real-Time,
Multicast and Telemetry end points. Extends the reach, scope, and
scale of the Enterprise Integration Bus out to mobile and handheld
devices, along with embedded devices such as sensors or actuators.

■ Available on IBM z/OS, IBM AIX, Linux (zSeries, Intel, Power), Solaris
(x86-64 and SPARC), HP/UX(PA-RISC, Itanium) and Microsoft
Windows Server.

Hardware-Based ESBs

This third type of ESB relies on hardware to do most of the process-
ing. These ESB devices are easy to set up, and they offer increased
security and efficient processing. IBM has a unique product line of
integration devices. They offer a number of products in this category
under the umbrella name of WebSphere DataPower Appliances. The
most comprehensive of these appliances is WebSphere DataPower

Enterprise Service Bus 153

Integration Appliance X150. This product has many of the features
of an ESB, including the following:

■ Transforms between disparate message formats, including binary,
legacy, and XML, and provides message routing and security, MQ/
HTTP/FTP connectivity, and transport mediation.

■ Provides transport-independent transformations between binary,
flat-text, and other non-XML messages, including COBOL Copybook,
ISO 8583, ASN.1, and EDI, to offer an innovative solution for secu-
rity-rich XML enablement, enterprise message buses, and mainframe
connectivity.

■ Offers standards-based, centralized governance and security for SOA,
including support for a broad array of standards such as WS-Security
and WS-SecurityPolicy.

■ Allows interaction among multiple heterogeneous applications,
including native connectivity to registries and repositories, as well
as direct-to-database access.

In this section, we covered the three types of ESB products on the
market. IBM offers the most complete product lines in this area.
These IBM products are superior in many respects to other products
available on the market. In the next section, we provide practical
examples to illustrate the use of these three types of products in real-
life situations.

Practical Usage Scenarios

In this section, we consider some real-life usage examples to demonstrate
the use of the three types of devices we discussed in the last section
and one of the deployment patterns discussed in an earlier section of
this chapter. We will use IBM products as representative of these three
classes: WESB represents the class of products based on the application
server, WMB represents the messaging system–based products category,
and WebSphere DataPower Integration Appliance X150 represents the
class of ESB products based on hardware.

As a practical example, we consider a large financial institution such
as a major bank. We’ll call this financial institution PremierBank.
PremierBank has a headquarters and a large number of remote
branch offices. PremierBank has five major lines of business:

■ Retail banking This line of business offers checking accounts,
money market accounts, saving accounts, and certificates of
deposit.

154 Chapter Eight

■ Mortgage and loan The bank offers mortgages both for commercial
and residential properties. In addition, the bank offers other types of
loans, such as short-term loans for buying cars and loans for small
businesses.

■ Credit card This line of business offers various types of credit
cards, both to individuals and to businesses.

■ Investment This line of business offers stocks, bonds, and mutual
funds for investment purposes.

■ Retirement funds This line of business offers the management of
retirement funds, with various investment options, such as certificate
of deposits, stocks, bonds, and mutual funds.

PremierBank has grown over a number of years through acquisi-
tions and mergers, which have resulted in a heterogeneous and com-
plex IT environment. The IT environment consists of an older back-end
system as well as newer, more modern applications such Java/J2EE
applications. Some of the functionalities of these applications have
been exposed as Web Services. In particular, the Account Open process
has been exposed as a SOAP/HTTP Web Service. However, a number
of issues still require further development/deployment in the area of
connectivity. A careful, detailed analysis has identified four pressing
requirements that need new development/deployment solutions. We
discuss each of these four requirements and their suggested solutions
in the following four subsections.

Multichannel Access for Existing Systems

The current connectivity environment at PremierBank does not allow
easy access to a process or application from different channels. We define
a channel as a particular combination of message type (for example,
SOAP) and protocol (for example, HTTP). There is a current require-
ment to be able to access the Account Open process from a number
of different environments, including rich clients, intranet browsers,
and Internet browsers, in a manner that is suitable for each consumer
application (that is, the consumer application for the Account Open
process Web Services) without the need for a different mechanism for
each access channel. This requirement results from the PremierBank
IT environment, which has browser-based intranet and Internet users,
interactive voice-response system users, and Microsoft .NET applica-
tion platform users.

The solution requires a mechanism that encapsulates different access
mechanisms so as to insolate other architecture and development teams
from the different access styles used within the IT environment at
PremierBank.

160 Chapter Eight

Conclusion

In this chapter, we discussed Enterprise Service Bus (ESB), which is one
of the main pillars of SOA. (Web Services is another pillar of SOA.)

We started by looking at the reasons why ESBs are needed. Web
Services only provide point-to-point integration, which is not suitable
when a large number of applications need to be integrated. This is
because the number of connections required for integration rises sharply
with the number of applications being integrated. We then discussed how
indirect connections between applications via the use of a service bus
can significantly reduce the number of connections required compared to
point-to-point connections. We noted in this discussion that the ability of
an ESB to provide an indirect connection between applications requires
the ESB to provide a facility to route messages based on content and
context. To provide this routing facility, the ESB relies on its backbone,
which may be a messaging system such as IBM’s WebSphere MQ or an
application server such as IBM’s WebSphere Application Server.

Next, we tackled the remaining two heterogeneity problems not
addressed in Chapter 7 while discussing Web Services. The first hetero-
geneity problem relates to the mismatch of the communication protocols
being used between the service consumer and the service provider. This
mismatch does not allow the service consumer to invoke the service
being offered by the service provider. ESB has solved this problem by
providing a facility to convert one communication/transport protocol
into any other required protocol. For example, this facility would be
able to transform the HTTP protocol into the JMS protocol. With this
facility, applications are able to communicate even when the protocols
of the service consumer and the service provider do not match.

The second heterogeneity problem relates to the mismatch of message
formats being used by the service consumer and service provider. Once
again, this mismatch is a major hurdle in the communication between
the service consumer and the service provider. This problem is solved by
requiring the ESB to provide a facility to transform the message format
used by the service requester to the message format required by the
service provider. For example, this facility would be able to transform a
SOAP message into another XML-based format.

The three facilities of an ESB are known as its core functionalities.
In summary these core functionalities are as follows:

■ Content- and context-based routing

■ Protocol transformation or protocol switch

■ Data format or message transformation

With these core functionalities, an ESB provides some virtualization
to the services. For example, an ESB provides location virtualization in

Enterprise Service Bus 161

that the service consumer does not need to know the network address
of the service provider, and the service does not need to know where the
request is coming from.

In addition to these three facilities, an ESB also provides an imple-
mentation of the Quality of (Interaction) Service (QoS) requirements by
the service consumers. Examples include performance, reliability, and
security requirements.

Furthermore, sometimes ESBs offer additional services, which are
known as optional services. Examples of such optional services are data
enrichment (from a data source), distribution, correlation, and monitor-
ing of messages exchanged between the service provider and the service
consumers.

Next, we discussed the various logical components needed to imple-
ment an ESB. Some of these components are adapters, a service delegate,
a routing and rules engine, a transformation engine, a request handler,
and an enrichment component.

Next we discussed some of the ESB deployment configurations
(or patterns) that may be employed:

■ Global ESB This pattern employs a single ESB for the entire enter-
prise and is suitable for relatively small organizations.

■ Directly connected ESBs In this configuration, ESBs are directly
connected. This configuration employs a single service registry and is
typically used to connect packaged applications (such as SAP applica-
tions) with other types of applications (such as Java/J2EE).

■ Federated ESBs This configuration employs several ESBs, one
of which has a master-slave relationship with the other ESBs. This
configuration is suitable for an organization consisting of moderately
autonomous departments or domains.

■ Brokered ESBs This configuration employs a broker to adminis-
ter the interactions between autonomous departments. Each of these
departments employs its own ESBs. Each of these departments wants to
expose only a subset of the services it offers to the other departments.

Next, we discussed the three basic types of ESBs available on the
market. The most powerful, versatile, and scalable ESBs are based on
an (asynchronous) messaging system, such as IBM’s WebSphere MQ.
The prime example is the IBM WebSphere Message Broker (WMB).
This type of ESB can handle a vast class of applications, protocols, and
message types. It can also handle large transaction volumes. The second
type of ESB is based on application servers such as IBM’s WebSphere
Application Server. The prime example is IBM’s WebSphere Enterprise
Service Bus (WESB). These ESBs are designed for ease of setup and
lower cost, but they cater to a more restricted class of applications,

162 Chapter Eight

protocols, and message types. There also hardware-based devices that
can perform some functions of ESBs. IBM is the leader in this class of
ESB and offers several products in this area. Most notable among these
products is the WebSphere Integration Appliance X150, which offers
enhanced security and high performance in XML processing.

We continued our discussion by considering a specific example of a
large bank that has various requirements related to connectivity. We
demonstrated the use of three types of ESBs as well as the use of one
deployment pattern by using several different scenarios.

To complete our discussion of ESBs, we want to mention one issue
that may become important in the near future. The issue involves the
interoperability of the brand ESBs from different vendors. Sometimes
different brands of ESBs are prevented from working together in a
smooth fashion. One solution for this problem is the development of
industrywide ESB interoperability standards.

As mentioned at the beginning of this section, the ESB is one of the
two important pillars of SOA. The other pillar is Web Services. We pro-
vided a review of the Web Services in Chapter 7. You can obtain a more
thorough understanding of Web Services by reading the chapters in Part
V of this book. These chapters discuss how to develop Web Services by
building new applications. In the next chapter, we will consider how to
expose existing applications as Web Services. For this we will consider
mostly mainframe applications because almost all large organizations
employ mainframes as their back-end system and usually have made
a large investment in such a system. Therefore, they are reluctant to
replace these systems with more modern applications.

Part

 4
Integrating
Existing
Applications

165

Chapter

 9
Integrating Mainframe

Applications

The last chapter provided an overview of Web Services. From there, a
natural progression would be first to describe new applications that can
be exposed as Web Services. This would allow the integration of new or
modern applications into an SOA-based integrated enterprise. However,
we have chosen to describe methods of integrating existing applications—
particularly applications that run on a mainframe—first in this chapter
and we have postponed the details of integrating new applications until
Chapter 11. The reasons for describing mainframe applications integration
first will become abundantly clear in this chapter, which describes some of
the facts about the two major types of mainframe applications. We have
done this mainly because for large corporations, mainframe applications
almost always form the backbone of the IT structure. Also, many consider
integrating mainframe applications the most difficult task of creating a
complete SOA-based integrated IT structure. Therefore, it is imperative
that we discuss the integration of these mainframe applications first.

It may be argued that an obvious way to incorporate the functional-
ities embedded in mainframe applications in an integrated enterprise
is to convert them into modern applications such as Java and C++.
However, this is made very difficult by the fact that most of these main-
frame applications evolved over long periods of time and these applica-
tions are not well documented. Furthermore, the persons who wrote the
code or are familiar with the code might no longer be available either
due to retirement or moving to another job. In addition, the resources
and time are not available to extract the functionalities embedded in
mainframe applications and then rewrite the applications. Therefore,
in most cases, it is not viable to convert these mainframe applications
into more modern applications.

166 Chapter Nine

Because it is not practical to convert mainframe applications into
more modern applications, we must find ways to integrate existing
mainframe applications into an integrated IT structure that is also
likely to contain more modern applications such as Java/J2EE and C++
applications. In this chapter, we consider two broad categories of main-
frame-integration schemes. First, we consider mainframe-integration
approaches that employ point-to-point integration, which is the proper
technique to use if the mainframe applications need to be integrated
with a few other applications. Next, we consider the Enterprise Service
Bus–based integration of mainframe applications. This technique is
suitable if mainframe applications need to be integrated with a larger
number and various types of applications.

In the point-to-point category, we describe four different approaches for
each major type of mainframe application. Two of these four approaches
expose the mainframe applications’ functionalities as Web Services,
whereas the other two approaches expose these applications as services
based on messaging. The four approaches for one type of mainframe
application (that is, IMS applications) are

■ MQ Enablement

■ MQ Bridge for IMS

■ IMS SOAP Gateway

■ IMS TM Resource Adapter

Similarly, for the other major type of mainframe application (that is,
CICS applications), the four approaches are

■ MQ Enablement

■ MQ Bridge for CICS

■ Web Services support in CICS TS V3.1 and higher

■ CICS Transaction Gateway with CICS TS Resource Adapter

For integrating mainframe applications with a large number of
applications, we describe two approaches based on ESB. We consider
two approaches in this category. The first approach relies on applica-
tion server–based ESB, such as IBM WebSphere Enterprise Service Bus
(WESB). This approach is suitable when the mainframe application is
being integrated with Java/J2EE, XML, and SOAP-based applications.
For integrating mainframe applications with a wider variety of applica-
tions, we use the ESB based on messaging software. An example of such
an ESB is IBM WebSphere Message Broker (WMB), which is based on
IBM messaging software called WebSphere MQ. This latter approach
also provides higher scalability capability in terms of higher transaction

Integrating Mainframe Applications 167

volumes as well as provides for ensuring the delivery of messages between
the service consumer and the service provider.

We start this chapter with brief descriptions of the two main types of
mainframe applications and why the integration of these two types of
applications is so important for large organizations. Next, we discuss
some general features and considerations of the integration schemes
described in this chapter, as well as various point-to-point options and
two ESB-based options.

Mainframe Application Types

Two main types of applications run on mainframe computers: applica-
tions that run under IMS (IBM’s Information Management System) and
applications that run on CICS (IBM’s Customer Information Control
System).

Some people refer to mainframe applications as legacy applica-
tions. However, this is a misplaced and unjustified titled. Mainframe
applications have not remained stagnant but have come a long way in
terms of modernization. The modernization started at the operating
system level, which has evolved from MVS to the modern z/OS system.
Furthermore, currently both IMS and CICS transaction systems allow
applications to be written in modern languages other than COBOL.
Some of the modern programming languages supported on IMS and
CICS systems include C, C++, Java, and PL/1. In addition, both CICS
and IMS have added software components that allow the function-
alities embedded in their applications to be exposed directly and/or
indirectly as Web Services.

IMS Applications

IBM’s Information Management System consists of a transaction pro-
cessor and a hierarchal database. A transaction in this context is a
request and execution of a set of programs/applications performing
administrative functions and accessing a database on behalf of a user.
In this chapter, we are mostly concerned with the transaction processor
part of IMS because we are mostly interested in integrating applica-
tions/programs that run under IMS.

IMS has a long and interesting history, starting in 1966. Originally
IBM developed IMS with two other NASA contractors for the Apollo
program. IMS is still going strong after more than four decades of ser-
vice, with a very impressive record. Originally, IMS was designed to
work with IBM System/360 technology, but it has evolved into using
the z/OS operating system and associated technologies. Also, IMS cur-
rently supports a number of programming languages, including COBOL,

168 Chapter Nine

C/C++, and Java. However, COBOL remains the dominant language for
programming applications in IMS. Here are some interesting and impres-
sive facts about IMS:

■ IMS is part of everyday life. For example, bank ATMs almost all use
IMS as the back-end system. All different types of industries and orga-
nizations use IMS—banks and financial institutions, manufacturing,
government, power companies, and telephone companies.

■ It is estimated that over 95 percent of Fortune 1000 companies
use IMS.

■ It is estimated that IMS processes over 50 billion transactions
per day.

■ Because of the wide use of IMS, it is considered to be among the top-
ten largest revenue-producing “software companies” in the world.

■ IMS provides extremely high performance in terms of the following:

■ System availability Only two to three hours of planned and
unplanned outages per year.

■ Response time Measured in subseconds.

■ Number of transactions A single IMS installation can handle
more than 50 million transactions per day.

This chapter does not discuss integrating with mainframe hierarchi-
cal databases (such as IMS database), because this type of integration
requires different tools and techniques for integration. For example,
for IMS database integration, IMS offers the IMS DB resource adapter,
also known as the IMS JDBC Connector, which is a Java Connector
Architecture (JCA) resource adapter that enables a direct connection
to IMS database assets from a J2EE runtime. This is a complementary
adapter to the IMS TM resource adapter, which is discussed later in
this chapter.

CICS Applications

CICS (Customer Information Control System) is also a transaction-
processing software that primarily runs on the z/OS and z/VSE operat-
ing systems for mainframes. CICS was first released in 1969, not long
after the first IMS release. CICS was first developed at IBM’s Palo
Alto laboratory in the U.S., but in 1974 development of CICS moved
to Hursley in the U.K. CICS applications can be written in a variety
of languages, including COBOL, C, C++, PL/1, Assembly, and Java.
However, COBOL is the predominant language for developing CICS
applications.

Integrating Mainframe Applications 169

Here are some of the interesting and impressive facts about CICS:

■ Ninety percent of the top 500 companies use CICS for their core
business.

■ CICS is used in all categories of industries as well as in government.

■ CICS is installed on 85 percent of all z/Series computers.

■ There are 30 million CICS users worldwide.

■ More than 30 billion CICS transactions are processed per day.

■ A CICS system supports about one million concurrent users.

■ CICS is available on distributed platforms such as AIX, Windows,
Solaris, UNIX, and HP-UX. On distributed platforms, CICS is known
as TX Series.

The two types of CICS applications are based on the COMMAREA
and 3270 terminal. COMMAREA is a block of contagious memory used
by a CICS program to communicate with other programs. We will deal
with both types of CICS applications in this chapter.

Preliminaries

To begin our discussion of the various schemes for integrating mainframe
applications, recall from Chapters 7 and 8 that integration always starts
from a point-to-point approach, in which we integrate the given applica-
tion with only a small set of applications by building connections and
interfaces with each pair of applications in the set. In this regard, it is
important to note that Web Services themselves only provide point-to-
point integration of applications. Once you have enabled an application
to take part in at least one point-to-point integration, it is straightforward
to employ an Enterprise Service Bus, which enables the application to be
integrated with a large and more diverse set of applications. Therefore,
in this chapter we first describe the point-to-point integration of a main-
frame application with a more modern application such as Java/J2EE
application. The changes we make to the mainframe application in order
to enable it to communicate with the modern application in the point-to-
point schema will also be needed when we employ an ESB for a wider
integration of the mainframe applications. In describing the point-to-
point integration schemes, we will use a Java/J2EE application as an
example of a modern application, because currently these are the most
common modern applications.

Two broad categories of integration schemes are used in the point-
to-point approaches when it comes to mainframe integration. The first
broad category employs a messaging system for integrations. Recall that

170 Chapter Nine

we discussed the messaging systems in Chapter 6. The second broad
category of integration schemes exposes the mainframe applications as
Web Services.

The first category consists of two methods:

■ In the first method, the mainframe application is enabled to commu-
nicate directly with the messaging software system. The messaging
software system then talks to the Java/J2EE application.

■ In the second method, the messaging system does not talk directly to
the mainframe application; instead, the connection is made through
a bridge.

The second category also consists of two methods:

■ In the first method, the mainframe application is directly exposed as
a Web Service without the use of any middle service components. Only
some versions of CICS can be exposed by using this method.

■ In the second method, the mainframe application’s functionality is
first wrapped in a middle service component, which is then exposed
as a Web Service.

In describing these various approaches of integration, instead of using
generic systems (such as a messaging system or an application), we will
use specific IBM products that correspond to these systems. This is done
for two reasons. First, products from different companies vary somewhat
in their capabilities, and we are more certain that IBM products have
the needed functionalities. Second, we strongly feel that IBM products,
in many respects, are superior to other comparable products available
on the market. In our discussion we will employ these IBM products for
the following categories:

■ Messaging system: WebSphere MQ (MQ)

■ Application server: WebSphere Application Server (WAS)

■ ESB (light): WebSphere Enterprise Service Bus (WESB)

■ ESB: WebSphere Message Broker (WMB)

In addition to these products, we also refer to some IBM tools that can
be used to implement the various integration schemes described in this
chapter. Here are some of the tools mentioned in this chapter:

■ WebSphere Developer for z-Series

■ Rational Application Developer

■ WebSphere Integration Developer

Integrating Mainframe Applications 171

In some of the integration options discussed in this chapter, you’ll see
references to two IMS components: IMS Connect and Open Transaction
Management Access (OTMA). IBM IMS Connect improves IMS TCP/IP
access and enables easier access to IMS applications and data from
the Internet. OTMA is a transaction-based, connectionless client/server
protocol that provides an access path and an interface specification for
sending and receiving transactions and data from IMS.

There is no one best solution for every situation; therefore, the
description of each option covers the same set of aspects so that you can
compare them and then decide on a particular option for your specific
environment. Here’s a list of the aspects discussed:

■ Work required (on the mainframe)

■ Technology constraints

■ Guaranteed delivery

■ Security

■ Cost

■ Time to production

■ Real-time access and synchronous/asynchronous messaging

■ Operating system requirements

■ Additional hardware requirements

■ Reuse

■ Scalability

■ Extendibility

■ Performance

■ Preferred data type and protocol

■ Data enrichment

■ Agility

Next we start describing various options that are available for main-
frame integrations, starting with MQ-based approaches.

MQ Enablement

To use MQ with enablement, you need to significantly modify the CICS
or IMS application using the MQ application programming interface
called MQI, so that the application can receive and send MQ messages.
You also need to do a substantial amount of work on the COBOL/main-
frame side; however, this enablement results in a very scalable integra-
tion solution.

172 Chapter Nine

There are two ways to perform this type of integration:

■ You can install MQ Servers on both sides of the connection; then, you
can absolutely guarantee delivery because messages are persisted on
both sides.

■ You can replace one of the two MQ Servers (either on the mainframe
side or the client application side) with an MQ Client. In this case,
messages are not persisted on the MQ Client; therefore, to guarantee
delivery, you must design the application on the side where MQ Client
is installed with much more care. However, this second option reduces
costs substantially.

Use the first method when message delivery must be 100-percent guar-
anteed, with no exception; you can use the second method when lower
cost is a major consideration. As an example, consider the business case
where a credit-card transaction must be reported to accounting by an
asynchronous message so as not to block the sending application. For
legal or contractual reasons, this message to accounting must be abso-
lutely guaranteed, with no exceptions. In this case, you would use the first
option. However, if the contractual or legal requirements are not so strict
and lower cost is an important consideration, then the second option with
MQ Client on one side of the connection should be employed.

This option requires the use of MQ CICS or MQ IMS adapters. These
adapters are sets of CICS/IMS programs and resource definitions that
enable a CICS/IMS system to run programs that call MQI. The remain-
ing work involves employing a pattern in the implementation to avoid
flooding the CICS/IMS transaction application. MQ CICS and MQ IMS
adapters are well tested and therefore add reliability to your integration
solution. Figure 9.1 shows a schematic view of this option.

Here is a brief discussion of the various aspects involved in this
approach to integrating mainframe applications to help you decide
whether this option is suitable for your situation.

Work Required MQ enablement, in principle, requires a substantial
amount of work using the MQI API to add code to a COBOL applica-
tion to send and receive MQ messages. This applies to both CICS and
IMS transaction applications. The API work is in addition to the work
required to configure queues and queue managers. You can use the CICS
adapter or IMS adapter supplied with MQ to significantly reduce the
amount of work.

Technology Constraints There are no technology constraints related
to the operating system on the mainframe; you can use any operating
system on which CICS or IMS applications run, including z/OS, MVS,
and OS/390 (but, of course, not Windows or UNIX).

176 Chapter Nine

Cost Because this option requires MQ Servers, it is one of most costly
options. If you only use the MQ Client on the client application, you can
cut the software cost in half. In terms of software development cost, this
is one of least expensive options available.

Data Type Centricity No particular type of data is preferred.

Tools No specific tools are required.

Guaranteed Delivery As in the previous case of MQ with enablement, the
message delivery is guaranteed if you use MQ Servers on both sides of
the connection. If you only use the MQ Client on the client application
side, the message delivery is not guaranteed.

Operating System Requirements The z/OS operating system is required
on the mainframe side.

Additional Hardware Requirements None.

Security If you use the IMS Bridge, the security issues are the same as
in the case of MQ enablement. If you are using the CICS Bridge, you must
include an additional user ID/password pair in the message to the CICS
transactions.

IMS SOAP Gateway

The IMS SOAP Gateway makes IMS applications accessible as Web
Services through easy deployment and configuration steps. You don’t
have to change your IMS applications, but you do need to generate Web
Services Definition Language (WSDL) files and XML converters using
IBM WebSphere Developer for System z. The gateway usually runs on a
separate machine (Windows, Linux, AIX), which can limit the scalability
of this solution. The gateway communicates with the mainframe system
using XML over TCP/IP. On the mainframe, the IMS Connect component
with an XML adapter interacts with the IMS application through the use
of Open Transaction Manager Access (OTMA), as shown in Figure 9.4.

Here is a brief discussion of the various aspects of this approach of
integrating mainframe applications to help you decide whether this
option is suitable for your situation.

Work Required You can use WebSphere Developer for zSeries to easily
generate the Web Services artifacts. For example, with WebSphere
Developer for zSeries, you can generate a WSDL file from the COBOL
copybook of an IMS application, which will also generate an XML

Integrating Mainframe Applications 179

IMS application, and it generates a J2EE application. Application
Developer can also generate WSDL so that the target IMS application
can be exposed as a callable Web Services. Minimal work is required on
the mainframe side.

Here is a brief discussion of the various aspects of this approach of
integrating mainframe applications to help you decide whether this
option is suitable for your situation.

Work Required You don’t need to change the IMS application. You can
use IBM tooling to develop the J2EE or Web Services application. Then
you can deploy the application on a J2EE application server such as
WebSphere Application Server.

Technology Constraints z/OS is required on the mainframe. The IMS
TM Resource Adapter runs in a WebSphere application on a number of
platforms, including Windows, AIX, Linux, zLinux, and HP-UX.

Real-Time Access and Synchronous/Asynchronous Messaging Messaging
is typically synchronous and in real time.

Guaranteed Delivery The delivery of messages is not guaranteed.

Operating System Requirements This option requires the z/OS system
on the mainframe.

Additional Hardware Requirements The IMS TM Resource Adapter runs
in a WebSphere application on a number of distributed platforms,
including Windows, AIX, Linux, zLinux, and HP-UX.

Security This option supports component-managed and container-
managed security, including container-managed thread identity. This
option supports SSL communication between the IMS TM Resource
Adapter and IMS Connect.

Data Type Centricity Data is transported in copybook format.

Tools You can use Rational Application Developer, Web-Sphere Integ-
ration Developer, or WebSphere Developer for z-Series to parse the input
and output of a target J2EE application and also to generate a WSDL
file from the copybook.

Web Services Support in CICS V3.1

CICS Web Services Support in CICS TS V3.1 enables applications run-
ning in CICS TS V3.1 to participate in a heterogeneous Web Services

Integrating Mainframe Applications 181

An attractive additional feature of the CICS Web Services Support
is the CICS Service Flow feature. You can use this feature to enable
accessing terminal-oriented CICS applications, to aggregate multiple
terminal-oriented interactions into a business flow process, or to aggre-
gate terminal-oriented applications with COMMAREA applications.

The CICS Service Flow feature is a composition of WebSphere
Developer Service Flow Modeler (SFM) and CICS Service Flow Runtime
(SFR). SFR uses a component called Link3270 Bridge to access termi-
nal-oriented applications.

Here is a brief discussion of the various aspects of this approach of
integrating mainframe applications to help you decide whether this
option is suitable for your situation.

Work Required Developers need to generate WSDL and WSBIND files
using either the Web Services Assistant tool or WebSphere Developer
for z-Series. System programmers need to do the following:

■ Create a PIPELINE resource definition and a PIPELINE configura-
tion file.

■ Install PIPELINE definitions and TCPIPSERVICE.

■ Publish WSDL.

Technology Constraints Requires z/OS and CICS TS V3.1 or higher.

Real-Time Access and Synchronous/Asynchronous Messaging Access is
in real time using synchronous messaging.

Guaranteed Delivery Delivery can be ensured if you use WebSphere MQ
as the transport mechanism.

Operating System Requirements z/OS is required on the mainframe.

Additional Hardware Requirements This option requires no additional
hardware.

Security SSL is supported; it provides the necessary security during
data transport.

Cost There is no additional cost; you must use V3.1 of CICS TS.
In summary, this option (also called direct expose of the CICS appli-

cations) should be used when expediency is the primary motivator. By
eliminating the need to write new code, you can save development and
testing time. However, the service requirement must match closely with

182 Chapter Nine

the functionality and data that is already in the existing CICS application.
Therefore, there should be no requirement for customizing the informa-
tion flowing between the CICS application and the service consumer.

CICS Transaction Gateway

Older versions of CICS, such as V2.3, do not have native support for
Web Services; hence, the functionalities of the CICS applications for
such older systems cannot be exposed directly. Therefore, to expose the
functionalities embedded in older CICS applications that run on V2.3
and earlier versions, an indirect approach must be employed. With this
approach, the CICS applications are wrapped in a Java/J2EE class (for
example, as a session EJB) that is then exposed as a Web Service. The
approach uses an adapter (or a connector) to access the CICS applica-
tion. This indirect expose pattern provides maximum control over the
transportation of data, the aggregation of CICS functions, and the map-
ping of a required service contract (WSDL document) to the underlying
implementation, represented by a COBOL copybook.

The main software component in this approach is a CICS Transaction
Gateway (CICS TG), which includes a Java Connector Architecture (JCA)
Resource Adapter. CICS TG for Multiplatforms V6.0 runs on a multitude
of operating systems and platforms to support connectivity to all in-
service (that is, all versions of) CICS servers. Here are some of the operat-
ing systems and platforms on which CICS TG V6.0 is supported:

■ Linux on System z

■ Linux on Intel

■ Linux on POWER

■ AIX

■ HP-UX

■ Sun Solaris (on SPARC)

■ Various versions of Windows

CICS TG for Multiplatforms consists of the following runtime com-
ponents:

■ The Gateway daemon, which listens for incoming requests and manages
the threads and connections necessary to ensure good performance.

■ The Client daemon, which provides the communications to the CICS
servers and non-Java APIs.

■ A Java class library or JCA Resource Adapter, which is deployed
into the client runtime environment. This resource adapter for J2EE
Client is deployed into a J2EE application server.

184 Chapter Nine

In this approach, you start by using a tool to read the COBOL copybook
and create application-specific classes (which are displayed as A and B in
Figure 9.9). An example of this type of tool is the CICS/IMS Data Binding
Wizard in IBM Rational Developer for System z. The classes, such as A
and B, understand the CICS functions and data, and they handle talking
to CICS using JCA. The particular resource adapter that is used is CICS
ECI, which is deployed in the J2EE application server runtime.

Next, you write a WSDL service contract, which is then used in tooling
to generate a class skeleton, along with a SOAP processing class that han-
dles incoming SOAP requests. The processing is done in Java code, which
is easy to write. The handling code maps the incoming method calls to the
access classes, aggregate functions, and transform data as required.

One advantage of this approach is that you do not need to know much
about the resource adapter or even anything about COBOL, except to
use the copybook with the wizard in the tool. You simply invoke Java
classes to perform your work.

Here is a brief discussion of the various aspects of this approach of
integrating mainframe applications to help you decide whether this
option is suitable for your situation.

Work Required This option requires the use of the IMS/CICS Binding
Wizard in the IBM Rational Developer for System z to generate applica-
tion-specific classes from the copybook. A WSDL service contract must
also be created, which is then used to generate skeleton classes along with
a SOAP processing class. Code must be written to handle the incoming
method calls, aggregate functions, and transform data as required.

Technology Constraints Requires z/OS. This approach can be used with
any in-service version of CICS.

Real-Time Access and Synchronous/Asynchronous Messaging Access is
in real time using synchronous messaging.

Guaranteed Delivery Delivery can be ensured if you use WebSphere MQ
as the transport mechanism.

Operating System Requirements This option requires z/OS on the
mainframe.

Additional Hardware Requirements This approach requires no additional
hardware.

Security SSL is supported; it provides the necessary security during
the data transport.

Integrating Mainframe Applications 185

Summary of Point-to-Point Integration

In this section we summarize some of the results of the point-to-point
integration approaches for the two types of mainframe applications.

We start with the integration schemes for IMS applications. As pointed
out previously, there is no one best solution for all situations. Whereas
the integration schemes based on MQ are best when high transaction
volumes are expected, the approach that relies on IMS TM Resource
Adapter might be the best if loose coupling between the mainframe
and the Web Services being exposed is desired. Table 9.1 provides a
summary comparison of the various approaches for integrating IMS
applications.

Similar considerations apply to the CICS applications integration
approaches. No single approach is best for all situations. Once again, the
MQ-based approaches provide the best solution if very high transaction
volumes are desired. However, if the work needed is minimal and CICS
TS V3.1 is available, then directly exposing the CICS applications might
be a good choice. Table 9.2 provides a comparison of the various aspects
of the different integration approaches available.

ESB-Based Integration Options

The point-to-point integration schemes described in the previous sec-
tions are suitable when the mainframe applications need to be integrated
with one or two other applications. However, if you need to integrate

TABLE 9.1 Comparison of Various Point-to-Point Integration Approaches for IMS
Applications

Option/Aspect MQ Enabled MQ Bridge
IMS SOAP
Gateway

IMS TM
Resource Adapter

Work required on
mainframe

Substantial Minimal Some Some

Guaranteed delivery Yes Yes No No

Real-time access Yes Yes Yes Yes

Synchronous/
asynchronous

Both Both Synchronous Both

Additional hardware No No Yes No

Operating system
required

z/OS z/OS z/OS z/OS

Data type centricity None None XML None

Cost High High Medium —

Technology
constraints

z/OS z/OS, OTMA IMS V9 and
higher

z/OS

Security Yes Yes Yes Yes

186 Chapter Nine

mainframe applications with a substantial number of other applica-
tions, point-to-point integration is not suitable because the number of
connections required between the applications explodes quickly as the
number of applications being integrated increases. For such situations,
an ESB offers a flexible, comprehensive, and scalable solution to the
problem of mainframe integration.

Recall from Chapter 8 that an ESB offers the following three basic
capabilities:

■ Content- and context-based routing of messages

■ Communications protocol transformation or switch

■ Message transformation

Message format transformation involves transforming data from
one format to another format; for example, a flat file format can be
transformed into an XML format. Similarly, one transport protocol such
as HTTP can be transformed into another form, such as an MQ mes-
sage. This allows an application that can only communicate through
HTTP to talk to an application that can only communicate through MQ.
Participants need not know the location or identity of other participants.
For example, requesters don’t need to be aware that a request can be
serviced by any of several providers. Service providers can be added and

TABLE 9.2 Comparison of Various Point-to-Point Integration Approaches for CICS
Applications

Option/Aspect MQ Enabled MQ Bridge
CICS Web
Services Support

CICS Transaction
Gateway

Work required on
mainframe

Substantial Minimal Some Some

Guaranteed
delivery

Yes Yes Possible No

Real-time access Yes Yes Yes Yes

Synchronous/
asynchronous

Both Both Synchronous Synchronous

Additional
hardware

No No No Yes

Operating system
required

z/OS z/OS z/OS z/OS

Data type
centricity

None None XML XML

Cost High High Low Medium

Technology
constraints

z/OS z/OS, OTMA CICS V3.1 All CICS versions

Security Yes Yes Yes Yes

188 Chapter Nine

appropriate hub/hook in the ESB. For example, if you have enabled the
mainframe for MQ, you can connect it to an MQ hook. Alternatively, if
you have installed a SOAP Gateway, you can connect the mainframe
through the SOAP/HTTP hook.

Table 9.3 summarizes the advantages and disadvantages of ESB-
based integration compared to point-to-point integration.

Based on these benefits, if you decide that the use of an ESB for inte-
grating mainframe applications is the best choice for a given situation,
the next question to ask is which kind of ESB to deploy. In Chapter 8,
we discussed three different kinds of ESBs:

■ Application server based, such as WebSphere Enterprise Service Bus
(WESB)

■ Messaging system based, such as WebSphere Message Broker
(WMB)

■ Hardware-based integration devices, such as the WebSphere
DataPower devices from IBM

Each kind of ESB has its pros and cons. For mainframe integration,
usually only the first two kinds of ESBs are used. We discuss mainframe
integration based on these two types of ESBs next.

WebSphere ESB–Based Integration

IBM WebSphere ESB is a standards-based ESB based on the WebSphere
application server. It uses the JMS bus of the application server as a
messaging backbone. It is primarily meant to serve as a Web Services
environment. It provides Web Services–based connectivity and ser-
vices-oriented integration. The preferred data type is XML, and data
format transformation capability is mostly restricted to different forms
of XML. The preferred protocol is HTTP(S). Although this ESB can

TABLE 9.3 Advantages and Disadvantages of ESB-Based Integration Compared to
Point-to-Point Integration

Feature ESB-Based Integration Point-to-Point Integration

Coupling Loose coupling Tight coupling

Agility Agile More rigid

Extendibility Easily extended Less extendable

Reuse Excellent reuse Limited reuse

Integration scale Large-scale integration Small-scale integration

Scalability More scalable Less scalable

Initial work required More work upfront Less work upfront

Cost More costly Generally less costly

Integrating Mainframe Applications 191

Adapter inside a J2EE container, such as WebSphere Application Server,
to enable IMS applications to take part in a WESB-based integrated IT
environment.

WebSphere Message
Broker–Based Integration

The WESB-based integration just described is a good approach if the
following conditions are satisfied:

■ Applications that are to be integrated with the mainframe applica-
tions are Java, XML, and Web Services–based only.

■ There is no requirement for guaranteeing the delivery of the messages.

■ The transaction volumes are expected to be low.

However, if any of these three conditions are not satisfied, a more pow-
erful ESB is needed that can provide for integration of a more diverse
set of applications, guarantee the delivery of messages, and be able to
handle large transaction volumes.

WebSphere Message Broker (WMB) is an advanced ESB. It is based
on the WebSphere MQ MOM (message-oriented middleware). Quite
often this is the only standard way to guarantee delivery of messages.
Message Broker provides a very scalable, reliable, proven method for
mainframe integration. It is also flexible in terms of data type neutrality
and is capable of data transformation from any-to-any formats.

As an advanced ESB, WebSphere Message Broker also supports a
much wider variety of protocol transformation. You can use it to inte-
grate applications with a wide variety of application types, including
Java/J2EE, Web Services, C++, and mainframe legacy applications.
WebSphere Message Broker also provides data enrichment and media-
tion. It is more expensive than WebSphere ESB.

You can install WMB on numerous operating systems, including AIX,
HP-UX, Linux, zLinux, Solaris, various versions of Windows, and z/OS.
Data security is supported through the use of secure protocols (such as
SSL and HTTPS).

A sample scenario for integrating a mainframe application using
WebSphere Message Broker is shown in Figure 9.13. The example
shows that a CICS application is being integrated with a diverse set of
applications using WMB as an ESB. The CICS application was first MQ
enabled. Then a WebSphere MQ server is used to communicate with the
ESB and, through it, to the rest of the applications in the integrated
structure. The other option would have been to use an MQ bridge first,
which would have reduced the necessary programming changes on the

194 Chapter Nine

time to set up. On the other hand, WESB is much cheaper and is easy to
set up, but it has limited capabilities compared to WMB ESB.

Conclusion

In this chapter, we reviewed the various options available for integrat-
ing mainframe applications in a Service-Oriented Architecture. This
was made possible by first exposing the mainframe applications as
services, either as Web Services or MQ-based services.

We started the chapter by reviewing basic facts about the two major
types of mainframe applications. These two types of applications are IMS
applications and CICS applications. You learned that these two types
of applications constitute the backbone of the IT structure of almost all
major corporations and large organizations (including governments).
Therefore, it is imperative that methods be found to integrate these
mainframe applications in a Service-Oriented Architecture.

We first considered point-to-point integration of the mainframe with
other applications in an enterprise. In a point-to-point integration, each
distinct pair of applications involves a separate connection and integra-
tion scheme. For point-to-point integration of mainframe applications,
we focused on exposing the functionalities embedded in IMS applica-
tions and CICS applications as services of some kind. Sometimes it is
convenient to expose the functionalities embedded in these applications
as Web Services, while at other times it is more prudent to expose the
functionalities as messaging-based services.

For these two types of mainframe applications (IMS applications
and CICS application), you learned there are four different methods of
integrating in the point-to-point approach. Two of these four methods
expose the mainframe applications’ functionalities as services, which
are based on messaging software such as WebSphere MQ, whereas the
other two methods expose the mainframe applications’ functionalities
as Web Services. Although the Web Services provide the advantage of
being based on open standards, the services based on the messaging
system (MQ) generally provide a more scalable solution as well as guar-
antee delivery of messages between the service provider and service
consumer.

Of the two MQ-based methods of integrating IMS and CICS applica-
tions, one method, called MQ enablement, requires substantial changes
on the mainframe side. However, this method provides the most scalable
solution in terms of the volume of transactions. The second method,
using an MQ server, additionally employs an MQ bridge, which reduces
the need to change the mainframe applications substantially.

The remaining two methods for integrating IMS applications
involve IMS SOAP Gateway and IMS TM Resource Adapter. Both of

Integrating Mainframe Applications 195

these expose the IMS applications’ functionalities as Web Services.
The Web Services exposed through the IMS SOAP Gateway have tight
coupling with the existing functionality in the IMS application, and
they require a distributed platform to host SOAP Gateway, which can
limit the scalability of the solution in regard to the transaction volume.
In case of the IMS TM Resource Adapter, a distributed platform is also
required as well as a J2EE container such as WebSphere Application
Server. However, this latter approach offers loose coupling between
the exposed Web Services and the IMS applications, because the IMS
applications are exposed indirectly through the use of J2EE components
(also called service components) such as Enterprise Java Beans (EJBs).
The scalability is not a serious issue in this latter approach because
J2EE components are designed for high transaction volumes.

In the case of CICS applications, the remaining approaches are
directly exposing CICS applications as Web Services and indirectly
exposing them as Web Services using CICS Transaction Gateway and
Resource Adapter. The first approach can be applied only if a new ver-
sion (version 3.1 and higher) of CICS Transaction Server is in use on the
mainframe. In this first approach, there is tight coupling between the
CICS applications’ functionalities and the exposed services. If you are
using an older version of CICS Transaction Server on the mainframe,
the second approach of indirectly exposing the CICS applications as Web
Services must be employed. This approach has the advantage that there
is loose coupling between the exposed services and the functionalities
embedded in the CICS applications. This loose coupling is the result of
using J2EE components (such as EJBs) as the front end for exposing
the CICS applications as Web Services.

These point-to-point approaches for integrating mainframe applica-
tions are suitable if the mainframe application is being integrated with
one or two other, more modern applications, such as a Java/J2EE appli-
cation. If the number of applications is larger, an Enterprise Service
Bus–based integration approach of indirectly connecting the applications
to the mainframe application should be employed. The use of an ESB for
integration purposes greatly reduces the number of connections required
and provides loose coupling between the applications. Individual appli-
cations can be added or removed easily from the integrated structure
without affecting other applications in the structure.

In this chapter, we described various approaches that employ ESB for
integrating mainframe applications with other, more modern applica-
tions. These approaches are based on two major types of ESBs. The first
type is based on the application server. IBM’s WebSphere Enterprise
Service Bus (ESB), which is based on WebSphere Application Server
(WAS), is an example of such an ESB. These ESBs primarily cater to
Web Services, XML, and J2EE-centric applications. In order to use

196 Chapter Nine

such an ESB for integrating mainframe applications, the mainframe
applications typically have to be exposed as Web Services first using
one of the point-to-point techniques described earlier.

The second type of ESB is based on the messaging software. The
prime example of such an ESB is the IBM WebSphere Message Broker
(WMB), which is based on the WebSphere MQ messaging software from
IBM. This type of ESB is much more scalable in terms of transaction
volume. Also, a more diverse set of applications can be integrated with
the mainframe applications via these ESBs. These ESBs can also be
used to guarantee delivery of messages between the service consumer
and service provider. In order to use this kind of ESB, it is necessary
to expose the mainframe application first, either as a Web Service or a
messaging-based service using one of the methods described earlier for
point-to-point integration.

197

 Chapter

 10
Integrating Package Applications

In addition to mainframe applications, which form the backbone of IT
systems of large enterprises, the IT system of a large organization typi-
cally has a number of package applications. Examples of such package
applications include Customer Relationship Management (CRM) appli-
cations and Enterprise Resource Planning (ERP) applications. SAP,
PeopleSoft, Oracle, and JD Edwards are some of the software suppliers
for these types of applications. Some of the advantages of these package
applications for large organizations include risk reduction, introduc-
tion of best practices and processes, speed of implementation, and more
accurate estimation of the cost of the software. Frequently these pack-
age applications are also referred to as Enterprise Information Systems
(EISs). For such large organizations it is also important to integrate
these package applications with the other applications in the IT systems
in order to provide a consistent and unified view of data and functional-
ity to both the internal and external customers.

Most, if not all, of the schemes for integrating these package appli-
cations rely on the use of adapters. Adapters are simply software
components or subsystems that allow package applications to talk to
other applications using the interfaces provided by the package appli-
cations. Modern ways of integrating these applications use adapters
in conjunction with a J2EE application server to connect the EIS with
the modern applications. Alternatively, the adapters can be used with
an Enterprise Service Bus (ESB) to integrate the EIS with a wider
variety of applications. (Many times in this chapter we will refer to
application servers and Enterprise Service Buses as brokers because
these application servers and ESBs can mediate between different
applications.) In addition, sometimes the EIS supplier provides an
infrastructure to expose some of the functionality and data embed-
ded in the EIS application as Web Services. For example, such is

Integrating Package Applications 199

The remaining sections of the chapter are organized as follows: First,
we describe the adapter and integration of package applications in gen-
eral. J2EE Connector Architecture (JCA) is discussed next. Compliance
with JCA reduces the number of adapters needed for a given package
application by a large factor. Following this we illustrate the use of
adapters by considering a specific package, namely SAP applications.
We describe the SAP system and the various interfaces exposed by the
SAP system, and then we describe the WebSphere adapter for the SAP
system. Finally, integrating package applications by exposing their func-
tionality as Web Services is briefly discussed.

Adapters

In general, an EIS adapter is specific to an EIS and an integration
point (broker), such as a specific application server or a specific ESB.
Examples of application servers include WebSphere Application Server
(WAS) and JBoss Application Server. Examples of an ESB include
WebSphere Enterprise Service Bus (WESB) and WebSphere Message
Broker. Examples of an EIS include SAP’s ERP and CRM applications.
Therefore, in general, each combination of an EIS and the integration
point (broker) requires a separate adapter.

An EIS-specific adapter contains two outlets (that is, interfaces), as
shown in Figure 10.3: one interfacing with the respective EIS and one
interfacing with the integration broker. The outlet to the EIS under-
stands its given application interface. The outlet to the integration
broker supports the interface of the integration broker. In this way, the
adapter is an abstraction layer and shields the integration broker from
the peculiarities of an EIS. The integration broker must understand
only one protocol and one data format when communicating with the
adapters.

Figure 10.3 Two faces of an adapter

Package
Application

(EIS)

EIS
Specific
Outlet

TRANSFORM
Broker

Specific
Outlet

Broker
(Appl.

Server/
ESB)

Adapter

202 Chapter Ten

This is illustrated in Figure 10.8, which shows that the same adapter
can be used with any of the three brands of application server (namely,
WebSphere Application Server, JBoss Application Server, and WebLogic
Application Server), in contrast to the situation shown in Figure 10.7,
where three different adapters are needed.

Multiple resource adapters (that is, one resource adapter per type of
EIS) can be plugged into an application server. This capability enables
application components deployed on the application server to access a
number of the underlying EISs.

To achieve a standard system-level pluggability between application
servers and EISs, the JCA defines a standard set of system-level contracts
between an application server and the EIS. The adapter implements the
EIS side of these system-level contracts. The adapter usually runs in the
address space of the application server.

An adapter is a system-level software driver used by an application
server or an application client to connect to an EIS. By plugging into an
application server, the adapter collaborates with the server to provide
the underlying mechanisms, the transactions, security, and connection-
pooling mechanisms.

JCA defines three system-level contracts between the application
server and the EIS: one for outbound connectivity, one for inbound con-
nectivity, and one for life cycle and thread management. We first discuss
the JCA-defined system-level contract for outbound connectivity.

Figure 10.7 Integration of a package application without the use of JCA. Note three
different adapters are needed, one for each brand of application server.

Package
Application
(e.g. SAP)

Package
Application
(e.g. SAP)

Package
Application
(e.g. SAP)

WebSphere
Application

Server

JBoss
Application

Server

WebLogic
Application

Server

Adapter 1

Adapter 2

Adapter 3

Integrating Package Applications 203

JCA’s Contract for Outbound Connectivity

The J2EE Connector Architecture defines the following system-level
contracts between the EIS and the application server:

■ Connection management contract This type of contract lets
an application server pool connections to an underlying EIS, and
lets application components connect to an EIS. This leads to a scalable
application environment that can support a large number of clients
requiring access to EISs.

■ Transaction management contract This is a contract between
the transaction manager and an EIS that supports transactional
access to EIS resource managers. This contract lets an application
server use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions
that are managed internally to an EIS resource manager without the
need to involve an external transaction manager.

■ Security contract This type of contract enables secure access to an
EIS. This contract provides support for a secure application environ-
ment, which reduces security threats to the EIS and protects valuable
information resources managed by the EIS.

Figure 10.8 Integration of a package application with the use of JCA. Note that only
one adapter is needed, which can be used with any number of brands of application
servers.

Package
Application
(e.g. SAP)

Package
Application
(e.g. SAP)

Package
Application
(e.g. SAP)

WebSphere
Application

Server

JBoss
Application

Server

WebLogic
Application

Server

Adapter 1

Adapter 1

Adapter 1

204 Chapter Ten

JCA’s Contract for Inbound Connectivity

JCA also defines the following system-level contracts for inbound con-
nectivity (with respect to the application server) between the EIS and
the application server:

■ Transaction inflow contract This type of contract allows a
resource adapter to propagate an imported transaction to an appli-
cation server. This contract also allows a resource adapter to flow in
transaction-completion and crash-recovery calls initiated by an EIS,
and ensures that the ACID properties of the imported transaction are
preserved.

■ Message inflow contract This type of contract allows a resource
adapter to asynchronously deliver messages to message end points
residing in the application server independent of the specific mes-
saging style, messaging semantics, and messaging infrastructure
used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of
message providers—Java Message Service (JMS), Java API for XML
Messaging (JAXM), and so on—to be plugged into any J2EE technology–
compatible application server via a resource adapter.

JCA’s Life Cycle and Thread
Management Contract

The following system-level contracts defined by JCA relate to the adapter’s
life cycle management and thread management:

■ Life cycle management contract This type of contract allows
an application server to manage the life cycle of an adapter. This
contract provides a mechanism for the application server to boot-
strap an adapter instance during its deployment or application server
startup, and to notify the adapter instance during its “undeployment”
or during an orderly shutdown of the application server.

■ Work management contract This type of contract allows an
adapter to do work (monitor network end points, call application
components, and so on) by submitting work instances to an applica-
tion server for execution. The application server dispatches threads
to execute submitted work instances. This allows an adapter to avoid
creating or managing threads directly, provides a mechanism for an
adapter to do its work, and allows an application server to efficiently
pool threads and have more control over its runtime environment.
The adapter can control the security context and transaction context
with which work instances are executed.

Integrating Package Applications 205

In the next two sections, we consider the WebSphere brand adapter
for integrating a specific package application. WebSphere adapt-
ers are available for a wide range of package applications. Because
these adapters are JCA compliant, they can be used to integrate
with any brand of application server or enterprise bus. We start with
a brief introduction to SAP and the various interfaces that can be
used for integration. Then we cover the WebSphere adapter for SAP
integration.

Introduction to SAP and Its Interfaces

SAP implements a three-tier architecture that includes a back-end
database, which can be a database from any of the major database soft-
ware suppliers. The middle tier consists of application server instances.
These instances distribute the workload. The front end uses a specific
fat client SAP graphical user interface (SAPGUI) to access the back-
end system. The more recent SAP releases also support web browsers
as a front end.

Earlier releases of SAP business applications were packaged in mod-
ules, which were written in Advanced Business Application Programming
(ABAP) and ran on the SAP application server. More recent releases, such
mySAP.com, have extended support for additional Internet technologies.
The new SAP Web Application Server includes the full functionality of
a J2EE application server. The new SAP NetWeaver is the current tech-
nology platform that supports business applications on both technology
stacks: ABAP and Java.

SAP applications integration must support the various releases
of SAP enterprise engine as well as various interfaces, including the
following:

■ Application Link Enabling (ALE) and Intermediate Documents
(IDocs)

■ Remote Function Call (RFC)

■ Business Application Programming Interface (BAPI)

■ Batch Data Communications (BDC)

■ Electronic Data Interface (EDI)

■ Web Services (SAP Web Application Server 6.20 and later)

Note that the BDC and EDI interfaces are beyond the scope of this
chapter, and the last option exposes only some of the functionality as
Web Services. We will not elaborate on this interface because its use is
straightforward.

206 Chapter Ten

ALE and IDocs

ALE is used to integrate business processes between different SAP and
non-SAP back-end systems. It allows controlled data exchange between
and SAP and non-SAP applications. IDocs are used by ALE to pass
data in and out of the SAP applications. IDocs contain information in
a predefined format (structured ASCII) and may be understood as the
serialized form of business data objects. Asynchronous communication
is used by ALE.

RFCs

RFCs are SAP-specific remote procedure calls that are used to com-
municate among distributed SAP modules. ABAP function modules can
be declared as remote enabled and made accessible to an RFC client
remotely. The SAP system can act as an RFC server or as an RFC client.
RFCs represent a synchronous communication style.

WebSphere Adapter for SAP Software

WebSphere Adapter for SAP Software provides a comprehensive way
to interact with SAP software by allowing multiple ways to work
with applications and data on the SAP server. This adapter sup-
ports both outbound processing (from application to adapter to SAP
server) and inbound processing (from SAP server to adapter to the
application). In the case of outbound processing, all CRUD (create,
retrieve, update, delete) operations on the data on the SAP server are
supported. In the case of inbound processing, an event that occurs
on the SAP server is sent to the adapter. The ALE Inbound and
Synchronous Callback interfaces start event listeners that detect the
events. Conversely, the Advanced Event Processing interface polls
the SAP server for events. The adapter then delivers the event to
an end point, which is an application or other consumer of the event
from the SAP server.

Figure 10.9 shows an overview of the outbound processing interfaces.
Here is a summary description of these interfaces:

■ BAPI interfaces Through its BAPI interfaces, the adapter issues
remote function calls (RFCs) to RFC-enabled functions, such as
a Business Application Programming Interface (BAPI) function.
These remote function calls create, update, or retrieve data on an
SAP server and return the results to the calling application. BAPI
calls are useful when you need to perform data retrieval or manipu-
lation and a BAPI or RFC function that performs the task already
exists.

Integrating Package Applications 209

the event data, and event recovery is provided to track and recover
events in case of abrupt termination.

■ Advanced Event Processing interface In this case, the adapter
polls the SAP server for events. When it discovers events to be pro-
cessed, it sends the events to the end point (application/component).

Exposure as Web Services

As mentioned previously, some of the package applications (EISs)
directly expose some of their functionality and data as Web Services. For
example, SAP directly exposes some of its functionality as Web Services.
Any external application that has a network connection can use such
functionality, thus providing another integration method for these
package applications.

However, many times this direct exposure is not enough because the
functionality needed by a consumer application may not be wholly con-
tained in a single package application. In addition, because only some
of the functionality of a given package application is exposed directly
as Web Services, there is sometimes still a need to expose the remain-
ing functionality as Web Services. The method described previously in
this chapter that employs adapters to integrate the package application
with modern applications (particularly Java/J2EE applications) comes
in handy. This is because once the functionality and data contained in
the package applications have been integrated with J2EE components,
it is easy to expose these components as Web Services. The methods to
expose J2EE components as Web Services is discussed in some detail
in Chapter 15; therefore, refer to Chapter 15 for further information on
this subject. Exposing a package application as Web Services using this
indirect method is shown schematically in Figure 10.11.

Conclusion

In this chapter, we described the integration of package applications,
which are sometimes referred to as Enterprise Information Systems
(EISs), with other application types in the enterprise. We focused on the
use of adapters, which can be used along with brokers (application serv-
ers or ESBs) to integrate these types of applications. We started out with
a general description of the adapters and then we described the J2EE
Connector Architecture (JCA), which reduces the number of different
adapters needed for a given package application. Compliance of both
the broker and the adapter with JCA specifications greatly simplifies
the integration of package application.

Next, we demonstrated the use of adapters for integration by consid-
ering a specific package application system, namely SAP. For this we

Part

 5
Understanding
and Developing
Web Services

213

 Chapter

 11
XML

XML is probably the most important pillar of Web Services. XML docu-
ments are often used as a means for passing information between the
service provider and service consumer. XML also forms the basis for
WSDL (Web Services Description Language), which is used to declare
the interface that a Web Service exposes to the consumer of the ser-
vice. Additionally, XML underlies the SOAP protocol for accessing a
Web Service. Lastly, UDDI (Universal Description, Discovery, and
Integration), which is used to publish and discover a Web Service, is
also based on XML.

Web Services often pass information using XML documents. Therefore,
the applications that implement Web Services or the applications that
act as the consumer of Web Services must be able to interpret the infor-
mation contained in an XML document. In addition, these applications
must be able to extract and process the information contained in an
XML document. Furthermore, they must be able to assemble XML docu-
ments from the results of this business processing.

In this chapter, we describe the concepts and techniques for the use
of XML that are important in implementing Web Services and their
clients. We start with an overview of the XML language. This overview
includes the basic concepts as well as a description of the basic struc-
ture of an XML document. Next, we discuss the concept of namespaces,
which is used to avoid the collision of names in different spaces and
to extend the use of the vocabulary defined in one specific domain to
other domains. Schemas, which define the structure and grammar for a
particular type of XML document, are discussed following namespaces.
Finally, we discuss the various models you can use for parsing, process-
ing, creating, and editing an XML document.

XML 215

This figure shows that a basic XML document consists of a top ele-
ment. Note that there can only be one top element in a valid XML
document. This top element may consist of data (the payload), an
attribute, and any number of other elements in a recursive manner.
A sample portion of a simple XML document is shown in Listing 11-2.
This document contains a top element named “address,” which has a
single attribute used to specify the country. This top element has also five
child elements, which provide information on the name of the person, the
street address, the city, and the postal code. Each of these child elements
has data (that is, a payload) contained in them. For example, the data
for the name element is “John Smith.”

Listing 11-2

Listing 11.2: Basic XML document structure
1 <address country="USA">
2 <name>John Smith</name>
3 <street>43 Walcut St</street>
4 <city>Dublin</city>
5 <state>Ohio</state>
6 <postal-code>45561</postal-code>
7 </address>

XML Namespaces

The namespace is an important concept in XML, and we will employ this
feature as a technique to increase reuse across multiple WSDL docu-
ments and across the enterprise and beyond. Therefore, we’ll describe
this concept and discuss how this concept is implemented.

An XML namespace comprises a collection of element type names and
attribute names. A namespace is identified by a URI reference. As an
example, consider the three different namespaces shown in Figure 11.3.

Document

Element

Data Attribute

1

n

1 n

Figure 11.2 The general structure of an XML document

216 Chapter Eleven

The element’s name and the address of the namespace (http:/myCompany
.com/hr/employees) refer to the names and addresses of the employees
of the company (myCompany). The identical element type name of the
namespace http:.//mCompany.com/sales/orders holds the name for the
supplier for myCompany. Finally, myCompany’s tennis club manage-
ment also decides to store their member data in XML format with the
element types of name and address.

A namespace is declared through the reserved namespace attribute
xmlns or through an attribute that is prefixed with “xmlns:” and followed
by a name without a colon. The namespace attribute can be provided in
any element of an XML document. The value of the namespace attribute
is the namespace name (that is, the URI reference). An example of a
namespace prefix declaration is shown here:

<address xmlns:myC="http://myCompany.com/hr/employees">

Now we can use the prefix to qualify any name of the element. A more
complete example of the use of the prefix is shown in Listing 11-3.

Listing 11-3

Listing 11.3: Example of the use of a namespace prefix
1 <myC:address xmlns:myC="http://myCompany.com/hr/employees">
2 <myC:name>John Smith</myC:name>
3 <myC:street>43 Walcut St</myC:street>
4 <myC:city>Dublin</myC:city>

<employee-id>,
<department-number>,

<name>, <address>

http:/myCompany.com/hr/employees

<order>, <order-number>,
<order-date>, <name>,

<address>

http:.//myCompany.com/sales/orders

<member>, <member-id>,
<member-since>, <name>,

<address>

http;//theClub.com/members

Figure 11.3 Namespaces

218 Chapter Eleven

a schema definition is http://www.w3.org/2001/XMLSchema, which
is linked to the prefix xsd. Note that this namespace prefix is con-
ventionally used to denote XML schema definitions. In principle, any
other prefix could be used as well. The following shows the top element
named schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 .
 .
 .
 </xsd:schema>

The schema element can contain several subordinate element types,
such as the following:

■ element

■ attribute

■ simpleType

■ complexType

■ include

■ import

The relationship to the top schema element is shown in Figure 11.5.
Here’s a brief description of these subelements of the top element
schema:

■ element This subelement declares an element used in an XML
instance. A declaration includes the name and type.

■ attribute This subelement declares an attribute used in an XML
instance. A declaration includes the name and type.

■ simpleType This subelement defines a simple type. A simple type
in an XML schema is a built-in type, a list of simple types, a union of
simple types, or a restriction of a simple type.

Schema

element attribute simpleType complexType

Figure 11.5 Basic elements of an XML schema

220 Chapter Eleven

Listing 11-5

Listing 11.5: An example of a complexType
1 <xsd:complexType name="nameType">
2 <xsd:sequence>
3 <xsd:element name="title" type="xsd:string">
4 <xsd:element name="firstName" type="xsd:string">
5 <xsd:element name="middleName" type="xsd:string">
6 <xsd:element name="lastName" type="xsd:string">
7 </xsd:sequence>
8 </xsd:complexType>

A complete sample schema is shown in Listing 11-6.

Listing 11-6

Listing 11.6: An example of a complete schema
1 <?xml version="1.0" encoding="UTF-8">
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://simple.example.com/CInfoXmlDoc"
4 xmlns="http://simple.example.com/CInfoXmlDoc
5 elementFormDefault="qualified"
6 <xsd:complexType>
7 <xsd:sequence>
8 <xsd:element name="Name" type="xsd:string/>
9 <xsd:element name="Address">
10 <xsd:complexType>
11 <xsd:sequence>
12 <xsd:element name="Street"
13 type="xsd:string"/>
14 <xsd:element name="City"
15 type="xsd:string" />
16 <xsd:element name="State"
17 type="xsd:string" />
18 <xsd:element name="Country"
19 type="xsd:string" />
20 </xsd:sequence>
21 </xsd:complexType>
22 </xsd:element>
23 <xsd:element name="HomePhone" type="xsd:
string" />
24 <xsd:element name="Email" type="xsd:string" />
25 </xsd:sequence>
26 </xsd:complexType>
27 </xsd:schema>

A sample XML instance that conforms to this schema is given in
Listing 11-7.

XML 221

Listing 11-7

Listing 11.7: An example XML instance document that conforms to
schema in Listing 10.6
1 <?xml version='1.0' encoding='UTF-8'?>
2 <ContactInformation
3 xmlns='http://simple.example.com/CInfoXmlDoc'
4 xmlns:xsi:'http://www.w3.org/2001/XMLSchema-instance'
5 xsi:schemaLocation='http://simple.example.com/
CinfoXmlDoc
6 file:./CInfoXmlDoc.xsd'>
7 <Name>John Smith</Name>
8 <Address>
9 <Street>45 Walcut St</Street>
10 <City>Dublin</City>
11 <State>Ohio</State>
12 <Country>USA</Country>
13 </Address>
14 <HomePhone>9891234567</HomePhone>
15 <Email>xyz@abc.com</Email>
16 </ContactInformation>

XML Processing/Parsing Models

A common way for Web Services interaction to the exchange of data
between the service provider and service consumer application is
through XML instance documents. A number of processing models are
available for the applications to use when dealing with the informa-
tion contained in an XML document instance. In the case of Java/J2EE
applications, five choices are available for XML processing models:

■ SAX The Simple API for XML is an event-driven parsing/program-
ming model.

■ StAX The Streaming API for XML provides a pull, event-based pars-
ing/programming model.

■ DOM The Document Object Model provides an in-memory tree-
transversal programming model.

■ XML data-binding Provides an in-memory Java content class-
bound programming model.

■ XSLT Extensible Stylesheet Language Transformation provides a
template-based programming model.

The most common processing models have been SAX and DOM, but
StAX is quickly catching up. These three methods, along with XSLT, are

222 Chapter Eleven

available through the JAXP APIs (Java APIs for XML Processing). The
XML data binding is available through JAXB technology.

The processing of an XML instance document includes two distinct
tasks. Processing not only includes parsing a source XML document
so that the content is made available to the application for processing,
but it also includes writing or producing an XML document from the
content generated by an application. Parsing an XML document into
an equivalent data structure so that it can be employed by an appli-
cation is often called deserialization or unmarshalling. In a similar
manner, writing a data structure into an equivalent XML document
representation is often called serialization or marshalling. Some pro-
cessing models include both types of processing. An example of such
processing models is DOM. On the other hand, some processing models
support only one category of processing. An example of such a process-
ing model is SAX.

Next, we briefly describe each of these processing models.

SAX Processing Model

SAX is an event-driven model in which you have to implement event
handlers to manage events generated by the parser when it encounters
the various tokens of the XML language. Because a SAX parser gen-
erates a transient flow of events, it is advisable to process the source
document in the following manner: First, intercept the relevant type
of events generated by the parser. You can use the information passed
as parameters of the events to help identify the relevant information
that needs to be extracted from the source XML document. Once this is
extracted from the XML document, the application logic can be applied
to the information obtained.

In a typical scenario, an application may have to maintain some context
so that it can logically aggregate information from the flow of events. Such
aggregation is typically done before any business logic is applied. There
are two ways of applying business logic when using SAX parsing:

■ The business logic is invoked as soon as the information is extracted or
after minimal aggregation. This approach is referred to as stream pro-
cessing. In this approach, the document can be processed in one step.

■ In the second approach, the application invokes the business logic
after it completes parsing the document and has completed consoli-
dating the extracted information. This approach involves two steps
to complete the processing of an XML document.

In many cases, the consolidated information may in fact be domain-
specific objects, which can be passed directly to the business logic. There
are pros and cons to both of these approaches, as we discuss next.

XML 223

The greatest advantage of the first approach (stream processing) is
that it lets an application immediately start processing the content of
the source document. In some configurations, the application does not
even have to wait for the entire document to be retrieved. This includes
retrieving the document from an earlier processing stage when imple-
menting pipelines, or even retrieving the document from the network
when exchanging documents between applications.

However, some disadvantages and issues are associated with stream
processing. For example, a document may appear to be well formed
and even valid for most processing. However, there may be unexpected
errors by the end of the document that cause the document to be broken
or invalid. An application using the stream processing notices these
problems only when it comes across erroneous tokens or when it cannot
resolve an entity reference. In other cases, the application might real-
ize the document is broken if the input stream from which it is reading
the document unexpectedly closes, as with the end-of-file exception.
Therefore, an application that wants to implement a stream processing
model may have to perform the document parsing and the application’s
business logic within the context of a transaction.

With the second approach, parsing the document and applying busi-
ness logic are performed in two steps. Before invoking its business logic,
the application first ensures that the document and the information
extracted from the document are valid. Once the document data is vali-
dated, the application invokes the business logic, which may be executed
within a transaction if needed.

One of the disadvantages of the SAX processing model is that it pro-
vides no facility to produce XML documents. However, it is still pos-
sible to generate an XML document by initiating a properly balanced
sequence of events (method calls) on a custom serialization handler. The
handler intercepts the events and, using an XSLT identity transforma-
tion operation, writes the events in the corresponding XML syntax. The
difficulty lies in generating a proper sequence of events. Furthermore,
that generated sequence of events is prone to error and should be con-
sidered only for performance reasons.

To summarize, consider using SAX processing model when

■ the XML document may potentially be very large and memory usage
is an issue.

■ your applications only consume documents without making any struc-
tural modifications and there is no need to generate XML documents.

■ the document needs only be processed once.

■ you want to implement stream processing, which is well suited for
very large documents.

226 Chapter Eleven

In addition to these advantages for parsing by StAX, StAX offers full
support for marshalling the infoset into an XML document. Recall that
SAX does not offer such a facility, at least one that can be used easily.

Another advantage that StAX has is that StAX-enabled clients are
generally easier to code than SAX clients. Although it can be argued
that SAX parsers are marginally easier to write, StAX parser code can
be smaller and the code necessary for the client to interact with the
parser simpler.

In summary, you should use the StAX processing model when any of
the following apply:

■ You are dealing with very large documents and memory usage is
an issue.

■ You are familiar with event-based programming.

■ The document must be processed only once.

■ There is need for marshalling and unmarshalling XML documents.

■ You want high performance.

DOM Processing Model

In the DOM processing model, the parser casts the XML document into
a tree-like data structure (see Figure 11.9). You write code to traverse
the tree. Most commonly, processing the XML input data involves two
steps:

1. The DOM parser generates a tree-like data structure that models
the XML source document. This structure is called a DOM tree.

2. The application searches for the relevant information in the tree and
extracts, consolidates, and processes it further. Then the application
can create domain-specific objects from the consolidated data. The
cycle for searching, extracting, and processing can be repeated as
many times as is needed because the DOM tree persists in memory.

There are some limitations to the use of the DOM processing model.
The DOM model was designed to be a platform- and language-indepen-
dent interface. Because of this, the Java binding of the DOM API is not
particularly Java friendly. For example, the binding does not use the
java.util.Collection API. However, in general, it is slightly easier to use
than the SAX model.

A great advantage of the DOM parser is that most implementations
of this parser allow both marshalling and unmarshalling of the XML
document. In addition, XSLT identity transformation can be used to
achieve serialization back to the XML document.

230 Chapter Eleven

■ You need random access to parts of the document.

■ Memory usage may be less of an issue. It should be noted, though,
that a JAXB implementation, such as the standard implementation,
creates a Java representation of the content of a document that is
much more compact than the equivalent DOM tree.

■ You previously were implementing XML data binding manually with
DOM, and an XSD schema is available.

XSLT Processing Model

XSLT is a higher level processing model than the SAX, StAX, DOM,
and XML data-binding models. XSLT should be considered comple-
mentary to these models, and should be used along with these other
models. XSLT requires writing of rules and templates that are applied
when specified patterns are encountered in the source document. The
application of the rules adds new fragments or copies fragments from
the source tree to a result tree. The patterns are expressed in the XPath
language, which is used to locate and extract information from the
source document.

When using XSLT, one typically writes style sheets, which are
themselves XML documents. Compared to the other processing models,
XSLT processing provides the flexibility that comes with scripting. In
an XML-based application, XSLT processing is usually used along with
one of the other three processing models. The XSLT API available with
JAXP provides an abstract for the source and result of a transformation,
allowing the developer not only the ability to chain transformations
but also to interface with other processing models, such as SAX and
DOM. Figure 11.13 summarizes the steps necessary to use XSLT in
conjunction with DOM to create a new XML document from an existing
one using XSLT transformations.

In summary, XSLT should be used under the following conditions:

■ You want to change the structure or insert, remove, or filter the con-
tent of an XML document.

■ You need to perform complex transformations. Because XSLT is a
functional declarative model, it is easier to design complex transfor-
mations by coding individual rules or templates than by hard-coding
procedures.

■ You want the ability to be flexible and allow future changes in the
schemas of documents you are processing.

■ You need to minimize performance overhead for large documents that
contain a significant amount of data.

232 Chapter Eleven

Table 11.1 summarizes some of the features of the three most popular
XML processing models.

Conclusion

In this chapter, we discussed the basic structure and concepts of XML
instance documents. It is important to understand these structure and
concepts because XML forms the basis of WSDL, SOAP, and UDDI.
Some of the concepts we touched upon are XSD schemas (which describe
the structure and grammar of a particular type of XML instance docu-
ment) and namespaces. Namespaces are used to avoid the collision of
names in different business domains and to extend a tag’s name vocabu-
lary across different domains. Within the context of namespaces, we
discussed the use of include and import elements, which allow us to
include the definition of a set of tags defined in another schema.

A very important practical side of XML use in Web Services is the
exchange of data between service provider and service consumer
through the use of XML instance documents. In this context, both the
service provider application and the service consumer application must
be able to parse, process, edit, and create XML instance documents. A
large part of this chapter was devoted to describing the various pro-
cessing/parsing models available to the developer of Web Services. The
various parsing/processing models we discussed include SAX, StAX,
DOM, XML data-binding model (JAXB), and XSLT transformations.
We also discussed the conditions under which each of these models
should be employed.

In the next chapter you will begin to see direct application of XML.
You learn about SOAP, which is one of the four standards that constitute
Web Services. SOAP is based on XML and it defines a common mes-
sage format for exchanging messages between the service provider and
service consumer.

TABLE 11.1 Summary of Recommendations

StAX SAX DOM

API type Pull streaming Push streaming In-memory tree

Ease of use High Medium High

Memory usage Good Good Varies

XPath capability No No Yes

Forward only Yes Yes No

Write XML Yes No Yes

Create, update, delete No No Yes

233

 Chapter

 12
SOAP

Simple Object Access Protocol (SOAP) is an XML-based messaging
specification. It describes a message format and a set of serialization
rules for data types, including structured types and arrays. This XML-
based information can be used for exchanging structured and typed
information between peers in a decentralized, distributed environment.
In addition, SOAP describes the ways in which SOAP messages may be
transported to realize various usage scenarios. In particular, it describes
how to use Hypertext Transfer Protocol (HTTP) as a transport for such
messages. SOAP messages are essentially service requests sent to some
end point on a network. The end point may be implemented in a number
of different ways, including an RPC server, a Java servlet, a Component
Object Model (COM) object, and a Perl script, which may be running
on any platform.

A SOAP message is fundamentally a one-way transmission between
SOAP nodes, from a SOAP sender to a SOAP receiver. In other words,
a SOAP message may pass through a number of intermediaries as it
travels from the initial sender to the ultimate recipient.

SOAP Messages

The basic structure of a SOAP message is depicted in Figure 12.1.
The top element of a SOAP message is the Envelope element, with an
optional Header element and a mandatory Body element as the children
elements. If a Header element exists, it must be the first child of the
Envelope element. The Envelope element identifies the XML document
as being a SOAP message and therefore must be the root element of
the message. The Body element contains the actual data (payload) to
be transmitted. The Header element is an extension hook that can be
used to extend SOAP in arbitrary ways. Envelope and its two children

SOAP 235

18 <p:departure>

19 <p:departing>Boston</p:departing>

20 <p:arriving>Dallas</p:arriving>

21 <p:departureDate>2001-12-14</p:departureDate>

22 <p:departureTime>Early Morning</p:departureTime>

23 <p:seatPreference>Window</p:seatPreference>

24 </p:departure>

25 <p:return>

26 <p:departing>Dallas</p:departing>

27 <p:arriving>Boston</p:arriving>

28 <p:departureDate>2001-12-20</p:departureDate>

29 <p:departureTime>mid-morning</p:departureTime>

30 <p:seatPreference/>

31 </p:return>

32 </p:itinerary>

33 </env:Body>

34 </env:Envelope>

This listing provides a SOAP message requesting a return ticket
reservation from an airline for a passenger traveling from Boston to
Dallas. The SOAP message starts (line 1) with a declaration that it is
an XML document. This SOAP message contains both a Header ele-
ment and a Body element. As mentioned before, Header is optional
but Body is mandatory. In this example, Header (lines 3–14) has two
blocks, each of which uses its own namespace, corresponding to the
reservation and passenger tags, respectively. These two blocks carry
two pieces of information. One is the date of the transaction, and the
other is the name of the passenger. How these pieces of information are
used will become clear later in this section. The SOAP Body element
(lines 15–33) in this example has only one subelement. This subelement
has the tag itinerary. The structure in this subelement carries the
request information both for the out-bound flight and the in-bound
flight. The Header element and the Body element are contained within
the top element (Envelope), which is defined in the namespace http://
www.w3.org/2003/05/soap-envelope.

We discuss the four important elements encountered in a SOAP mes-
sage in the next section. Then we discuss some of the attributes and the
related processing model. This is followed by a discussion of the vari-
ous SOAP message-exchange types and then a discussion of the SOAP
HTTP bindings.

SOAP Elements

SOAP defines four important elements in the namespace http://schemas
.xmlsoap.org/soap/envelope/. The three elements—Envelope, Header,
and Body–have been mentioned before. The fourth element is Fault.

236 Chapter Twelve

This section describes these elements, starting with the top element,
Envelope.

Envelope

Envelope is the root element of all SOAP messages and identifies
the XML document as a SOAP message. It is defined in the following
manner:

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/
envelope/'>
 <!—the header and body elements go here -->
</env:Envelope>

The Envelope element has two child elements: An optional Header
element and a mandatory Body element. Both of the child elements are
defined in the namespace http://schemas.xmlsoap.org/soap/envelope/.
The Header element, if present, must precede the Body element.

Header

The Header element, if present, must be the first child of the root ele-
ment Envelope. It is defined in the following manner:

<env:header xmlns:env='http://schemas.xmlsoap.org/soap/
envelope/'>
 <!—extensions go here -->
</env:header>

A SOAP header is an extension mechanism that provides a way to
pass information in SOAP messages that is not part of the application
payload. Such “control” information includes, for example, passing direc-
tives or contextual information related to the processing of the message.
This allows a SOAP message to be extended in an application-specific
manner. The immediate child elements of the Header element are called
header blocks, and they represent a logical grouping of data that can be
targeted individually at SOAP nodes encountered along the message’s
path from the sender to the ultimate receiver.

It is important to note that the SOAP specification defines no exten-
sions of its own, but user-defined extension services such as transaction
support, authentication, digital signatures, locale information, and so
on, could be implemented by placing this information inside the Header
element. Header blocks can have the attributes mustUnderstand and
actor. These attributes are described later in this chapter.

A Header element can have any number of child elements that are
not in the namespace 'http://schemas.xmlsoap.org/soap/envelope/'. In
Listing 12-1, there are two child elements: passenger and reservation.

SOAP 237

Body

The Body element is the mandatory child of the SOAP Envelope ele-
ment. If the Header element is present, the Body element must follow
it; otherwise, it is the first child of the Envelope element. It is defined
in the following manner:

<env:Body xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
 <!-- message payload goes here -->
</env:Body>

This element carries the payload of the message. The payload is for
the exchange of information between the initial SOAP sender and the
SOAP node that assumes the role of the ultimate SOAP receiver in the
message path. The message payload is typically a request to perform
some form of service and, optionally, to return some result. In the case of
a response message, the payload is typically the result of some previous
request or a fault (that is, error).

The Body element can have any number of child elements, but each
must be qualified with a namespace, and the namespace must not be
'http://schemas.xmlsoap.org/soap/envelope/'. However, if a fault does
occur, it could be a Fault element in the namespace 'http://schemas
.xmlsoap.org/soap/envelope/'. This Fault element is described next.

Fault

The Fault element is the direct child of the Body element, and it indi-
cates an error condition has occurred while processing the message. This
typically occurs in a response message. The Fault element is defined in
the following manner:

<env:Fault xmlns:env='http://schemas.xmlsoap.org/soap/envelope/' >
 < !-- fault details go here -->
</env :Fault>

The Fault element has five child elements: Code, Reason, Detail
(optional), Node (optional), and Role (optional). All these elements
belong to the namespace 'http://schemas.xmlsoap.org/soap/envelope/'.
The element Detail carries application-specific information. The Node
element specifies, through a URI, the SOAP node that generated this
fault. The Role element identifies the role played by the node that cre-
ated the fault. The Reason element is used to convey the reason for the
fault in a human-readable form, typically as a string. The Code element
has two subelements: Value (mandatory) and Subcode (optional). The
use of these elements and subelements is illustrated in Listing 12-2,
which provides an example of a SOAP fault message.

238 Chapter Twelve

Listing 12-2

1 Listing 12.2: SOAP Fault example

2 <?xml version='1.0' ?>

3 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

4 xmlns:rpc='http://www.w3.org/2003/05/soap-rpc'>

5 <env:Body>

6 <env:Fault>

7 <env:Code>

8 <env:Value>env:Sender</env:Value>

9 <env:Subcode>

10 <env:Value>rpc:BadArguments</env:Value>

11 </env:Subcode>

12 </env:Code>

13 <env:Reason>

14 <env:Text operation not allowed</env:Text>

15 </env:Reason>

16 <env:Detail>

17 <myC:myFaultDetails

18 xmlns:myC="http://mycompany.example.org/faults">

19 <myC:message>Division by zero not allowed</myC:

message>

20 </myC:myFaultDetails>

21 </env:Detail>

22 </env:Fault>

23 </env:Body>

24 </env:Envelope>

In the example, the top-level Value uses a standardized XML qualified
name (of type xs:QName) to identify that this is an env:Sender fault,
which indicates that it is related to some syntactical error or inappropri-
ate information in the message. The env:Subcode element is optional. If
it is present, as it is in this example, it qualifies the parent value fur-
ther. In this example, env:Subcode denotes that an RPC-specific fault,
rpc:BadArguments, is the cause of the failure to process the request.

A simplified structure of a fault message is shown schematically in
Figure 12.2.

SOAP Attributes and Processing Model

SOAP defines three attributes that are closely related to how a SOAP
node processes information in a SOAP message. These attributes are
role, mustUnderstand, and relay. The meaning and use of these three
attributes are covered in this section.

The role Attribute

SOAP defines the (optional) env:role attribute (syntactically, xs:anyURI)
that may be present in a header block. It identifies the role played by
the intended target of that header block. A SOAP node is required to

SOAP 239

process a header block if it assumes the role identified by the value
of the URI. How a SOAP node assumes a particular role is not part
of the SOAP specifications. SOAP defines three standard values of
this attribute:

■ none

■ next

■ ultimateReceiver

We explain these roles with the help of an example, shown in
Listing 12-3. In this example, in Header Block1 the role attribute
is set to the URI myCompany.com/Log. Any node that assumes this
application-defined role must log the message.

Every SOAP node receiving a message with a header block that has
an env:role attribute of “next” must be capable of processing the con-
tents of the element, because this is a standardized role that every
SOAP node must be willing to assume. A header block thus attributed is
one that is expected to be examined and (possibly) processed by the next
SOAP node along the path of a message, assuming that such a header
has not been removed as a result of processing at some node earlier in
the message path. Note that Header Block1, where the role attribute is
set to the specific URI of myCompany/Log, must also be willing to play
the role of “next” node. This is also true when the role attribute is set to
the value ultimateReceiver, because the last node is obviously also the
next node in the chain of nodes.

If the attribute role is missing, as is the case of Block3 in the example, it
is targeted at the node that assumes the ultimate receiver node. Therefore,

Body

Fault

Code Reason Detail Node Role

Value Subcode
Mandatory

Optional

Figure 12.2 The structure of a fault message

240 Chapter Twelve

the value ultimateReceiver of the attribute can be set explicitly or set
implicitly by not having the attribute.

Note that the Body element does not have a role attribute. Therefore, the
body is always targeted to be processed by the ultimate receiver node.

Table 12.1 summarizes the applicable standardized roles that may
be assumed at various SOAP nodes. (“Yes” and “No” mean that the cor-
responding node does or does not, respectively, play the named role.)

Listing 12-3

Listing 12.3

1 <?xml version="1.0" ?>

2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

3 <env:Header>

4 <m:Block1 xmlns:m=http://myCompany.com

5 env:role="http://myCompany.com/Log">

6 ...

7 ...

8 </m:Block1>

9 <n:Block2 xmlns:n="http://myCompany.com"

10 env:role="http://www.w3.org/2003/05/soap-

11 envelope/role/next">

12 ...

13 ...

14 </n:Block2>

15 <o:Block3 xmlns:o="http://myCompany.com">

16 ...

17 ...

18 </o:Block3>

19 </env:Header>

20 <env:Body >

21 ...

22 ...

23 </env:Body>

24 </env:Envelope>

The mustUnderstand Attribute

The mustUnderstand attribute is complementary to the role attribute.
The purpose of this attribute is to ensure that SOAP nodes do not ignore

TABLE 12.1 Applicable Standardized Roles

Role
Node Absent None Next Ultimate Receiver

Initial sender Not applicable Not applicable Not applicable Not applicable

Intermediary Yes No Yes No

Ultimate receiver Yes No Yes Yes

SOAP 241

header blocks that are important to the overall purpose of the applica-
tion. When this attribute is set to a value of “true”, the targeted SOAP
node must process the block according to the specification of that block.
Such a block is colloquially referred to as a mandatory header block. In
fact, the processing of the SOAP message must not even start until the
node has identified all the mandatory header blocks targeted at itself
and has “understood” them. Understanding a header means that the
node must be prepared to do whatever is described in the specification
of that block.

A mustUnderstand value of “true” means that the SOAP node must
process the header with the semantics described in that header’s speci-
fication, or else generate a SOAP fault. Processing the header appro-
priately may include removing the header from any generated SOAP
message, reinserting the header with the same or an altered value, or
inserting a new header. The inability to process a mandatory header
requires that all further processing of the SOAP message cease and
that a SOAP fault be generated. The message is not forwarded any
further.

Table 12.2 summarizes how the processing actions for a header block
are qualified by the mustUnderstand attribute with respect to a node
that has been appropriately targeted through the role attribute.

The relay Attribute

SOAP defines another attribute, called relay. It is of type Boolean and
can assume a value of “true” or “false”. This attribute indicates whether
the header block targeted at a SOAP node must be relayed if it is not pro-
cessed. If the message is processed by the targeted SOAP node, the header
block must be removed from the outbound message. The default behavior
for an unprocessed header block targeted at a role played by a SOAP inter-
mediary is that it must be removed before the message is relayed.

If the attribute rely is set to “true” for the header block targeted at
the node with the role “next”, it ensures that each intermediary has a
chance to examine the header, because one of the anticipated uses of
the “next” role is with header blocks that carry information expected to
persist along a SOAP message path. Note that setting the relay attribute

TABLE 12.2 Processing Actions for Various Values of the mustUnderstand Attribute

mustUnderstand
Node True False Absent

Intermediary Must process May process May process

Ultimate receiver Must process May process May process

242 Chapter Twelve

is meaningless for header blocks that are targeted at ultimateReceiver
and none.

Listing 12-4 shows the use of the relay attribute in one of the header
blocks.

Listing 12-4

Listing 12.4: An example of the use of attribute relay

1 <?xml version="1.0" ?>

2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

3 <env:Header>

4 <m:Blockm xmlns:p=http://myCompany.com

5 env:role=http://myCompany.com/Log

6 env:mustUnderstand="true">

7 ...

8 ...

9 </m:Blockm>

10 <n:Blockn xmlns:q="http://myComapny.com"

11 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

12 env:relay="true">

13 ...

14 ...

15 </n:Blockn>

16 <r:Blockr xmlns:r="http://myCompany.com">

17 ...

18 ...

19 </r:Blockr>

20 </env:Header>

21 <env:Body >

22 ...

23 ...

24 </env:Body>

25 </env:Envelope>

SOAP Message Exchange Types

A SOAP message is fundamentally a one-way transmission between
SOAP nodes, from a SOAP sender to a SOAP receiver. However, SOAP
messages can be combined to obtain more complex interaction patterns,
such as RPC-type request/response and “back-and-forth” conversa-
tional messages. We discuss the RPC-type request/response interac-
tion next.

Remote Procedure Call (RPC)

One of goals of the SOAP specification is to define a uniform representa-
tion for RPC invocations and responses carried in SOAP messages. This
is done using the flexibility and extensibility of XML.

SOAP 243

To make an RPC request for invocation, the following items are
needed:

■ The address of the targeted node that will ultimately process the
request

■ The name of the method/procedure you want to invoke

■ The required parameters’ names and values to invoke the method/
procedure, including any output parameter and return value

■ Optionally, data that may be carried as a part of SOAP header
blocks

It is important to note that the preceding information differs in
subtle ways from the information needed to invoke other nonSOAP
types of RPC. For example, the first item requires the address infor-
mation of the SOAP node that “contains” or “supports” the target of
the RPC. It is obviously the node that adopts the role of ultimate
Receiver. The ultimate recipient can identify the target of the named
procedure or method by looking for its URI. The way in which the
target URI is made available depends on the underlying protocol
binding. For example, the URI identification information can be car-
ried in a SOAP header block. The other possibility is to carry the URI
information outside the SOAP message. Such is the case for HTTP
SOAP binding.

Listing 12-5 shows an example of an RPC request for credit card pay-
ment. The travel reservation application provides credit card informa-
tion, and the successful completion of the different activities results in
the card being charged and a reservation code returned. This reserve-
and-charge interaction between the travel reservation application and
the travel service application is modeled as a SOAP RPC. As seen in this
example, the RPC information itself is carried in the “body” of the SOAP
message. It is contained in a structure, which houses the reservation
information and credit card information. The credit card information
itself is contained in a substructure. This latter struct has three ele-
ments: name, card number and expiration date. The method invoked
has the name chargeReservation.

Listing 12-5

Listing 12.5: An example of RPC SOAP request

1 <?xml version='1.0' ?>

2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >

3 <env:Header>

4 <t:transaction

5 xmlns:t=http://thirdparty.example.com/transaction

244 Chapter Twelve

6 env:encodingStyle=http://example.com/encoding

7 env:mustUnderstand="true" >45</t:transaction>

8 </env:Header>

10 <env:Body>

11 <c:chargeReservation

12 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"

13 xmlns:c="http://myCompany.example.com/">

14 <r:reservation

15 xmlns:r="http://myCompany.example.com/reservation">

16 <r:code>AB324QZ</r:code>

17 </r:reservation>

18 <o:creditCard

19 xmlns:o="http://mycompany.example.com/financial">

20 <n:name xmlns:n="http://mycompany.example.com/employees">

21 John Smith

22 </n:name>

23 <o:number>9876543212345678</o:number>

24 <o:expiration>2010-07</o:expiration>

25 </o:creditCard>

26 </c:chargeReservation>

27 </env:Body>

28 </env:Envelope>

Next we turn our attention to a RPC response. The response is also
returned as a SOAP message. Let’s assume that the response has two
output parameters. The first output parameter provides a reference to
the reservation code, and the second output parameter provides a URL
where the details of the reservation can be viewed. As in the case of RPC,
the response is returned in the body of the SOAP message, within a
struct. The struct has the name of the RPC request (chargeReservation)
with the word “Response” appended to it. The two output parameters are
included as two elements in this struct. Listing 12-6 shows the response
SOAP message.

Listing 12-6

Listing 12.6: A sample SOAP message for a RPC response

1 <?xml version='1.0' ?>

2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >

3 <env:Header>

4 <t:transaction

5 xmlns:t="http://thirdparty.example.com/transaction"

6 env:encodingStyle="http://example.com/encoding"

7 env:mustUnderstand="true">45</t:transaction>

8 </env:Header>

9 <env:Body>

10 <r:chargeReservationResponse

11 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"

12 xmlns:r="http://myCompany.example.org/">

SOAP 245

13 <r:reservationCode> AB324QZ</m:reservationCode>

14 <r:viewReservationAt>

15 http://myCompany.example.com/reservations?code= AB324QZ

16 </r:viewReservationAt>

17 </r:chargeReservationResponse>

18 </env:Body>

19 </env:Envelope>

SOAP HTTP Binding

SOAP messages may be exchanged using a variety of “underlying” pro-
tocols. An example of such an underlying protocol is HTTP. The specifi-
cation for how SOAP messages may be passed from one SOAP node to
another using an underlying protocol is called a SOAP binding.

SOAP defines a standard binding to only one protocol, namely HTTP.
HTTP defines a well-known message-exchange pattern and a well-
known connection model. In HTTP, the client specifies a server by a
URL and connects to it by using the TCP/IP network. Then it issues
an HTTP request message and receives an HTTP response message
over the same TCP connection. Therefore, in the HTTP protocol, there
is an implicit correlation between the request and the response, and an
application using HTTP binding can deduce the correlation between
a SOAP message sent in the body of an HTTP request message and a
SOAP message returned in the HTTP response. In a similar manner,
HTTP identifies the request server end point via a URI, the Request-
URI, which can also serve as the identification of a SOAP node at the
request server.

The HTTP binding to SOAP restricts the use of HTTP to two meth-
ods: POST and GET. The binding allows two ways to exchange SOAP
messages. In the first method, the HTTP POST method is used to
convey SOAP messages in the bodies of HTTP request and response
messages. In the second method, the HTTP GET method in an HTTP
request is used to return a SOAP message in the body of an HTTP
response. The first usage pattern is the HTTP-specific instantiation of
a binding feature called the SOAP request/response message-exchange
pattern, whereas the second uses a feature called the SOAP response
message-exchange pattern. SOAP offers guidance on circumstances
when applications may use one of the two specified message-exchange
patterns. The HTTP GET response exchange pattern is used when
you are reasonably sure this exchange is for retrieval of informa-
tion only and does not require a change in the state of the server
from which the information is being requested. Such interactions
are considered safe and idempotent in the HTTP specification. We’ll
now discuss examples of both types of HTTP bindings, starting with
HTTP GET.

246 Chapter Twelve

HTTP GET Usage

SOAP response message exchange patterns are limited to the HTTP
GET method. In this pattern, the response to an HTTP GET request is
in the form of a SOAP message sent in an HTTP response. Listing 12-7
shows the HTTP GET request. This is used to request travel information
from a travel website with the following URI:

http://myCompany.example.com/reservations?code= AB324QZ

At this site the travel itinerary can be viewed.

Listing 12-7

Listing 12.7: Example of HTTP GET request
GET /myCompany.example.com/reservations?code= AB324QZ HTTP/1.1
Host: myCompany.example.com
Accept: text/html;q=0.5, application/soap+xml

The preferred representation of the information from the source is
indicated in the HTTP header. In this example, the preferred represen-
tation is

application/soap+xml

which is meant for consummation by an application rather than by a
browser.

The response to the preceding GET request is shown in Listing 12-8.
In this case, the response is returned as a SOAP message in the body
of an HTTP response.

Listing 12-8

Listing 12.8: Response to HTTP GET request of listing 12-7

1 HTTP/1.1 200 OK

2 Content-Type: application/soap+xml; charset="utf-8"

3 Content-Length: 367

4

5 <?xml version='1.0' ?>

6 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

7 <env:Header>

8 <m:reservation

9 xmlns:m="http://myCompany.example.com/reservation"

10 env:role="http://www.w3.org/2003/05/soap-

11 envelope/role/next"

12 env:mustUnderstand="true">

13 <m:date>2008-07-13</m:date>

14 </m:reservation>

15 </env:Header>

16 <env:Body>

SOAP 247

17 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

18 ns#"

19 xmlns:x="http://myCompany.example.com/vocab#"

20 env:encodingStyle="http://www.w3.org/1999/02/22-rdf-syntax-

21 ns#">

22 <x:ReservationRequest

23 rdf:about="http://myCompany.example.com/reservations?code=

24 AB324QZ ">

25 <x:passenger>John Smith</x:passenger>

26 <x:outbound>

27 <x:TravelRequest>

28 <x:to>Chicago</x:to>

29 <x:from>Dallas</x:from>

30 <x:date>2008-07-12</x:date>

31 </x:TravelRequest>

32 </x:outbound>

33 <x:return>

34 <x:TravelRequest>

35 <x:to>Dallas</x:to>

36 <x:from>Chicago</x:from>

37 <x:date>2008-07-13</x:date>

38 </x:TravelRequest>

39 </x:return>

40 </x:ReservationRequest>

41 </rdf:RDF>

42 </env:Body>

43 </env:Envelope>

HTTP POST Usage

The SOAP request/response message-exchange pattern is restricted
to the HTTP POST method if HTTP binding is used. This pattern is
available to all applications. It can be used for general exchange of XML
data or RPCs.

An example of an RPC exchange with the request is shown in
Listing 12-9 and the response is shown in Listing 12-10.

In Listing 12-9, the request is directed to the server myCompany
.example.com, and the SOAP request is sent in the body of an HTTP
POST request. In this case, the request is directed at the method
chargeReservation. The HTTP POST response is shown in Listing 12-10.
For brevity, the details have been omitted. The appearance of the code
“200” in the first line of the HTTP response header indicates that the
POST request is successful.

Listing 12-9

Listing 12.9: An example of RPC request using HTTP POST method

1 POST /Reservations HTTP/1.1

2 Host: myCompany.example.com

3 Content-Type: application/soap+xml; charset="utf-8"

248 Chapter Twelve

4 Content-Length: 367

5

6 <?xml version='1.0' ?>

7 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >

8 <env:Header>

9 <t:transaction

10 xmlns:t="http://thirdparty.example.com/transaction"

11 env:encodingStyle="http://example.com/encoding"

12 env:mustUnderstand="true" >45</t:transaction>

13 </env:Header>

14 <env:Body>

15 <m:chargeReservation

16 env:encodingStyle=http://www.w3.org/2003/05/soap-

encoding

17 xmlns:m="http://myCompany.example.com/">

18 <m:reservation xmlns:m="http://myCompany.example.com/

reservation">

19 <m:code> AB324QZ </m:code>

20 </m:reservation>

21 <c:creditCard xmlns:c="http://myCompany.example.com/

financial">

22 <n:name xmlns:n="http://myCompany.example.com/

employees">

23 John Smith

24 </n:name>

25 <c:number>6789234512345678</c:number>

26 <c:expiration>2010-10</c:expiration>

27 </c:creditCard>

28 </m:chargeReservation

29 </env:Body>

30 </env:Envelope>

Listing 12-10

Listing 12.10: The HTTP POST response to the request shown in Listing 12.9

1 HTTP/1.1 200 OK

2 Content-Type: application/soap+xml; charset="utf-8"

3 Content-Length: 167

4

5 <?xml version='1.0' ?>

6 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" >

7 <env:Header>

8 ...

9 ...

10 </env:Header>

11 <env:Body>

12 ...

13 ...

14 </env:Body>

15 </env:Envelope>

SOAP 249

Conclusion

In summary, SOAP is an XML-based message format that can be used
to exchange typed and structured information between peers (applica-
tions) in a distributed environment. SOAP also describes a set of rules
for serialization and deserialization. Although a SOAP message can be
transported by any transport protocol, the SOAP specification describes
a specific binding to HTTP. Furthermore, SOAP supports a number of
message-exchange patterns, including remote procedure calls.

In the next chapter, we describe the third of the four standards that
make up Web Services. This third standard is called Web Services
Description Language (WSDL) and is used to describe the Web Services
in a language and platform independent manner. Once again, this stan-
dard is based on XML.

251

 Chapter

 13
WSDL

In order for a service consumer (application) to use the service provided
by a service provider application, a formal description of the service is
required that contains the description of the interface exposed by the ser-
vice and information on where that service can be found on the network.
Such a formal specification is provided by the Web Services Description
Language (WSDL). A WSDL document is an XML-based document that
describes a formal contract between the service provider and the service
consumer. Detailed information on the WSDL 1.1 standard can be found
at http://www.w3.org/TR/wsdl. A WSDL document is an XML instance.
The schema from which such a document instance is derived is located
in the target namespace http://schemas.xmlsoap.org/wsdl/. In addition
to the WSDL specification, WS-I Basic Profile provides guidance on how
to write the WSDL documents so that service interoperability across
different platforms can be made more certain. In general, WS-I Basic
Profile puts further restrictions on the WSDL standard.

A WSDL document describes two aspects of a service: the abstract inter-
face exposed by the service and the description of the concrete implemen-
tation. The abstract interface describes the general interface structure,
which includes the operations (that is, methods) in the service, the opera-
tion parameters, and abstract data types. This description of the interface
does not depend in any way on the concrete implementation, such as the
concrete network address, the concrete data structures, and the communi-
cation protocol. An abstract interface can have many corresponding imple-
mentations, giving the service consumer a choice of implementation and
allowing it to pick the implementation that best suits its technical capabil-
ities. The concrete implementation description binds the abstract interface
description to a concrete network address, communication protocol, and
concrete data structures. The concrete implementation description is used
to bind to the service and invoke its various operations (methods).

252 Chapter Thirteen

In the next section, we start first with an overview of a WSDL docu-
ment using an example of a weather service. For simplicity, we assume
that this service has only one operation: getWeather. This operation
takes information needed to identify the city of the world and return
weather information for the current day. Next, we describe the general
structure of a WSDL document. Following this we discuss in detail the
abstract interface part of a WSDL document as well as the implementa-
tion part of the WSDL document. We then discuss the logical relation-
ship between the different elements of a WSDL document as well as
describe the SOAP extensibility elements related to SOAP binding.

Overview

In this section, we provide an overview of WSDL by considering a
simple example of a weather service. The service has only one operation:
getWeather. This operation takes input information related to identify-
ing a city in the world and returns the weather of that city for the cur-
rent day. The information required for city identification includes the
city name, the state/province, and the country. The returned weather
information includes temperature, weather conditions (sunny, cloudy,
and so on), wind direction, and wind speed.

We start the discussion by first focusing on the interface description
in the WSDL document. The part of the WSDL document that describes
the interface portion for the weather service is shown in Listing 13-1.

Listing 13-1

Listing 13.1: Example of interface description

1 <definitions name="globalWeatherService"

2 targetNamespace=http://globService.com/ns/globalWeather/wsdl

3 xmlns:tns=http://globalService.com/globalWeather/wsdl

4 xmlns:SOAP-EXT=http://schemas.xmlsoap.org/wsdl/soap/

5 xmlns=http://schemas.xmlsoap.org/wsdl/>

6 <types>

7 <schema

8 targetNamespace=http://globalService.com/ns/globalWeather/wsdl

9 xmlns=http://www.w3.org/2001/XMLSchema>

10 <complexType name="inputType">

11 <sequence>

12 <element name="City" type="xsd:string"/>

13 <element name="State" type="xsd:string"/>

14 <element name="Country" type="xsd:string"/>

15 </sequence>

16 </complexType>

17 <complexType name="outputType">

18 <sequence>

19 <element name="temperature" type="xsd:int">

WSDL 253

20 <element name="condition" type="xsd:string">

21 <element name="windSpeed" type="xsd:decimal">

22 <element name="windDirection" type="xsd:string">

23 </sequence>

24 </complexType>

25 </schema>

26 </types>

27 <message name="inputParameters">

28 <part name ="input" type="inputType"/>

29 </message>

30 <message name="outputParameters">

31 <part name="output" type="outputType"/>

32 </message>

33 <portType name="weatherServicePortType">

34 <operation name="getWeather">

35 <input message="tns:inputParameters"/>

36 <output message="tns:outputParameters"/>

37 </operation>

38 </portType>

The main element of this interface is the portType (lines 33–35). This
element contains all the operations a service of this kind will support.
In this example, the port is named weatherServicePortType, and it sup-
ports only one operation: getWeather. As shown in the listing, the opera-
tions themselves are represented as XML elements. In our example, this
operation is a request/response operation because it contains an input
message and an output message. In general, you can have several types
of operations, including a one-way operation.

An operation contains all the messages exchanged between the ser-
vice provider and service consumer. In addition, you can define addi-
tional fault elements that can appear as direct child elements of the
element operation.

We have defined two messages (lines 27–29 and lines 30–32). The
message inputParameters defined in lines 27–29 is linked by name to
the input element of the operation getWeather. Hence, this message
represents the data that is sent from the service consumer to the service
provider when the operation getWeather is invoked. Similarly, the mes-
sage outputParameters defined in lines 30–32 represents the data that
is sent from the service provider to the service consumer as a response
message.

In our example, each of the two messages consists of one part. However,
in general, a message can have multiple parts, thus giving a structure
to the message. A part is linked to types. For example, in Listing 13-1,
the message inputParameters consists of only one part that refers to
one complex type named inputType. This complex type has three ele-
ments: City, State and Country. Each of these child elements are of the
string type.

254 Chapter Thirteen

The types element is the container of all the abstract data types.
Parts may pick up individual type definitions out of this container. It
is important to note that the parts do not have to use the abstract data
types defined in the types container element. Instead, types definitions
can be directly attached to the parts definition.

Note that the abstract data type inputType and outputType defini-
tions employ XML-type schema definitions. However, the WSDL speci-
fication allows other types systems to be used.

Table 13.1 summarizes what we have covered about the abstract
interface definition part of WSDL.

Next, we discuss the WSDL service implementation description, which
is required in order for the service consumer to find out about the con-
crete network address and communication protocol for the service.

For the weather service, Listing 13-2 shows the implementation
description part of the WSDL document.

Listing 13-2

Listing 13.2: Example of a service implementation description
1 <binding name="weatherServiceSoapBinding"
2 type="tns:WeatherServicePortType">
3 <SOAP-EXT:binding style="rpc"
4 transport=http://schema.xmlsoap.org/soap/http/>
5 <operation name="getWeather">
6 <SOAP-EXT:operation saopAction=""/>
7 <input>
8 <SOAP-EXT:body use="encoded"/>
9 </input>
10 <output>
11 <SOAP-EXT:body use="encoded"/>
12 </output>
13 </operation>
14 </binding>
15 <service name= "WeatherService">

TABLE 13.1 Summary of Abstract Interface Definition Elements

Element Short Description

types A container of all abstract data types definitions. WSDL 1.1 prefers the
use of XML schema types definitions.

part Each part is associated with a data type.

message A message represents a logical unit of data that consists of one or more
part elements.

operation An operation abstractly defines a service method. It may consist of
an input message, an output message, and, optionally, several fault
messages.

portType A collection of operations is called a portType and must be named.

WSDL 255

16 <port name="WeahterServicePort"
17 binding="tns:WeatherServiceSoapBinding">
18 <SOAP-EXT:address
19 location=http://myComapny.com/servlet/rpcrouter/>
20 </port>
21 </service>
22 </definitions>

In this implementation description, the main element is the binding
element. It associates the abstract interface description to a specific
implementation. It contains information about the transport protocol
and the concrete data format employed by the service. In this listing,
the binding associates the abstract port type WeatherServicePortType
to a specific port named WeatherServicePort. For this purpose, the bind-
ing name WeatherServiceSoapBinding (compare codes on lines 1–2 and
lines 15–16) is used.

In this example, we are using SOAP over HTTP, as indicated by code
line 4. In addition, we are employing an RPC interaction style. This is
indicated by setting the attribute style to rpc on line 3. The abstract opera-
tion from the service interface description getWeather (see Listing 13-1)
is mapped to concrete SOAP messages (lines 7–12). Furthermore, the
input and output messages are SOAP encoded for transfer.

It should be noted that the SOAP binding–associated elements, which
are identified by the prefix SOAP-EXT, extend the WSDL-defined ele-
ments. For each protocol, such as SOAP, a different binding is defined to
describe the mapping from the abstract WSDL interface description to the
concrete protocol description. These are called extensibility elements.

An important element of the implementation description is the port
element, which is used to provide a network address for the service.
A service client may bind to a port and invoke methods on the service
according to the concrete data format specified in the WSDL document.
The same service may be offered at different ports that use different
data formats. A client may choose between the different ports. It is
important to note that the port and binding have been separated. This
is because the binding is reusable, and multiple ports can use the same
binding.

Finally, a service element encapsulates all the ports. This service ele-
ment may be a starting point for a service client to discover the service.

Table 13.2 summarizes the part of the WSDL document that describes
service implementation:

Figure 13.1 shows schematically the relationships among the differ-
ent elements of the service implementation description as well their
relationships to the abstract port type.

In the next section, we take a brief look at the overall structure of a
WSDL document.

WSDL 259

3 targetNamespace=http://myCompany.com/ns/weatherService/wsdl
4 xmlns=http://www.w3.org/2001/XMLSchema>
5 <element name="City" type="xsd:string"/>
6 <element name="State" type="xsd:string"/>
7 <element name="Country" type="xsd:string"/>
8 </schema>
9 </types>

In this example, we have defined three elements that can be
directly used in the definitions of the message, and there is no need
to always directly link to data type definitions. Note that we have
overwritten the default namespace (WSDL namespace) to refer to
the XMLSchema namespace and that these three elements can be
unqualified. (A qualified name means that the namespace is included
explicitly in the name.)

An import point regarding the interoperability issue: The WS-I Basic
Profile recommends that all XML schema elements of the types con-
tainer have a valid target namespace.

The message and part Elements

A message element abstractly represents one input or output parameter
for an operation. For example, for a SOAP RPC type request, a mes-
sage element can represent the abstract type for the input parameter.
Similarly, for an RPC response, a message element may represent the
abstract data type for the output parameter. In addition, a message
can combine the parameters of each possible error response. A mes-
sage element has one mandatory attribute called “name.” Its value must
be unique within the scope of a WSDL document.

Messages consists of one or more part elements. Part elements
describe the logical parts of a message. A part can have the three attri-
butes described in Table 13.4.

Listing 13-5 provides an example of a message element that uses the
element attribute of the part child element.

TABLE 13.4 Three Attributes of the part Element

Attribute Description

name This attribute is mandatory, and its value must be unique
within the scope of the containing message.

element This attribute refers by name to a schema element
declaration.

type A part element can directly refer to the type without
referring to an element declaration. This requires the use
of the type attribute. Attribute elements and types are
mutually exclusive.

260 Chapter Thirteen

Listing 13-5

Listing 13.5: an example of a message which employs the
attribute element of the part child element
1 <message name="getWeatherIn">
2 <part name="CityIn" element="tns:City"/>
3 <part name="StateIn" element="tns:State"/>
4 <part name="CountryIn" element="tns:Country"/>
5 </message>

The element attribute here refers to the element’s declaration in the
types container (see Listing 13-4). Note that a second method of defin-
ing the same message can be used instead. This second method employs
the type attribute to define the types of the part elements. Listing 13-6
shows such a definition of a message element.

Listing 13-6

Listing 13.6: Alternate way to define the message element
1 <message name="getWeatherIn">
2 <part name="CityIn" type="xsd:string"/>
3 <part name="StateIn" type="xsd:string"/>
4 <part name="CountryIn" type="xsd:string"/>
5 </message>

The WSDL message element and part element definitions have a
significant effect on SOAP binding. This effect will be discussed later.

The WS-I Basic Profile further emphasizes that the element attribute
and the type attribute of the port element must not be used at the same
time. In other words, these two attributes are mutually exclusive.

The operation Element

The operation element is a direct child of the portType element. (The
portType element will be described later in this section.) A portType can
contain any number of operation elements. An operation is an abstract
description of a service call and therefore describes the set of abstract
messages exchanged between the service client and service provider for
executing a call.

Four different types of operations can be defined in WSDL. These
types of operation are differentiated by their ordering and the presence
of input, output, and fault messages. The four types of operations are
summarized in Table 13.5.

For Web Services, only two of these types are important: the request/
response type operation and the one-way type operation. The WSDL
specification defines SOAP bindings for these two types only. The con-
tainment structure of the request/response type and the one-way type
of operations are depicted in Figure 13.3.

262 Chapter Thirteen

which is mandatory. The value of this attribute must be unique within
the scope of a WSDL document. Listing 13-7 provides an example of a
portType element declaration.

Listing 13-7

Listing 13.7: An example of portType definition
1 <portType name="getWeatherPortType">
2 <operation name="getWeather">
3 <input message="tns:getWeatherIn"/>
4 <output message="tns:getWeatherOut"/>
5 <fault name="weatherForecastFailure"
6 message="tns:WeatherNotFound"/>
7 </operation>
8 </portType>

In this example, the operation or service call name is getWeatherPort-
Type. This operation has three operation units. For each operation unit,
the message attribute implements a “uses” relationship to the message
(that is, to the abstract data type for each operation unit).

The portType element abstractly describes the service call character-
istics, such as the operations and the data type expected and returned
by the service. However, to be able to use this service, a service client
still needs information about the specific protocol binding and the
network address. These issues are covered in the next section, where we
discuss the elements and attributes corresponding to the implementa-
tion part of the WSDL description of the service.

Elements of the Implementation Part

We first discuss the binding elements and then we discuss the ser-
vice elements. There are two binding elements: binding and operation.
These two elements contain elements that are not declared in WSDL
namespace, and they contain extensibility elements.

TABLE 13.6 Two Attributes of the input, output, and fault Elements

Attribute Description

name This attribute is optional for the input and output elements but is
mandatory for the fault element. This name must be unique within
the scope of a portType.

message This attribute refers by name to the linked abstract message for
the operation unit. Recall that messages are reusable units. Several
operations can possibly result in identical faults and associated
fault messages.

WSDL 263

The binding and binding operation Elements

As shown earlier in Figure 13.2, the structure of the binding element
is similar to the structure of the portType element. This similarity is
because a binding maps the abstract portType description to a concrete
implementation. The binding element contains an operation element,
but may contain other extensibility elements that provide binding-
specific information. The operation element may also contain extensi-
bility elements. The example provided in Listing 13-8 contains SOAP
binding extensibility elements.

Listing 13-8

Listing 13.8: Example of binding containing SOAP extensibility elements

1 <binding name="WeatherServiceSoapBinding"

2 type="tns:WeatherServicePortType">

3 <!—SOAP binding extensibility elements -- >

4 <SOA-EXT:binding stype="rpc"

5 transport=http://schemas.xmlsoap.org/soap/http?>

6 <operation name="getWeather">

7 <!-- SOAP operation extensibility element -- >

8 <SOAP-EXT:operation saopAction+""/>

9 <input>

10 <SOAP-EXT:body use="encoded"/>

11 </input>

12 <output>

13 <SOAP-EXT:body use="encoded"?>

14 </output>

15 </operation>

16 </binding>

The binding element has two attributes: name and type. The name attri-
bute is required and specifies the name of the binding. It should be unique
within the WSDL document. The type attribute is also required, and its
value refers to the portType it binds. As various ports may correspond
to the same port type, the type attribute along with the name attribute
uniquely identify a binding. There is only one attribute called name, that
belongs to the binding operation. Its value specifies the name of the bind-
ing operation, and its value must be identical to the value of the mapping
portType name attribute.

The binding input, output,
and fault Elements

The binding operation element has three child elements. It may have
an input element, an output element, and optionally one or more fault
elements. This structure is identical to the structure of the operation
element belonging to the element portType. All three of these elements

264 Chapter Thirteen

have one attribute each, each called “name.” For the input and output
elements, the name attribute is optional. However, this attribute is man-
datory for a fault element.

The service and port Elements

A service element is a container of port elements; therefore, we discuss
the port element first. A port element contains an extensibility element
that specifies the network address of a given service implementation. This
element has two attributes. The first attribute, name, is required and
specifies the name of the port (that is, the name of a specific service imple-
mentation). The second attribute, binding, is also required and refers to
the binding for which port provides a specific network address.

As indicated previously, the service element groups all related port ele-
ments. Each port is linked to the same port type and therefore provides
semantically equivalent functionality at different network addresses.
The service element has one required attribute: name. The name attri-
bute specifies the name of the service and must be unique within the
scope of the WSDL document. Listing 13-9 provides an example of a
service element definition.

Listing 13-9

Listing 13.9: Example of a WSDL service element
1 <service name="weatherForeCastService">
2 <port name="premierForecast"
binding="tns:weatherServiceSoapBinding">
3 <SOAP-EXT:address
4 location=http://myCompany.com/servlet/forecaster/>
5 </port>
6 </service>

Logical Relationships

Now that we have gone over all the important elements and attributes
of a WSDL document, we are in a position to summarize the logical
relationships among these different elements. These relationships are
shown schematically in Figure 13.4. Some of these relationships are
established through the use of attributes and child elements.

SOAP Binding

WSDL specifications contain three bindings: SOAP, HTTP, and MIME.
You have previously seen some examples of SOAP binding. The exten-
sibility elements of each of these bindings are defined in separate
namespaces. We will only cover the SOAP binding here. In general, the

266 Chapter Thirteen

communication protocols to HTTP and HTTPS. The HTTP protocol is
specified as the URI http://schemas.xmlsoap.org/soap/http/. The second
attribute for this extensibility element is called style, and it can have
one of two values: rpc or document. This attribute provides a default
value for each operation at this higher level. An operation can override
this selection. If the attribute is omitted, the default value is document.
If the value of the style attribute is document, the content of the body
element of the SOAP message can be an arbitrary XML instance docu-
ment. SOAP does not place any restrictions on the structure of the XML
instance carried in the body element of the SOAP message. Listing 13-10
shows a sample XML instance contained in the body element of a SOAP
message. This message can be used by the service provider to update a
customer’s address.

Listing 13-10

Listing 13.10: Example of a SOAP document style message
1 <SOAP-ENV:Envelope
2 xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/>
3 <SOAP-ENV:Body>
4 <add:address xmlns:add=http://myCompany.com/ns/employees>
5 <add:name>
6 <add:firstName>John</add:firstName>
7 <add:lastName>Smith</add:lastName>
8 </add:name>
9 <add:streetAddress>45 Alpine Street</add:streetAddress>
10 <add:city>New York</add:city>
11 <add:state>New York</add:state>
12 <add:postalCode>43321</add:postalCode>
13 </add:address>
14 </SOAP-ENV:Body>
15 </SOAP-ENV:Envelope>

SOAP operation Extensibility Element

This SOAP extensibility element is the direct child of the WSDL oper-
ation element. It provides operation scope information and has two

TABLE 13.7 SOAP Extensibility Elements and the Corresponding WSDL Container Elements

SOAP Extensibility Elements WSDL Container Elements

binding binding

operation operation

body, header, headerFault input

body, header, headerFault output

fault fault

address port

WSDL 267

attributes: style and soapAction. The value of style attribute is used to
indicate the operation type (that is, rpc or document) and is used to over-
ride the style declared in the SOAP binding extensibility element. The
second attribute, soapAction, is used to specify the value of the soapAction
HTTP header for the operation. The SOAP specification requires the
presence of a soapAction header when embedding SOAP into HTTP
protocol. The WS-I Basic Profile requires that all style attributes for
different operation extensibility elements have identical values.

SOAP body Extensibility Element

This extensibility element is used to define the mapping of abstract
message parts into a SOAP message body element. It is important to
note the difference between the SOAP body extensibility element and
the SOAP message body element. The SOAP body extensibility element
appears in the WSDL document, whereas the SOAP message body ele-
ment appears in the SOAP message itself (see Chapter 12). A SOAP
body extensibility element may have up to four attributes. These attri-
butes are described in Table 13.8.

SOAP fault Extensibility Element

This element is the direct child of the WSDL fault element; it defines the
mapping of the abstract message representing the fault data to the SOAP
message Fault element. As described in Chapter 12, the SOAP message
Fault element consists of several child elements, one of which is details.

TABLE 13.8 Attributes of the SOAP body Extensibility Element

Attribute Description

parts This attribute contains a set of abstract message parts that belong to
the SOAP message body. Not all message abstract parts must appear
in the SOAP message body.

use This attribute is mandatory and has two possible values: literal and
encoded. If the value is literal, the abstract message part is directly
written in the body of the SOAP message. However, if the value is
encoded, the abstract message part is first encoded and then put in
the message body.

encodingStyle If the value of the use attribute is set to encoded, the value of the
encodingStyle attribute determines how the abstract message parts
would be encoded before being put in the SOAP message body.

namespace This attribute is used to specify the namespace of the operation name
(that is, of the elements comprising all operation parameters). The
value of this attribute is the same as the WSDL operation name.
Hence, the namespace attribute helps a consumer to select which Web
Services implementation to invoke.

268 Chapter Thirteen

This details element carries the application-specific error information.
The SOAP fault extensibility element maps directly into this SOAP mes-
sage details element content. The SOAP fault extensibility element has
four attributes, three of which are identical to the first three attributes
described in Table 13.8. They have exactly the same meaning. The fourth
attribute is the name attribute, which is a required attribute. The value of
the name attribute should exactly match the value of the name attribute
of the WSDL fault element.

SOAP header and headerFault
Extensibility Elements

The SOAP header extensibility element describes how abstract mes-
sage parts are mapped as content of the SOAP message header ele-
ment. The SOAP header extensibility element has five attributes. The
first three attributes are identical to the ones described in Table 13.8
and have exactly the same meaning. The two remaining attributes—
message and part—refer to the abstract specification of the header.
The message attribute describes the abstract message representing
a SOAP message header entry. It is important to point out that this
identification is required because a SOAP message may contain more
than one header entry. The part attribute describes the part of the
header. The part attribute along with the message attribute is used
to define the SOAP message header entry.

SOAP address Extensibility Element

This extensibility element is the direct child of the WSDL port ele-
ment. This element is used to specify the network address of a given
implementation of a service. The specification is provided through the
attribute location. Listing 13-11 provides an example of the use of this
extensibility element.

Listing 13-11

Listing 13.11: Example of the use of SOAP Address extensibility
element
1 <service name="WeatherForecastService" >
2 <port name="weatherServicePort" binding=
"WeatherServiceSoapBinding"
3 <SOAP-EXT:address
4 location=http://myCompany.com/servlet/
weatherService/>
5 </port>
6 </service>

WSDL 269

Conclusion

This chapter covered the contents of a WSDL document. A WSDL docu-
ment is a formal description of a service and is considered a formal con-
tract between a service provider and a service consumer. The document
has two parts. The first part of the document describes abstractly the
interface offered by the service provider to the service consumer. This first
part describes the abstract data types, the operations, and the input and
output abstract messages corresponding to a given service. The second
part of the document deals with the concrete implementation of the ser-
vice. This part has information on the network address, communication
protocol, and concrete data types for the service. For this second part,
WSDL relies on the extensibility elements that allow protocol-specific
bindings. In particular, we covered the SOAP bindings and the related
SOAP extensibility elements and attributes. In addition, WSDL specifies
HTTP and MIME bindings. Other bindings may also be defined. We also
discussed some of the restrictions placed on the WSDL document by the
WS-I Basic Profile. The purpose of the WS-I Basic Profile is to ensure that
services deployed on different platforms can interoperate.

If there are only a few services and a few service consumers, the WSDL
documents might be sufficient for service deployment and use because
a WSDL document can be exchanged manually between the service
provider and service consumer, for example, via email. However, in a
dynamic situation where new services and new versions of old services
are continually being added, there should be a central repository where
the service provider can publish its services (and the associated require-
ments for use) and the service consumers can discover the services. The
published information should not only include the WSDL document but
also other information that allows a service consumer to discover and
choose between alternatives.

In the next chapter, we discuss the concept of a central repository
and the associated interface called Universal Description, Discovery,
and Integration (UDDI). This type of central repository allows for the
discovery of service end point implementation, interface information,
and business-related information.

271

 Chapter

 14
UDDI Registry

In addition to the WSDL description of a service and the SOAP message
format, a central place is needed where the service provider can adver-
tise the services it offers and the service consumers can find the service
they require. Such a central place is called a service registry. A common
analogy for a service registry is the library card catalog. This catalog is
used to enter information about new books as they arrive in the library
and to look up the location of a book when it is needed. Another anal-
ogy is the telephone directory, where service providers advertise their
services in Yellow and White Pages and the consumers use the directory
to find the services they need.

The Universal Description, Discovery, and Integration (UDDI) specifica-
tion defines a standard way for registering, unregistering, and looking up
Web Services. Figure 14.1 summarizes the basic working of a UDDI-based
registry. First, a service provider registers a service with the UDDI registry.
Then, the service consumer looks up the service in the UDDI registry.
Lastly, the service consumer binds to the service provider and uses the
service. Note that once the service consumer finds a service, the registry
has no role to play between service provider and service consumer. The
service consumer directly binds with the provider to use the service.

Three categories of information are stored in the UDDI registry. These
categories are

■ General business and organization information This includes
name, description, address, and so forth. This could be compared to
the White Pages of the telephone directory.

■ Descriptions of businesses according to standard taxono-
mies This could be according to the types of services they offer or
geographical location. This category could be compared to the Yellow
Pages of the telephone book.

UDDI Registry 273

the service is classified properly. The classification and identification
taxonomies present in the UDDI registry provide a starting point for
describing Web Services. Equally important is to classify the businesses
or organizations that offer Web Services.

The structure that describes the taxonomies present in a UDDI
registry is called a tModel, which is a very important abstraction in
UDDI that takes a considerable amount of time to understand fully.
The complexity of the tModel comes from the dual role it plays in a
UDDI registry. tModel is used to define both a service’s technical inter-
face and a taxonomy (or namespace) that specifies the categorization
or identification scheme. The complexity also comes from the fact that
tModels are referenced, unlike other structures that hold containment
relationships among themselves.

UDDI Data Model

The basic data model used in UDDI consists of a hierarchy of five basic
data types, which are defined through XML schemas. These five data
types are businessEntity, businessService, bindingTemplate, tModel,
and publisherAssertion. The following subsections provide brief descrip-
tions of these data types.

businessEntity This data type contains information on a business
or organization, such as the name of the business/organization, the
address of the business/organization, and a contact phone number of the
business/organization. This data type is at the top of the data model
hierarchy.

businessService This data type represents the aggregation of services
belonging to a specific category offered by a service provider. A service
provider identified through a businessEntity may offer several types
or collections of Web Services. The businessService data type provides
overall Web Service–level information, such as the name of a service
aggregate, a description, or a service categorization.

bindingTemplate This data type exposes the service end point address
required for accessing a distinct Web Service from a technical point of
view. It may also be used to describe technical characteristics of a service
implementation or to refer to remotely hosted services. The businessSer-
vice data type may contain more than one bindingTemplate.

tModel tModel is short for technical model. This data type is used to
expose Web Services interface information. A reference to a tModel may
indicate that a Web Service complies with a certain distinct specification

UDDI Registry 275

container of businessServices, which means there can be several busi-
nessServices belonging to a given businessEntity, but a businessService
can belong to only one businessEntity. In a similar manner, there is con-
tainment relationship between businessService and bindingTemplate.
Therefore, a bindingTemplate can belong only to a single businessSer-
vice, but a businessService can have more than one bindingTemplate.

It is clear from Figure 14.2 that tModel has fundamentally different
relationships. It does not have a containment relationship with the
other elements; rather, it is always referenced from other elements.
Also, tModel is referenced in different roles by different elements. busi-
nessEntity, businessService, tModel, and publisherAssertion refer to
a tModel as a namespace, whereas bindingTemplate refers to it as a
service type. An interesting thing to notice is the use of tModel to refer
to itself like a namespace for classification or taxonomy. Because of the
special and different roles a tModel plays, we discuss the tModel data
structure in more detail next.

tModel

The tModel fulfills two important goals of the UDDI registry. The first
goal is to provide a facility to describe Web Services well enough that
a consumer of a service can interact with the service in a well-defined
manner. The second goal is to provide a means to describe Web Services
well enough that the description is useful during searches. The first goal
is met by tModel via the technical fingerprint of a service, whereas the
second goal is met by tModel by acting in the role of a namespace or
taxonomy. We discuss these two roles next.

Technical Fingerprint Role

The specification of how a consumer interacts with a service is stored
in the tModel. In this role, the tModel acts as service type. An example
might be a specification that refers to the wire protocol and interchange
formats, such as SOAP over HTTP. After standard protocol definitions
such as these are registered as a tModel, services can express their
compliance with them by referring to them in the bindingTemplate.

A common use of the technical fingerprint involves referring to a
Web Service WSDL in the bindingTemplate (which is described later in
this chapter). Listing 14-1 provides an example of a tModel registered
in a UDDI registry. This model pertains to a credit-check protocol. The
model refers to a WSDL document in the overviewURL element. This
illustrates an important point about tModel when used as a technical
fingerprint. The tModel only stores metadata and not the actual data.
In Listing 14-1, the tModel points to a WSDL document rather than
storing the information itself. Also note that the UDDI registry assigns

276 Chapter Fourteen

a universally unique identifier (UUID) to the tModel it stores. This iden-
tifier appears as the value of the attribute tModelKey. In our example,
this attribute value is AAAAAAAA-1234-5678-AAAA.

Listing 14-1

Listing 14.1: An example of tModel used as a service fingerprint

1 <tModel xmlns="urn:uddi-org:api"

2 tModelKey="UUID:AAAAAAAA-1234-5678-AAAA">

3 <name>myCompany:creditcheck</name>

4 <description xml:lang="en">Check credit</description>

5 <overviewDoc>

6 <overviewURL>http://myComapny.schema.com/creditcheck.wsdl

7 </overviewURL>

8 </overviewDoc>

9 <categoryBag>

10 <keyedReference

11 tModelKey="UUID:CD153257-086A-4237-B336-

6BDCBDCC6635"

12 keyName="Consumer credit reporting services"

13 keyValue="95.21.22.176.234"/>

14 <keyedReference

15 tModelKey="UUID:C1ACF26D-9672-4404-9D70-

39B756E62AB4"

16 keyName="types"

17 keyValue="wsdlSpec"/>

18 </categoryBag>

19 </tModel

Once a tModel has been registered in a UDDI registry and a service
wants to adhere to the WSDL referenced in the tModel, the service can
indicate this by referencing the tModel in the bindingTemplate using
the identifier, as shown in Listing 14-2 (bindingTemplate is explained
later in the chapter).

Listing 14-2

Listing 14.2: Example of a bindingTemplate referencing a tModel

1 <bindingTemplates>

2 <bindingTemplate

3 serviceKey="CCCCCCCC-CCCC-CCCC-CCCC "

4 bindingKey="DDDDDDDD-DDDD-DDDD-DDDD ">

5 <accessPoint URLType="https">

6 https://myCompany.com/creditcheck

7 </accessPoint>

8 <tModelInstanceDetails>

9 <tModelInstanceInfo

10 tModelKey="UUID: AAAAAAAA-1234-5678-AAAA "/>

11 </tModelInstanceDetails>

UDDI Registry 277

12 </bindingTemplate>

13 </bindingTemplates>

Note that the bindingTemplate also includes a service end point,
which also will be discussed in more detail later in this chapter. Now
we turn our attention to the second type of role played by a tModel in
a UDDI registry.

Abstract Namespace Reference Role

Note in lines 9–18 of Listing 14-1 that tModelKeys are being referenced
in the categoryBag element of the credit-check tModel. (The category-
Bag element is discussed later in this chapter.) This shows the second
use of tModel—as an abstract namespace or taxonomy. The keyedRef-
erence element contains the element tModelKey, which itself consists
of two elements called keyName and keyValue. The keyedReference
element refers to a name in a given namespace defined by the tModel,
which is represented by its key.

In lines 9–18, a reference is made to two tModels for classification
purposes. In one case, the service is classified as type “wsdlSpec” in
the uddi-org:types (UUID:C1ACF26D…) taxonomy, which means that
the service description exists as a WSDL document. The uddi-org:types
taxonomy is defined as a preregistered (canonical) tModel in the UDDI
programmers specification. Therefore, it is always present in any UDDI
registry and uses the same key. Also, the specification defines the valid
values in the uddi-org:types taxonomy.

Various kinds of taxonomies can be used for classification and identifi-
cation. The classification information exists in the categoryBag, whereas
the identification information is coded into identifierBag. These two
entities—categoryBag and identifierBag—are discussed in detail in
their own separate section because, in addition to tModel, they can be
used inside a businessEntity.

Next, we discuss the structure of a tModel.

Structure of a tModel

Figure 14.3 summarizes the structure of a tModel. The top structure
includes one mandatory element, called “name,” and four optional
elements. The four optional elements are description, overviewDoc,
identifierBag, and categoryBag. The overviewDoc has two child ele-
ments called overviewURL and description. These elements and
subelements are briefly described in Table 14.1.

Next, we discuss the containment structures of categoryBag and
identifierBag.

280 Chapter Fourteen

references to tModels identifying the actual classification system, along
with keyNames and keyValues. The information in the categoryBag helps
a consumer decide whether the service or the service provider belongs
to the right category. A category can occur inside a businessEntity,
businessService, or tModel. Once again, in general, any category can
be employed. UDDI specifications mention some categories explicitly.
These explicitly mentioned categories include the North American
Industry Classification System (NAICS) and the Universal Standard
Product and Services Classification (UNSPSC) system. UDDI also has
a number of built-in taxonomies, including a taxonomy named uddi-
org:types (in other words, the keyName attribute has this value). This
is represented by a distinct tModel. This built-in taxonomy supports
the categorization of tModels. Possible category values are wsdlSpec,
soapSpec, and xmlSpec.

Binding Template

A binding template contains information on the service end point.
It also represents or refers to the technical information about a Web
Service. The complete structure of a binding template is shown in
Figure 14.5.

We first discuss the service end point information in a binding template.
Two elements can have information on the service end point: accessPoint
and hostingRedirector. They are mutually exclusive and both are a direct
child of the bindingTemplate element. The accessPoint element is used
to code the service end point information directly into the bindingTem-
plate itself. The value of this must be interpreted according to the URL
type attribute value. For example, if the attribute has the value http,
the content of the accessPoint element represents a URL. The pres-
ence of hostingRedirector (in place of accessPoint) indicates that the
binding template points to another bindingTemplate, which ultimately
provides the service end point information. This element is used if more
than one service description can benefit from one bindingTemplate.

Parameter Description

tModelKey This parameter is mandatory and points to a tModel. For example,
the distinct tModel represents the DUNS or GLN identifier system.

keyName The keyName is a human-readable form of the identifier system
plus the business entity.

keyValue This parameter is also mandatory and contains the identifier
according to the selected identifier system.

TABLE 14.2 Parameters of an identifierBag

282 Chapter Fourteen

Use of WSDL in the UDDI Registry

Recall from Chapter 13 that the WSDL document consists of a service
interface part and a service implementation part. You learned earlier in
this chapter that the bindingTemplate and tModels also provide the same
information. Therefore, it may be possible that the bindingTemplate
and tModels can delegate this information to a WSDL document. It turns
out that this is possible if the WSDL document is authored or partitioned
in a particular way. This particular way of partitioning a WSDL docu-
ment is slightly different from the partitions we talked about in Chapter
13. In this way of grouping, you group the portType and binding elements
in one file, which we will refer to as the WSDL interface and binding file.
The service element containing the port elements is grouped in another
file, which we will refer to as the WSDL implementation file. This imple-
mentation file imports the WSDL interface and binding file.

Element Description

tModelInstanceDetails This element is a container of tModelInstanceInfo elements.
This collection of all tModelInstanceInfo and tModel
elements is called the technical fingerprint of a Web Service.

tModelInstanceInfo This element refers to a tModel and optionally contains an
instanceDetails element.

instanceDetails This optional element contains associated bindingTemplate-
specific information for the referenced tModel. This information
may include wire protocol and data-exchange format info not
expressed in the tModel. This information is carried by the
subelements instanceParms and overviewDoc.

instanceParms This element is a string type. It holds bindingTemplate-
specific tModel usage parameters or setting information. For
example, it may carry the port name of an associated WSDL
implementation description.

overviewDoc This element is a container for the overviewURL element. It
contains information or links to a remote information source
related to the proper usage of the tModel referenced within the
bindingTemplate. It is an optional element and, if present, may
add to the information contained in the instanceParms element,
or it may be the only source for this kind of information.

overviewURL This element may hold a URL reference to an additional
overview document. For example, this reference may point to
a file holding the WSDL implementation description of the
Web Services.

description This is an optional string type element that may appear at
different places in the binding template. It is intended to
carry information about the accessPoint, the use of tModel,
and the use or purpose of the instanceDetails element.

TABLE 14.3 tModelInstanceDetails and Its Subelements

UDDI Registry 283

As an example, let’s again consider the weather forecast service. We
name the WSDL interface and binding file weatherServiceInterface
.wsdl, and we call the WSDL implementation file weatherServiceImpl
.wsdl. Listing 14-3 provides the implementation file that imports the
interface and binding file.

Listing 14-3

Listing 14.3: An Example of a WSDL implementation file which imports the

interface and binding file

1 <definitions name="weatherService"

2 targetNamespace=http://myCompany.com/weather.wsdl

3 xmlns:tns=http://myCompany.com/weather.wsdl

4 xmlns:SOAP-EXT=http://schemas.xmlsoap.org/wsdl/soap/

5 xmlns:imported=http://myCompany.com/ns/weatherInterface/wsdl

6 xmlns=http://schemas.xmlsoap.org/wsdl/

7 <import location=

8 http://www.myCompany.com/wsdlFiles/

weatherServiceInterface.wsdl

10 namespace=http://myCompany.com/ns/

weatherServiceInterface.wsdl/>

11 <!-- The service element containing ports elements go here

- - >

12 …..

13 </definitions>

In this WSDL implementation file, the location attribute of the import
element carries the physical location of the imported interface and bind-
ing file. The namespace prefix “imported” refers to the target namespace
of the elements contained in the interface and the binding file named
weatherServiceInterface.wsdl.

Now that we have discussed this particular partition of the WSDL
file, we are in a position to discuss how to refer to the WSDL files in
a tModel and in a bindingTemplate for registering a Web Service in a
UDDI registry. For tModel, we refer to the WSDL interface and binding
file, whereas with the bindingTemplate we refer to the WSDL imple-
mentation file.

In case of the tModel, a uddi-org:types taxonomy value of wsdlSpec
classifies the tModel to refer to the WSDL interface and binding docu-
ment. This value is specified in the categoryBag element of the tModel.
The URL of the WSDL interface and binding document is contained in
the value of the overviewURL element, which is a subelement of the
overviewDoc element.

Let’s continue with the weather service example. Listing 14-4 shows
how the reference to the WSDL interface and binding document is made
(see lines 7–9). Note that the value of the tModelKey attribute in the
keyedReference element is a UUID and points to a tModel representing

284 Chapter Fourteen

the UDDI built-in uddi-org:types category system. The keyName and
keyValue attributes determine that this weather service tModel is a
link to a WSDL document.

Listing 14-4

Listing 14.4: a tModel containing a reference to the WSDL interface and

binding document

1 <tModel tModelKey="….">

2 <name> Weather service tModel </name>

3 <description>This example illustrates the reference to a WSDL

4 interface and binding file in a tModel

5 </description>

6 <overviewDoc>

7 <overviewURL>

8 http://www.myCompany.com/wsdlFiles/weatherServiceInterface.wsdl

9 </overviewURL>

10 </overviewDoc>

11 <categoryBag>

12 <keyedReference

13 tModelKey="uuid:CDDCF34D-1234-4404-9D40-41C842G32sd7"

14 keyName="uddi-org:types"

15 keyValue="wsdlSpec"/>

16 </categoryBag>

17 </tModel>

Next, let’s look at how the WSDL implementation document is
referred to in a bindingTemplate. Note that the accessPoint element
of the bindingTemplate directly holds the exact network address of the
Web Services, as shown in Listing 14-5.

Listing 14-5

Listing 14.5: Network address of a Web Service encoded directly in the

bindingTemplate

1 <bindingTemplate bindingKey="…" servicekey="…">

2 <description> Weather service bindingTemplate</description>

3 <accessPoint URLType="http">

4 http://www.myCompany.com/servlets/weatherServlet

5 </accessPoint>

6 <!- - tModelInstanceDetails goes in here - - >

7 </bindingTemplate>

Because the accessPoint completely holds the information on the Web
Services network address, there is no need to replicate this information
elsewhere. Therefore, the attachment of the WSDL implementation docu-
ment, which also carries the network address of the Web Services, is not
required. However, to illustrate how a WSDL implementation document

UDDI Registry 285

can be linked if further tModel usage information must be attached,
let’s assume that we also want to attach a WSDL implementation
document to the binding template. The tModelInstanceDetails element
shown in Listing 14-6 completes the code for the example shown in
Listing 14-5.

Listing 14-6

Listing 14.6: Attaching a WSDL implementation document to a
bindingTemplate
1 <tModelInstanceDetails>
2 <tModelInstanceInfo tModelKey="…">
3 <instanceDetails>
4 <overviewDoc>
5 <overviewURL>
6 http://www.myCompany.com/wsdlFiles/
weatherServiceImpl.wsdl
7 </overviewURL>
8 </overviewDoc>
9 <instanceParms>
10 <port name="weatherServicePort"
11 binding="tns:weatherServiceSoapBinding"/>
12 </instanceParms>
13 </instanceDetails>
14 </tModelInstanceInfo>
15 </tModelInstanceDetails>

In this listing, we first direct the Web Services client through the over-
viewURL element to the weatherServiceImpl.wsdl document (lines 5–7)
that contains the Web Services implementation information. The
instanceParms element then directs the client to the matching port
entry within the WSDL implementation document file.

Next, we briefly cover the two APIs that UDDI offers for searching
for and registering Web Services.

Summary of UDDI APIs

The users of the UDDI registry interact with the registry using syn-
chronous calls. For this purpose, SOAP is used as the message format
and HTTP is used for the communication protocol. UDDI call-and-
response structures are embedded in the SOAP message body as
XML elements. Figure 14.6 illustrates the use of SOAP in the request
and response from a UDDI registry call. Note that SOAP headers
are not employed in UDDI registry calls. The SOAP message Fault
element carries the UDDI registry’s failure reports within its detail
element.

286 Chapter Fourteen

Generally speaking, the UDDI Registry API supports two kinds of
operations:

■ A publication API A Web Services provider uses this API to pub-
lish, update, or delete information about a Web Service it offers.

■ An inquiry API A Web Services consumer uses this API to search
for information for a particular Web Service and to find an appropriate
service provider who offers the required service.

UDDI Publishing API

There are two major call types in the inquiry API. They are of the form
save_xxx and delete_xxx. The save_xxx call is used to create new infor-
mation entities or to update existing information entities. An example
of such a call is save_binding. Thus, this call type is used for publication.
This type of call can take one or more information entities as input. An
example of this type of call request and response is shown in Figure 14.7.
In this example, bindingTemplates are being published.

In a similar manner, delete_xxx call types are used to remove or
unpublish one or more information entities from the UDDI registry.
This type of call can take as input one or more key attributes identifying
the information entities to be removed. Figure 14.8 shows an example.
In this sample call, a number of bindingTemplates are being removed
from the UDDI registry.

UDDI Inquiry API

This API supports two major types of calls: find_xxx and get_xxxDetail.
The find_xxx calls are used to locate registered information entities within
the UDDI registry. This type of call may take as input find qualifiers

Figure 14.6 SOAP request and response from a UDDI registry call

Envelope

Body

Request/
Response

SOAP Message

1

1

288 Chapter Fourteen

Once the summary information about an information entity is obtained
by the using the find_xxx call, the summary information, which includes
the keys of the matched entities, is used in the get_xxxDetail call as the
input to obtain detailed information on the matched entities. Examples
of such types of calls include get_tModelDetail, get_serviceDetail, and
get_businessDetail.

Commercial Products

Of the various Web Services standards discussed in this book, the adop-
tion of the UDDI standard by the computer industry has been the most
difficult because of some of its shortcomings. One of the major hurdles
is that the classification system used in UDDI is a highly technical
taxonomy that fails to capture the Web Service semantic required to
fully exploit the potential of Web Services (that is, dynamic discovery,
selection, and binding). The second important shortcoming is that UDDI
does not provide a standard repository capable of storing artifacts, nor
does it provide governance capabilities for managing the end-to-end life
cycle of the various types of artifacts related to services.

The industry has tried to solve these problems in multiple ways. Some
vendors have used extensions to UDDI in their products, whereas others
have adopted a more independent path. In almost all cases, the functions
of the registry have been combined with a repository in order to provide
the storing of service artifacts and governance capabilities. For example,
IBM’s application server, WebSphere Application Server (WAS), still
supports UDDI. However, IBM’s service registry and repository product,
WebSphere Service Registry and Repository (WSRR), does not rely on
the UDDI standard. Currently, efforts are underway to develop new
standards in this area.

Regardless of whether or not a product uses UDDI, the functionality
for service discovery in these commercial products is still quite weak.
This is because, in order to discover a particular service in one step, you
have to know the exact service name or ID. This is undesirable for the
following reasons:

■ A goal of Web Services and Service-Oriented Architecture (SOA) is
to decouple as much as possible the service provider from the service
consumer. The service consumer is usually a programmer writing a
client application, whereas the service provider is another program-
mer/developer who develops a service. Because consumer programmers
can only discover a service through a registry, if they know the exact
name or key, they must have a direct/indirect communication with the
provider-side programmer/developer, thus forcing a strong coupling
between the service provider and the service consumer developers.

UDDI Registry 289

This may be difficult given that all large corporations are spread across
the globe.

■ Guessing the exact name or key of a service without direct commu-
nication with the service provider is also made difficult by the fact
that word usage varies depending on location. For example, the word
“elevator” (commonly used in the U.S.) is replaced by the word “lift”
in the U.K. In addition, even within the same locale, different words
with the same meaning can be used. For example, the common word
“get” can be replaced with “fetch’ or “obtain.” Similarly, instead of “car,”
one can also use “automobile” or “vehicle.”

■ The inability to guess the name or key, and therefore to discover the
service definition, usually means that the service consumer program-
mer cannot incorporate the service in his code until the service provider
programmer completes his work on the service and informs the
programmer on the client side—either directly or indirectly—as to
the specific name or key chosen for the service in order to register
the service. This usually results in the delay of the development of
consumer or client applications for a given service.

■ The ability to discover a service definition without knowing the exact
name or key also promotes the portability of client or consumer
applications. As an illustration, consider car dealerships of different
makes of cars, such as GM, Ford, Toyota, Mazda, and so on. Suppose
each of these dealerships develops a service to get the price of its
cars. They’ll likely use slightly different names, such as getCarPrice,
getVehiclePrice, getAutomobilePrice, obtainCarPrice, and so on.
Having different names for essentially the same service means that
separate consumer applications are needed for each of the brand-
name dealerships using the present registries. However, if a registry
was able to recognize that all these names refer to the same service,
it would be able to return the service definition even though the name
in the registry and the client application do not match exactly. Thus,
only one consumer application needs to be developed with any one of
the obvious names and it will be able to serve all the dealerships.

Currently, efforts are underway at IBM to solve this problem. A partic-
ular solution has been identified, and IBM is waiting for related patents
to be issued before incorporating such a solution into its products.

Conclusion

In this chapter, you learned about the UDDI registry, which is a central
place where a consumer of a Web Service can find information about
the service and the service provider. This information is needed by

290 Chapter Fourteen

the consumer of the service to invoke the service. The UDDI registry is
also the place where a service provider can publish information about
itself and the services it offers.

We started out by discussing the basic data model of a UDDI registry.
This basic model consists of five entities: businessEntity, businessService,
bindingTemplate, publisherAssertion, and tModel. A businessEntity is
used to store information about a service provider such as its name and
address. Nontechnical information about a service is stored in the struc-
ture businessService. Technical information related to a service and its end
point is stored in the entity bindingTemplate. Perhaps the most important
entity is the tModel, which serves the dual purpose of providing a techni-
cal fingerprint of a service and an abstract namespace. You also learned
how to store categorization and identification information in a tModel
using categoryBag and identifierBag containers. We also covered how to
author or partition a WSDL document related to a service so that it can
be easily referenced in a bindingTemplate and a tModel. We also briefly
discussed the two APIs offered by the UDDI specification for publishing
and for inquiring about an existing service. Finally, we discussed the vari-
ous commercial products available and some of the future directions for
the improvement of these products.

With the completion of this chapter, we have reached the end of our
discussion of the standards related to Web Services. These standards
are XML, SOAP, WSDL, and UDDI. In addition to these standards,
we discussed the WS-I Basic Profile, which provides more stringent
requirements over and above the other four standards. The purpose
of these additional requirements is to ensure the interoperability of
Web Services across different platforms. Both application developers
and platform vendors must follow the WS-I Basic Profile to guarantee
interoperability.

In the next chapter, you will learn how to develop Web Services based
on the standards that we have discussed in this and the last three
chapters. In the next chapter we will describe two different approaches
for developing Web Services: a top-down approach and a bottom-up
approach. In the top-down approach WSDL is developed first and then
the skeleton for the service providers, and the service client is obtained
through the use of an automated tool. The developer then completes the
skeleton for the service provider according to the design. In the bottom-
up approach Java Classes or Components are developed first and then
a WSDL document is derived from these classes and components.

291

 Chapter

 15
Web Services Implementation

In the last four chapters, we discussed the various standards that
constitute the Web Services. In this chapter, we discuss how these stan-
dards are put to use in developing Web Services. In particular, we will
employ XML, the related XML schemas, WSDL, and SOAP for develop-
ing these services.

Because all the messages in the Web Services are exchanged through
SOAP, we start with a discussion of the two major choices for a SOAP
engine. A SOAP engine is simply a framework for constructing SOAP
processors such as clients, servers, and gateways. These two choices are
Apache SOAP 2.3 and the JAX-RPC implementation, which includes
the Apache Axis engine. JAX-RPC stands for Java API for XML remote
procedure call. In this chapter, we only briefly discuss the Apache SOAP
engine because the use of this engine has been deprecated due to poor
performance when large documents are involved. This poor performance
is the result of the use of the DOM parser in the Apache SOAP engine.
Next, we discuss the JAX-RPC implementations of the SOAP engine,
including the Apache Axis engine. The Axis engine employs the SAX
parser instead of the DOM parser in order to obtain much better per-
formance when large XML documents need to be processed. Another
advantage of the JAX-RPC implementation is that the structure of the
SOAP engine is highly modular, as you will see in the next section. We
also discuss JSR 109, which is an extension of the JAX-RPC specifica-
tion to the J2EE environment.

After discussing SOAP engines, we turn our attention to the main
subject of this chapter—how to develop Web Services and their clients.
For this purpose, one of two approaches is usually employed: the top-
down approach or the bottom-up approach. In the top-down approach, a
WSDL document containing the Web Service description is constructed
first and then an automated tool is used to generate the code both for

292 Chapter Fifteen

the client side and the server side. The top-down approach is the rec-
ommended approach for developing Web Services, and we will discuss
this approach in detail, including the various files generated by the
automated tool. In the bottom-up approach, Java classes or EJBs are
developed first and then automated tools are employed to expose these
classes as Web Services. These tools also generate the required WSDL
documents. We will only briefly mention this method of developing Web
Services because it is not the recommended approach for constructing
Web Services. We will deal only with Java-based services because Java
is the most common environment for developing services. However, it
should be noted that there are other ways of developing Web Services,
including services based on .NET or C++.

Finally, at the end of this chapter, we discuss some of the commercial
tools available for developing services.

Implementation Choices

When it comes to implementing Web Services and their clients, you
first must choose a SOAP engine. A SOAP engine is a framework for
constructing SOAP processors such as clients, servers, gateways, and
so on. In general, the two most common choices are

■ Apache SOAP 2.3

■ The JAX-RPC implementation, including Apache Axis.

The Apache SOAP 2.3 is based on IBM’s donated code for SOAP4J.
This code was donated to the Apache Foundation by IBM. It includes an
implementation of SOAP 1.1, and has been used in the past as the core
SOAP engine for a number of past WebSphere releases.

Figure 15.1 shows the architecture for Apache SOAP. The engine pro-
vides two servlets that are deployed in the application server’s web con-
tainer. One of the servlets handles RPC-style calls whereas the other
handles messaging-type calls. The servlets call the SOAP engine, which
looks for the name of the configuration manager in the file soap.xml.
The default configuration manager provided with the distribution is
org.apache.soap.server.XMLConfigurationManager. The manager is
designed to look for the file dds.xml, which is the deployment descriptor for
the services implemented in the web application. A graphical interface is
also provided to simplify the maintenance of this file through a browser.

The Apache SOAP distribution also provides a client API, which is
based on the class org.apache.soap.rpc.Call. This API provides a simple
mechanism for the developer to use when creating RPC-style SOAP
requests without requiring the developer to understand the schema for
the SOAP message in any detail.

Web Services Implementation 295

This figure introduces a number of new terms related to JAX-RPC.
The meanings of these terms are summarized in Table 15.1. Almost all
artifacts in this table are generated by the deployment tools provided
with any JAX-RPC runtime. The exceptions are the service client and
service end point implementations.

The JAX-RPC specification also defines a second invocation mecha-
nism known as the dynamic invocation interface (DII). The clients of
DII use the service object to dynamically create an instance of a service
end point interface. The methods and parameters of this interface can
be discovered at runtime through inspection.

The JAX-RPC specification for Web Services has been extended for
J2EE and is known as JSR 109. JSR 109 is an extension specifica-
tion that defines how service definitions are declared within a J2EE
application. A major advantage of using a J2EE container is that
it allows the use of the JNDI naming service. This eliminates the
need for the service consumer to invoke the service object factory
class directly. Instead of using the factory class directly, the client
applications use JNDI to look up the service reference. This ensures
that the service client is completely portable between JSR-compliant
runtimes.

In addition, JSR 109 defines both the client and server Web Service
deployment descriptor formats. The files for these deployment descrip-
tors are webservicesclient.xml and webservices.xml. These files define
the JNDI service reference for the service client and the location of the
service end point implementation for the service provider. The JSR 109
structure is shown schematically in Figure 15.4.

New Term Description

Service end point A collection of artifacts that provides the implementation of the
service provider

Service end point
interface

A Java interface that defines all the methods exposed by the
Web Service. This interface extends java.rmi.Remote.

Service end point
implementation

A Java class that provides the implementation of the service
and implements a service point interface

Service interface A Java interface that extends javax.xml.rpc.Service. It defines the
factory methods to instantiate the service end point interface.

Service object A Java class that provides the implementation of the factory
methods and implements the service interface

Client stub A vendor-supplied class that provides a client-side stub for the
service end point interface

Service client A Java class that calls the Web Service and is portable between
JAX-RPC implementations

TABLE 15.1 JAX-RPC Terms

Web Services Implementation 297

they should be used for production class Web Services. We use these
tools in our discussion in order to focus on the most basic aspects of
services files generation.

For this discussion we assume that a WSDL file called AddressBook
.wsdl defines the interface and implementation portions of the Web
Service, which corresponds to a telephone address book. WSDL was
discussed in detail in Chapter 13. The service defines a single operation,
addEntry(), that is used to enter a new phone address in the phone book
along with a name.

The invocation command is shown in Listing 15-1. Note that this
assumes you are in the directory that contains the WSDL file for the
Web Service.

Listing 15-1

%java org.apache.axis.wsdl.WSDL2Java AddressBook.wsdl

The generated files would be put in a directory, which we will call
AddressFetcher. The files are put in this particular directory because it
is the target namespace from the WSDL file, and namespaces map to
Java packages. Namespaces were discussed in Chapter 11.

Before we discuss the generated files that correspond to each section
of the WSDL file, we need to note the standard mappings from WSDL
to Java types. These mappings are summarized in Table 15.2.

Corresponding to each section, the tool generates one or more files.
These generated files and the WSDL sections they correspond to are
shown in Table 15.3.

TABLE 15.2 WSDL-to-Java Standard Mappings

WSDL Type Java Type

xsd:boolean boolean

xsd:int int

xsd:integer java.math.BigInteger

xsd:long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:string java.lang.String

xsd:dateTime java.util.Calendar

298 Chapter Fifteen

Next, we consider each section of the WSDL and the generated files
that correspond to those sections, starting with the types section.

The types Section

For simplicity, we assume that this types section contains only one type,
which is an XML complexType, as shown in Listing 15-2. The listing
shows that the name attribute of the complexType is phone and the
three elements correspond to the area code, telephone exchange, and
number. Two of these elements are of the xsd:string type, and the third
element is of type xsd:int.

Listing 15-2

<xsd:complexType name="phoneNumber">
 <xsd:all>
 <xsd:element name="areaCode" type="xsd:int"/>
 <xsd:element name="exchange" type="xsd:
string"/>
 <xsd:element name="number" type="xsd:string"/>
 </xsd:all>
</xsd:complexType>

WSDL2Java would create the class shown in Listing 15-3, which in
this case is a bean (as is typically the case) from the preceding section
of the WSDL file.

Listing 15-3

public class PhoneNumber implements java.io.Serializable {
 private int areaCode;
 private java.lang.String exchange;
 private java.lang.String number;
 public int getAreaCode () {
 return areaCode; }

TABLE 15.3 Generated Classes Corresponding to the Different Sections
of the WSDL Document

WSDL Section Generated Java Class(es)

For each entry in the type section
A java class
A holder class if this type is used as an inout or
out parameter

For each portType A java interface

For each binding A stub class

For each service A service interface
A service implementation (the locator)

Web Services Implementation 299

 public void setAreaCode (int areaCode) {
 this.areaCode=areaCode; }
 public java.lang.String getExchange () {
 return exchange; }
 public void setExchange (java.lang.String exchange) {
 this.exchange=exchange; }
 public java.lang.String getNumber () {
 return number; }
 public void setNumber (java.lang.String number) {
 this.number = number ; }
 public boolean equals (Object obj) { …..}
 public int hashCode () { ….. }
}

The first thing to notice in the generated code is that the class name
is Phone, whereas the XML name was phone. Therefore, the tool has
capitalized the first letter of the name to match the Java convention
that class names begin with an uppercase letter. The second thing to
notice from the generated code that corresponds to the three elements
of the complexType in XML, is that the bean has three properties.
The types of these elements are mapped according to Table 15.2. All
three properties of the bean have getter and setter methods. Finally,
notice that this bean implements the java.io.serializable interface so
that the bean can be transported over the network.

In addition to this bean, the tool also generates a holder class from
the types section of the WSDL file, as shown in Listing 15-4. This holder
class is typically used as an inout or out parameter. This is because Java
does not have the concept of inout/out parameters. In order to achieve
this behavior, JAX-RPC specifies the use of the holder class. (A holder
class is simply a class that contains an instance of its type.) The holder
for the Phone class is shown in Listing 15-4.

Listing 15-4

Public final class PhoneHolder implements javax.xml.rpc.
holders.Holder {
 public Phone value;
 public PhoneHolder () {
 }
 public PhoneHolder () {
 }
 public PhoneHolder (Phone value) {
 this.value = value;
 }
}

A holder class is generated for a type if that type is used as an inout
or out parameter. Note that the holder class has the suffix “Holder”
appended to its name.

300 Chapter Fifteen

The portTypes Section

Next, we consider the tool-generated Java code that corresponds
to the portType section of the WSDL service definition file. In this
case, the tool generates a Java interface called Service Definition
Interface (SDI) for each portType. For example, given the WSDL
shown in Listing 15-5, the WSDL2Java tool will generate the Java
code in Listing 15-6.

Listing 15-5

<message name="empty"/>
<message name="AddEntryRequest">
 <part name="name" type="xsd:string"/>
 <part name="address" type=types"address"/>
</message>
<portType name="AddressBook">
 <operation name="addEntry">
 <input message="tns:AddEntryRequest"/>
 <output message="tns:empty"/>
 </operation>
</portType>

Listing 15-6

public interface AddressBook extends java.rmi.Remote {
 public void addEntry (String name, Address address) throws
 java.rmi.RemoteException;
}

It is important to note that although the name of the SDI is typically
the name of the portType, the WSDL2Java tool needs information from
both the portType and the binding portion of the WSDL file. This fea-
ture adds some complexity, the discussion of which is beyond the scope
of this chapter.

The binding Section

The WSDL2Java tool generates a stub class for each binding. This
stub’s name is the binding name with the suffix “Stub” appended.
This stub class implements the SDI generated in the last subsection.
The stub class contains the Java code that turns the method invocations
into SOAP calls using the Axis Service and Call objects. The stub class
stands in as a proxy for the remote service, allowing you to call the ser-
vice as if it were a local object. In other words, you do not need to deal
with the end point URL, namespace, or parameter arrays involved in
the dynamic invocation via the Service and Call objects.

Listing 15-7 shows the binding section of a WSDL document.

Web Services Implementation 301

Listing 15-7

<binding name="AddressBookSOAPBinding" type="tns:AddressBook">
 … .
</binding>

The tool WSDL2Java will generate the Java code in Listing 15-8.

Listing 15-8

public class AddressBookSOAPBindingStub extends

 org.apache.axis.client.stub implements AddressBook

 public AddressBookSOAPBindingStub () throws

 org.apache.axis.AxisFault { … }

 public AddressBookSOAPBindingStub (URL endPointURL,

 javax.xml.rpc.Service service) throws

 org.apache.axis.AxisFault { … }

 public AddressBookSOAPBindingStub (javax.xml.rpc.Service service)

 throws org.apache.axis.AxisFault { …. }

 public void addEntry (String name, Address address)

 throws RemoteException { …. }

}

Note that three different constructors for this class are provided,
in addition to a method that corresponds to the sole operation defined
in the WSDL document, as shown in a previous subsection.

The service Section

Typically, a client program would not instantiate a stub class directly.
Instead, it would instantiate a service locator and then call a method
on the service locator that returns an instance of the stub class. This
locator is derived from the service section of the WSDL document.
The WSDL2Java tool generates two objects from a service section.
Listing 15-9 shows the service section of a WSDL document.

Listing 15-9

<service name="AddressBookService">
 <port name="AddressBook" binding="tns:
AddressBookSOAPBinding">
 <soap:address location=http://
localhost:8080/axisServices/AddressBook/>
 </port>
</service>

Using this service section in the WSDL2Java tool would generate the
service interface shown in Listing 15-10.

302 Chapter Fifteen

Listing 15-10

public interface AddressBookService extends javax.xml.rpc.Service {
 public String getAddressBook Address ();
 public AddressBook getAddressBook () throws
 javax.xml.rpc.ServiceException;
 public AddressBook getAddressBook (URL portAddress)
 throws javax.xml.rpc.ServiceException;
}

The WSDL2Java tool also creates a locator class that implements this
interface, as shown in Listing 15-11.

Listing 15-11

public class AddressBookServiceLocator extends
 org.apache.axis.client.Service implements AddressBookService {
….
….
}

For each port listed in the WSDL document, the tool generates a
get method in this interface. The locator is the implementation of this
service interface, and it implements these get methods. In other words,
it serves as a locator of Stub class instances. Also note that the Service
class, by default, will create a Stub class that points to the end point
URL described in the WSDL file, but you may also specify a different
URL when you ask for the portType.

The Java code in Listing 15-12 shows how the Stub class is typically
used.

Listing 15-12

public class demo {

 public static void main (String [] arg) throws Exception

 {

 // create a service locator

 AddressBookService service= new AddressBookServiceLocator ();

 // use the service locator to obtain a stub

 AddressBook book = service.getAddressBook ();

 // invoke the real method on the stub

 Address address = new Address (…);

 book.addEntry ("John Smith", address);

 }

}

This concludes our discussion of the client-side code generated by
WSDL2Java using the top-down (WSDL first) approach. Next, we consider
the server-side code generated using the same approach and the same
tool (that is, WSDL2Java).

Web Services Implementation 303

Building Web Services

In the top-down approach, automated tools can also be used to gener-
ate server-side skeleton classes that represent the Web Services. The
tool can generate a skeleton that is a Java framework. Once again,
the tools provided by IBM are the best for producing production-
class skeleton code. However, for simplicity’s sake, in this section we
will use the open-source tool WSDL2Java supplied by the Apache
foundation.

In using the WSDL2Java tool to create server-side skeleton classes,
you must specify the “—serverside –skeletonDeploy true” options. The
command shown in Listing 15-13 is an example of how this tool can
be used to create server-side skeleton classes using AddressBook.wsdl
as input.

Listing 15-13

%java org.apache.axis.wsdl.WSDL2Java --server-side --skeletonDeploy true

 AddressBokk.wsdl

Table 15.4 provides all the additional files and classes generated by
the tool when the preceding command is executed. This table also shows
the section of the WSDL file that corresponds to the generated files and
classes.

If the “—skeletonDeploy true” option is not specified, a skeleton will
not be generated. Instead, the generated deploy.wsdd file will indi-
cate that the implementation class is deployed directly. In this case,
deploy.wsdd contains extra metadata describing the operation and the
parameters of the implementation class. Note that wsdd stands for Web
Services Deployment Descriptor.

Next, we briefly discuss each of the two classes generated corresponding
to a binding section of the WSDL file.

Skeleton Class

The skeleton class is the class that sits between the Axis (SOAP) engine
and the actual service implementation. The name of this skeleton
class is the name of the binding with “Skeleton” appended at the end.

TABLE 15.4 Server-Side Files Generated by WSDL2Java

WSDL Section Java Class(es) or Files Created

For each binding A skeleton class
An implementation template class

For all services One deploy.wsdd file
One undeploy.wsdd file

304 Chapter Fifteen

The skeleton class generated by the WSDL2Java tool would be similar
to the one shown in the Listing 15-14.

Listing 15-14

public class AddressBookSOAPBindingSkeleton implements AddressBook
 org.apache.axis.wsdl.Skeleton {
 private AddressBook addressBook;

 public AddressBookSOAPBindingSkeleton () {
 this.addressBook = new AddressBOOKSOAPBindingImpl ();
 }
 public AdressBookSOAPBindingSkeleton (AddressBook impl) {
 this.addressBook = impl;
 }
 public void addEntry (String name, Address address)
 throws java.rmi.RemoteException {
 addressBook.addEntry (name, address);
 }
}

This skeleton contains an implementation of the AddressBook service.
Either the implementation is passed into the skeleton upon invoking the
constructor or an instance of the implementation is created. When the
Axis(SOAP) engine calls the skeleton’s addEntry method, it simply del-
egates the invocation to the real implementation’s addEntry method.

Implementation Template

The WSDL2Java tool also generates an implementation template from
the binding. This template can be used for the actual implementation.
The template looks similar to the one shown in Listing 15-15.

Listing 15-15

public class AddressBookSOAPBindingImpl implements
 AddressBook {
 public void addEntry (String name, Address address)
 throws java.rmi.RemoteException {
 }
}

The developer will fill out the addEntry method in this template to
provide the real implementation of the service operation.

Deployment Descriptors

The WSDL2Java tool also generates deploy.wsdd and undeploy.wsdd
files for each service. These files can be used to deploy the service once

Web Services Implementation 305

the developer has filled in the methods of the implementation class,
compiled the code, and made the classes available to the Axis engine.

Bottom-Up Approach

In this approach, the developer either creates a Java interface (or class)
or uses an existing Java class (or interface). Then the developer uses the
automated tool, Java2WSDL, to generate a WSDL service description
document. Finally, WSDL2Java is used to generate the binding and the
artifacts needed on the server side and the client side.

We now briefly cover these steps using a simple example of a Java
interface that provides two methods for setting and getting the price of a
car model. The Java code for this interface is shown in Listing 15-16.

Listing 15-16

package example;
public interface CarPrice {
 public void setCarPrice (String modelName, string price);
 public String getCarPrice (String modelName);
}

The creation of this code for the Java interface constitutes the first
step mentioned previously. We store this interface definition in the file
CarPrice.java.

In the second step, we use the Java2WSDL interface definition
file to generate a WSDL file that contains the service description.
Listing 15-17 shows the command line use of the tool.

Listing 15-17

%java org.apache.axis.wsdl.Java2WSDL –o carprice.wsdl -l

http://localhost:8080/services/CarPrice -n "urn:example" –p "examples"

"urn:example" examples.CarPrice

The various options used in this command line are summarized in
Table 15.5.

TABLE 15.5 Explanation of the Options in Listing 15-17

Option Description

-o Specifies the name of the output WSDL file. In this case, we have chosen the
name carprice.wsdl.

-l This option describes the location of the service.

-n This option specifies the namespace for the WSDL file.

-p This option defines the mapping from the Java package name to a namespace.
You can specify multiple mappings like the one shown.

306 Chapter Fifteen

The output WSDL document will contain the appropriate WSDL
types, messages, portType, bindings, and service descriptions to support
a SOAP RPC encoding Web Service.

In the third and the final step, we use the tool WSDL2Java to generate
both the server-side and the client-side bindings. A typical invocation of
this tool for our current example is shown in Listing 15-18.

Listing 15-18

%java org.apache.axis.wsdl.WSDL2Java –o . –d Session –s S true –N
urn:examples examples carprice.wsdl

This invocation will create a number of files. These files are described
in Table 15.6.

This concludes our description of the bottom-up approach using the
tools supplied by the Apache Axis engine. Next, we discuss some com-
mercial tools that provide additional features for the development and
deployment of Web Services.

Commercial Tools

Several commercial tools are available on the market that can be used
to develop services and their clients. These are typically production-
class tools and have additional features compared to open-source or

TABLE 15.6 The Generated Files from Listing 15-18

Generated File Description

CarPrice.java A new interface that extends Java.rmi.remote.

CarPriceSOAPBindingImpl.java The Java file containing the default server
implementation of the CarPrice Web Service.
The developer will need to modify the
*SoapBindingImpl file.

CarPriceService.java A Java file containing the client-side service
interface.

CarPriceServiceLocator.java This file contains client-side service
implementation class.

CarPriceSOAPBindingSkeleton.java This file contains the generated server-side
skeleton.

CarPriceSOAPBinding Stub This file contains the client-side service stub.

deploy.wsdd The deployment descriptor file for the Web
Service.

undeploy.wsdd This file contains the descriptor for
undeploying the Web Service.

Web Services Implementation 307

free tools. We describe only the tools from IBM in this section for the
sake of consistency—and because IBM tools may also be the best for
the commercial development of Web Services and their clients. Two
major tools are offered by IBM for the development of Web Services
and services clients:

■ The WSDK Toolset

■ Rational Application Developer (RAD)

Our preferred implementation for JAX-RPC and JSR 109 is the WSDK
Toolset. Therefore, we discuss it first.

WSDK stands for WebSphere Services Development Kit and is based
on the Apache SOAP engine, Axis. This toolkit includes a number of
command-line tools to help develop the Web Services using either one
of the two approaches: top-down or bottom-up.

The two command-line tools for the bottom-up approach are
Bean2WebService and EJB2WebService. The first is a utility for creat-
ing relevant artifacts to expose a bean as a Web Service. In addition,
this utility creates all the files required for a service client. This utility
is built on top of the Apache Axis command-line tool. The second utility,
EJB2WebService, converts a session EJB into a Web Service using a
bottom-up approach. This utility also wraps an Apache Axis command-
line tool.

The third utility included in the WSDL toolset is WSDL2WebService.
This utility uses a top-down approach to create a Web Service imple-
mentation skeleton for a given WSDL service specification. This utility
is also built on top of Apache’s Axis command-line tools.

In addition to the three aforementioned utilities, WSDK includes
two other utilities that are needed for developing and testing Web
Services. One of the command-line utilities is appserver. This util-
ity is used to support the administration of the provided application
server. This tool allows users to deploy, undeploy, and manage enter-
prise applications as well as to start and stop the application server
itself. Another command-line utility included in the WSDK toolset is
tcpmon. This utility provides a graphical TCP/IP monitor. Lastly, it is
important to note that WSDK comes with a number of online tutorials
and a graphical help system. Trial downloads of a full-featured WSDK
are available from the IBM website to help serve as a starting point
for your organization.

Although WSDK is our recommended toolset for developing and test-
ing Web Services, Rational Application Developer (RAD) also provides
a comprehensive set of wizards to develop both Web Services and their
clients.

308 Chapter Fifteen

RAD offers the following features for developing services and related
tasks:

■ Create Web Services using a bottom-up approach either from a Java
bean or from a stateless session EJB.

■ Create Web Services using a top-down approach starting from a WSDL
document and creating either a Java bean skeleton or a stateless
session EJB.

■ Create a SOAP message monitor.

■ Deploy, run, test, and publish Web Services providers.

In addition, RAD also offers a wizard for creating Web Services clients.
RAD supports the development of the following four kinds of Web
Services clients:

■ Standalone Java application

■ Web client

■ EJB client

■ J2EE application client

RAD also offers tools for deploying, running, and testing Web Services
clients. Note that with RAD version 6, you may not need to install a
separate application server.

Conclusion

This chapter discussed the implementation of Web Services. We started
out by describing the two SOAP engines that commonly form the basis
of Web Services development. The first implementation is based on
Apache SOAP 2.3. This implementation employs a DOM XML parser
and therefore is not suitable when large XML documents are to be pro-
cessed. As a result, the implementation based on this SOAP engine has
been deprecated. The second implementation is based on the JAX-RPC
and JSR 109 specifications. This implementation employs a SAX XML
parser, which is very efficient for processing large XML documents.
These implementations or SOAP engines also have a highly modular
structure.

Following the discussion of the two SOAP engines, we described the
two approaches for developing Web Services and their clients using the
JAX-RPC and JSR 109 specifications. We described both the top-down
approach and the bottom-up approach for developing Web Services and
their clients. Both of these methods can employ automated tools for
the development work. The top-down approach is the favored approach

Web Services Implementation 309

because it aligns very well with the overall SOA approach. In addition
to the free tools available, we discussed some commercial tools that are
suitable for production-class development. Among these, the premier
tools are the WSDK toolset and Rational Application Developer from
IBM. In the case of Java-based Web Services, the services can be based
on either simple Java classes or stateless session EJBs. The Java clients
of Web Services can be implemented in a number of different ways.
In the case of Java-based development, we discussed how the various
elements of the WSDL document map to the Java types, classes, and
packages.

This chapter concludes our discussion of the Web Services standards
and the approaches for developing Web Services and their clients. These
Web Services standards included XML and XML schema, SOAP, WSDL,
and UDDI, whereas the Web Services development approaches included
top-down and bottom-up. However, our discussion of Web Services
Clients is not yet complete. This is because the Web Services Clients
we have discussed so far are suitable when the call to a service provider
is simple and isolated. In many cases, such as business processes, this is
not the case. We discuss the business process in the next chapter.

311

 Chapter

 16
Integration Through Service

Composition (BPEL)

In the last five chapters we discussed the standards that constitute Web
Services and how to develop Web Services. In the last chapter, we dis-
cussed how to develop Web Services clients. In this development of the
clients, we assumed that the interaction of the client application with
the service provided would be isolated and simple. Such activities are
stateless and result in uncorrelated service calls. If a program or appli-
cation invokes Web Service A and following that invokes Web Service B,
then Web Service B doesn’t have any knowledge of what happened in
Web Service A. Such is the case for many integration scenarios.

However, in many other scenarios the interaction of the client with
the service is not so simple. Such is the case with many, and if not
all, business processes. A business process is a collection of related,
structured activities or tasks that produces a specific product (serves
a particular goal) or service for a particular customer (or customers). A
process begins with a customer’s need and ends with the fulfillment of
the need. Common examples of such business processes include plan-
ning business travel and purchasing.

Because a business process involves complex, related, and structured
activities, it requires a stateful environment for invoking a chain of
Web Services that implement the business process. Therefore, a model
is needed for describing complex exchanges that characterize business
interactions that includes sequences of peer-to-peer messages and state-
ful long-running interactions. An example of a business process that
requires long-running interactions is a customer order for a product.
This business process begins when the order is received and ends when
the product is shipped. It may take hours, days, or weeks for the com-
plete fulfillment of the order.

314 Chapter Sixteen

defines the different parties that interact with the BPEL process. These
parties include all Web Services that will be invoked and the clients of
the process. partnerLinks also specifies the different roles played by
these interacting parties. The variables element is used to store, refor-
mat, and transform messages. Generally, we use a variable for every
message sent to and received from the Web Services. BPEL starts with
the process declaration element (process), which is used to define the
process name and namespaces. The typical arrangement of a BPEL doc-
ument is depicted schematically in Figure 16.4. This figure will become
clearer after we discuss each element in the next section.

<process … >

<partnerLinks … >

<variables … >

<structure element 1 … >

<primitive activity 1 … >

<primitive activity 2 … >

</structure element 1>

<structure element 2 … >

</structure element 2 … >

</process>

Figure 16.4 A typical arrangement of activities and other elements in a BPEL document

Integration Through Service Composition (BPEL) 315

BPEL is similar to other programming languages but is geared toward
the characteristics of a business process. BPEL provides a means to
express complex flows, making it relatively easy to call asynchronous
operations and wait for the callback. BPEL also provides event handlers
and fault handlers.

From the client perspective, the BPEL process appears the same as
any other Web Service because the BPEL process itself is described
using WSDL. This is important because it allows Web Services to be
composed into simple processes, simple processes into more complex
processes, and so on.

To execute the instructions contained in a BPEL document for a busi-
ness process, a runtime environment called BPEL server is required. A
BPEL server usually provides control over process instances that are
executing or have completed. It also provides support for long-running
processes by dehydrating the process state (that is, by saving the state
on the disk) to save resources. Some of BPEL servers may also provide
control over process activities and allow their monitoring. Because all
processes are deployed centrally, it eases the maintenance.

A number of commercial BPEL servers are available, including servers
from IBM (WebSphere Business Process Server), Microsoft, and BEA. In
addition, open-source BPEL servers include ActiveBPEL engine, Apache
Agila, bexee, and FiveSight PXE.

Detailed Description

This section provides more detailed descriptions of various elements of
BPEL. Three kinds of elements/activities were mentioned in the last
section: primitive activities, structuring activities, and miscellaneous
elements such as partnerLinks and variables. We now discuss the ele-
ments/activities contained in each of these categories, starting with the
miscellaneous elements/activities.

Miscellaneous Elements

The elements in this category are usually the first few elements in a
BPEL document. Therefore, we will discuss these elements first. We
start out by discussing the process element.

The process Element The process element is the first element of a
BPEL document. It defines the name of the process and the various
namespaces used in the BPEL document. An example of this element is
shown in Listing 16-1. This process element has a name attribute that is
used to specify the name of the process. In this listing, we have named
the process BusinessTravel. The next attribute is the target namespace;

316 Chapter Sixteen

then we define the various namespaces we will need to complete the
BPEL document.

Listing 16-1

Listing 16.1 : An example of process element

1 <process name="BusinessTravel"

2 targetNamespace=http://myCompany.com/bpel/businessTravel/

3 xmlns=http://schemas.xmlsoap.org/ws/2003/03/business-process/

4 xmlns:bpws=http://schemas.xmlsoap.org/ws/2003/03/business-process/

5 xmlns:travel=http://myCompany.com/bpel/travel/

6 xmlns:airline=http://myCompany.com/service/airline/>

The partnerLinks Element This element is used to define the different
parties that interact with the BPEL process. These parties include all the
Web Services that will be invoked and the client of the process. The part-
nerLinks element can have one or more subelements called partnerLinks.
Each of these subelements specifies one party with the name attribute.
In addition, each of these subelements has two other attributes: myRole,
which indicates the role of the business process itself, and partnerRole,
which indicates the role of the party. Listing 16-2 provides an example of
the partnerLinks element. This particular example has two subelements
corresponding to two parties—the client and an airline.

Listing 16-2

Listing 16.2: Example of partnerLinks element
1 <partnerLinks>
2 <partnerLink name="client"
3 partnerLinkType="travel:travelLT"
4 myRole="travelService"
5 partnerRole="travelServiceClient"/>
6 <partnerLink name="myAirline"
7 partnerLinkType="airline:flightLT"
8 myRole="airlineCustomer"
9 partnerRole="airlineService"/>
10 </partnerLinks>

The variables Element This element is used to define the variables used
to store, reformat, and transform messages. Commonly one variable is
defined for each message sent to or received from a Web Service. Note that
variable is a subelement, and you can have as many of these subelements
as you need. Listing 16-3 shows some sample code for this element. In
this example, two variables are defined. Each of the subelements has two
attributes: name, which is used to identify the variable, and messageType,
which indicates the type of the message. The message types are usually
defined separately, usually in a WSDL document or XML schema.

Integration Through Service Composition (BPEL) 317

Listing 16-3

Listing 16.3: Sample code for element variables

1 <variables>

2 <variable name="TravelRequest"

3 messageType="travel:TravelRequestMessage"/>

4 <variable name="FlightDetails"

5 messageType="airline:FlightTicketRequestMessage"/>

6 </variables>

Primitive Activities

The various activities included in this category are invoke, receive,
assign, throw, and wait, as shown earlier in Figure 16.3. We discuss
each of these activities, starting with the invoke activity.

The invoke Activity Invoking an operation on a service is a basic activity.
Such an operation can be a synchronous request/response or an asyn-
chronous one-way operation. BPEL4WS uses the same basic syntax for
both, with some additional options for the synchronous operation. An
asynchronous invocation requires only the input variable of the opera-
tion because it does not expect a response as part of the operation. A
synchronous invocation requires both an input variable and an output
variable. The basic syntax for the invoke activity is shown in the sample
code of Listing 16-4. This sample code is used to synchronously invoke
a service because both the inputVariable and outputVariable attributes
are specified. The service operation name has to be specified as well as
the portType attribute value. In addition, the partnerLink attribute
value has to be specified.

Listing 16-4

Listing 16.4: Sample code for invoking a synchronous operation
on a service
1 <invoke partnerLink="employeeTravelStatus"
2 portType="employee:EmployeeTravelStatusPT"
3 operation="EmployeeTravelStatus"
4 inputVariable="EmployeeTravelStatusRequest"
5 outputVariable="EmployeeTravelStatusResponse" />

The receive Activity A business process provides services to its partners
through receive activities and corresponding reply activities. A receive
activity specifies the partner link it expects to receive from, as well as
the port type and operation it expects the partner to invoke. In addition,
it may specify a variable that is to be used to receive the message data.
However, this attribute is syntactically optional because it is absolutely
required only in executable processes.

318 Chapter Sixteen

In addition, receive activities play a role in the life cycle of a business
process. The only way to instantiate a business process in BPEL4WS is
to annotate a receive activity with the createInstance attribute set to
“yes.” The default value of this attribute is “no.” A receive activity anno-
tated in this way must be an initial activity in the process—that is, the
only other basic activities that may potentially be performed prior to
or simultaneously with such a receive activity must be similarly anno-
tated receive activities. Sample code for the receive activity is shown in
Listing 16-5. In this sample code, the receive activity is used to receive
the initial request from the client of the business process.

Listing 16-5

Listing 16.5: Sample code for receive activity
1 <receive partnerLink="client"
2 portType="travel:TravelApprovalPT"
3 operation="TravelApproval"
4 variable="TravelRequest"
5 createInstance="yes" />

The reply Activity A reply activity is used to send a response to a request
previously accepted through a receive activity. Such responses are only
meaningful for synchronous interactions. An asynchronous response is
always sent by invoking the corresponding one-way operation on the
partner link. A reply activity may specify a variable that contains the
message data to be sent in reply. However, this attribute is syntactically
optional because it is absolutely required only in executable processes.

Note that the reply activity corresponding to a given request has
two potential forms. If the response to the request is normal, the fault-
Name attribute is not used and the variable attribute, when present,
will indicate a variable of the normal response message type. If, on the
other hand, the response indicates a fault, the faultName attribute is
used and the variable attribute, when present, will indicate a variable
of the message type for the corresponding fault. The syntax for the reply
activity is shown in Listing 16-6. Note that a trailing question mark (?)
indicates an optional attribute. Also note that “ncname” means name
without qualification, and “qname” means qualified name.

Listing 16-6

Listing 16.6: Syntax for reply activity
1 <reply partnerLink="ncname"
2 portType="qname"
3 operation="ncname"
4 variable="ncname"?
5 faultName="qname"? />

Integration Through Service Composition (BPEL) 319

The assign Activity The assign activity can be used to copy data from
one variable to another, as well as to construct and insert new data
using expressions. The use of expressions is primarily motivated by the
need to perform a simple computation (such as incrementing sequence
numbers) that is required for describing the business protocol behav-
ior. Expressions operate on message selections, properties, and literal
constants to produce a new value for a variable property or selection.
Finally, this activity can be used to copy end point references to and
from partner links. Listing 16-7 shows two simple examples of copying
the values of one variable into another.

Listing 16-7

Listing 16.7: example code for the assign activity
1 <assign>
2 <copy>
3 <from variable="c1"/>
4 <to variable="c2"/>
5 </copy>
6 <copy>
7 <from variable="c1" part = "address"/>
8 <to variable="c3"/>
9 </copy>
10 </assign>

The wait Activity The wait activity allows a business process to specify a
delay for a certain period of time or until a certain deadline is reached.
A typical use of this activity is to invoke an operation at a certain time,
as shown in Listing 16-8.

Listing 16-8

Listing 16.8: Example of the use of wait activity
1 <wait until="'2008-12-24T18:00+01:00'"/>
2 <invoke partnerLink="CallServer" portType="AutomaticPhoneCall"
3 operation="TextToSpeech"
4 inputVariable="seasonalGreeting">
5 </invoke>

The throw Activity This activity is used by a business process to indicate
an internal error. Every fault is required to have a globally unique QName.
The throw activity is required to provide such a name for the fault and
can optionally provide a variable of data that provides further information
about the fault. A fault handler can use such data to analyze and handle
the fault and also to populate any fault messages that need to be sent to
other services.

320 Chapter Sixteen

Fault names are not required to be defined prior to their use. An applica-
tion or process-specific fault name can be directly used by employing an
appropriate QName as the value of the faultName attribute and providing
a variable with the fault data if required. This provides a very lightweight
mechanism to introduce application-specific faults. A simple example that
does not provide a variable for the fault data is shown in Listing 16-9.

Listing 16-9

Listing 16.9: Simple example of throw activity
1 <throw
2 xmlns:tmp="http://company.com/faults"faultName="tmp:OutOfStock"/>

Structuring Activities

The simple primitive activities we just discussed are usually combined
into more complex algorithms that specify the business process. For this
purpose, BPEL supports many structuring activities. We now discuss
some of the important structuring activities.

The sequence Activity A sequence activity is used for defining a set of
activities that will be performed in an ordered sequence, which is deter-
mined by the order in which the activities are listed. This is depicted
in a schematic manner in Figure 16.5. The sequence activity completes
when the final activity in the sequence has completed. An example of
the sequence activity is shown in Listing 16-10.

Listing 16-10

Listing 16.10 : Sample code for sequence activity
1 <sequence>
2 <invoke partnerLink="UnitedAirlines"
3 portType="airline:FlightAvailabilityPT"
4 operation="FlightAvailabilty"
5 inputVariable="FlightDetails" />
6 <receive partnerLink="UnitedAirlines"
7 portType="airline:FlightCallbackPT"
8 operation="FlightTicketCallback"
9 variable="FlightResponse" />
10 </sequence>

The flow Activity This activity is used to group a set of activities that
will be performed in parallel, as shown schematically in Figure 16.6.
The most fundamental semantic effect of grouping a set of activities
in a flow is to enable concurrency. A flow completes when all the
activities in the flow have completed. Sample code for a flow activity
is shown in Listing 16-11.

Integration Through Service Composition (BPEL) 321

Listing 16-11

Listing 16.11: Sample code for flow activity
1 <sequence>
2 <flow>
3 <invoke partnerLink="Seller" .../>
4 <invoke partnerLink="Shipper" .../>
5 </flow>
6 <invoke partnerLink="Bank" .../>
7 </sequence>

The switch Activity This activity is used for implementing branches, as
shown schematically in Figure 16.7. This structuring activity has the same
effect and construction as the switch statement in many programming
languages such as Java and C/C++. This activity consists of an ordered
list of one or more conditional branches defined by “case” elements, fol-
lowed optionally by an “otherwise” branch. The case branches of the switch
are considered in the order in which they appear. The first branch whose

activity 1

activity 2

activity 3

Figure 16.5 BPEL sequence element

activity 1

activity 2

activity 3

Figure 16.6 BPEL flow element

322 Chapter Sixteen

condition holds true is taken and provides the activity performed for the
switch. If no branch with a condition is taken, then the otherwise branch
is taken. A sample illustration of the use of the switch activity is shown
in Listing 16-12.

Listing 16-12

Listing 16.12: Illustration of switch activity
1 <switch>
2 <case condition="boolean expression 1">
3 ……
4 </case>
5 <case condition="boolean expression 2">
6 …….
7 </case>
8 <otherwise>
9 ……
10 </otherwise>
11 </switch>

The while Activity This activity defines a loop and also has the same
effect as in other programming languages such as Java and C/C++. This
activity supports repeated performance of a specified iterative activ-
ity. The iterative activity is performed until the given Boolean “while”
condition no longer is true. The syntax of the while activity is shown in
Listing 16-13.

Listing 16-13

Listing 16.13: Syntax for the BPEL while activity
1 <while condition="boolean expression" >
2 …….
3 </while>

activity 1

activity 2

activity 3

Figure 16.7 BPEL switch element

Integration Through Service Composition (BPEL) 323

The pick Activity The pick activity awaits the occurrence of one of a set
of events and then performs the activity associated with the event that
occurred. The occurrence of the events is usually mutually exclusive in
that the process will either receive an acceptance message or a rejection
message, but not both. The form of pick is a set of branches of the form
event/activity, and exactly one of the branches will be selected based on
the occurrence of the event associated with it before any others. Note
that after the pick activity has accepted an event for handling, the other
events are no longer accepted by that pick. The possible events are the
arrival of some message in the form of the invocation of an inbound
one-way or request/response operation, or an “alarm” based on a timer
(in the sense of an alarm clock). This particular scenario is illustrated
in Listing 16-14.

Listing 16-14

Listing 16.14: Sample code for the use of pick activity
1 <pick>
2 <onMessage …>
3 activity 1
4 </onMessage>
5 <onAlarm>
6 activity 2
7 </onAlarm>
8 </pick>

Practical Example

We now demonstrate how the preceding constructs of BPEL come
together with an example of a business process (see Listing 16-15).
Note that this example is for illustration purposes only and is not
meant for actual production use. This example is missing some impor-
tant details, including any fault handling. In this example, we consider
a business process for obtaining the best ticket offer from two airlines
(United Airlines and US Airways) for a business traveler. The busi-
ness process is shown in Figure 16.8, whereas the interactions of this
business process with the customer and three other Web Services are
depicted in Figure 16.9.

In the process shown, the business process customer (that is, the busi-
ness traveler) obtains the best ticket offer from the business process
through a synchronous call. For this purpose, the business process provides
a portType to the customer, as shown on the left of the business process in
Figure 16.9. After receiving a request from the customer, the business
process makes an asynchronous call to the human resource Web Service to
check the status of the customer as a business traveler. Then the process

324 Chapter Sixteen

makes two asynchronous calls to obtain ticket information, including the
price of the tickets from the two airlines. These two asynchronous calls
are made at the same time. The replies from the two airlines are obtained
by using callback operations. For these callback operations, the business
process provides a portType to receive the ticket information. As a last
step, the business process determines the lowest ticket offer and sends
that offer to the customer.

Figure 16.8 Sample business process

Receive
Customer
Request

Check Travel
Status

United Lower Price US Air Lower Price

Return the Best
Offer to the
Customer

Obtain United
Ticket Info

Obtain US Air
Ticket Info

Select United
Airlines Ticket

Info

Select US Air
Airlines Ticket

Info

Compare
Prices

326 Chapter Sixteen

16 partnerRole="workerGoStatusService" />

17 <partnerLink name="UnitedAirlines"

18 partnerLinkType="line:flightLT"

19 partnerRole="airlineService />

20 <partnerLink name="USAir"

21 partnerLinkType="line:flightLT"

22 partnerRole="airlineService" />

23 </partnerLinks>

24 <variables>

25 <variable name="CustomerRequest"

26 messageType="go:CustomerRequestType" />

27 <variable name="WorkerGoStatusRequest"

28 messageType="hr:WorkerGoStatusRequestType" />

29 <variable name="WorkerGoStatusResponse"

30 messageType="hr:WorkerGoStatusResponseType" />

31 <variable name="FlightDetails"

32 messageType="line:FlightTicketRequestType" />

33 <variable name="USAirFlightResponse"

34 messageType="line:TravelTicketResponseType" />

35 <variable name="UnitedAirlinesFlightResponse"

36 messageType="line:TravelTicketResponseType" />

37 <variable name="TravelResponse"

38 messageType="line:TravelTicketResponseType" />

39 </variables>

40

41 <sequence>

42 <!—Initial request from the customer -->

43 <receive partnerLink="Customer"

44 portType="go:GoApprovalPT"

45 operation=" GoApproval"

46 variable="CustomerRequest"

47 createInstance="yes" />

48

49 <!-- Prepare input for worker status check

50 <assign>

51 <copy>

52 <from variable="CustomerRequest" part="worker />

53 <to variable="WorkerGoStatusRequest" part="employee" />

54 </copy>

55 </assign>

56

57 <!—invoke the worker status check Web Service

58 <invoke partnerLink="WorkerGoSatus"

59 portType="hr:WorkerGoSatusPT"

60 operation="WorkerGoStatus"

61 inputVariable="WorkerGoStatusRequest"

62 outputVariable="WorkerGoStatusResponse" />

63

64 <!—Make parallel invocations to United Airlines and US Air Web Services

65 <flow>

66 <sequence>

67 <!-- make asynchronous invocation for United Airlines Web Service and

68 wait for the call back -->

Integration Through Service Composition (BPEL) 327

69 <invoke partnerLink="UnitedAirlines"

70 portType="line:FlightAvailabilityPT"

71 operation="FlightAvailability"

72 inputVariable="FlightDetails" />

73

74 <receive partnerLInk="UnitedAirlines"

75 portType="line:FlightCallbackPT"

76 operation="FlightTicketCallback"

77 variable="UnitedAirlinesFlightResponse" />

78 </sequence>

79

80 <sequence>

81 <!—Make similar asynchronous call to US Air Web Service and

82 wait for call back -- >

83 <invoke partnerLink="USAir"

84 portType="line:FlightAvaialbilityPT"

85 operation="FlightAvailability"

86 inputVariable="FlightDetails" />

87

88 <receive partnerLink="USAir"

89 portType="line;FlightTicketCallbackPT"

90 operation="FlightTicketCallback"

91 variable="USAirFlightResponse" />

92 </sequence>

93 </flow>

94 <!-- Select the airline with lowest price (all details are not

 provided here)

95 -- >

96 <switch>

97 <case condition=

 "bpws:getVariableData('UnitedAirlinesFlightResponse',

98 'confirmationData', 'confirmationData/line:Price')

99 <= bpws:getVariableData('USAirFlightResponse',

100 'confirmationData', 'confirmationData/line:Price')">

101 <assign>

102 <copy>

103 <from variable="UnitedAirlinesFlightResponse" />

104 <to variable=" TravelResponse" />

105 </copy>

106 </assign>

107 <otherwise>

108 <assign>

109 <copy>

110 <from variable="USAirFlightResponse" />

111 <to variable=" TravelResponse" />

112 </copy>

113 </assign>

114 </otherwise>

115 </switch>

116 <!—Finally return a reply to the customer through a callback -- >

117 <invoke partnerLink="Customer"

118 portType="go:CustomerCallback"

119 operation="CustomerCallback"

328 Chapter Sixteen

120 inputVariable="TravelResponse" />

121 </sequence>

122 </process>

We now briefly discuss the important segments of the code from
Listing 16-15.

Lines 1–7

In these lines, we define the top element (process) of this BPEL docu-
ment. We specify the name (BusinessTravel) of the business process
using the name attribute and then we define several namespaces. The
most important namespace is that identified by “bpws,” which corre-
sponds to the BPEL schema and should be part of all BPEL process
elements. We also define three additional namespaces specific to this
example: hr, line, and go. These correspond to the employee status check-
ing service, the airlines services, and the travel service.

Lines 9–23

These lines are used to define various parties interacting with the busi-
ness process using the elements partnerLinks and partnerLink. In this
sample code, four parties are identified, corresponding to the customer
of the business process, the employee travel status service, and the two
airlines services. Each partnerLinks element specifies up to two attri-
butes: myRole (which indicates the role of the business process itself)
and partnerRole (which indicates the role of the interacting party).

Lines 24–39

These lines are used to define variables that are used to store, reformat,
and transform messages. Typically we need one variable for each mes-
sage that is exchanged between a service and the business process. For
each message, the message type must be specified. The choice of the
message type is either a WSDL message type, an XML schema simple
type, or an XML schema element. In this example, we only use WSDL
message types for all variables.

Lines 41–47

Next we write the main body of the business process, which contains one
top-level activity: a sequence. This top-level activity allows us to define
several activities that will be performed in the order in which they are
listed in the code. Within this structuring activity, the first activity is
a receive activity, which is used to wait for the message that will start
the business process. In our example, the message is from the customer.

Integration Through Service Composition (BPEL) 329

The incoming message is specified by the partnerLink, the portType,
the operation name, and, optionally, the variable that holds the received
message. In this case, the variable that holds the incoming message is
called CustomerRequest. An important thing to note is that the attri-
bute createInstance is set to “yes.” This means that every new message
received will start a new instance of the business process.

Lines 49–55

In order to prepare the input for the employee travel status check ser-
vice, we copy a part of the contents of the variable CustomerRequest to
the variable WorkerGoStatusRequest. This second variable will be used
as the input to the travel status check service request.

Lines 58–62

Next we synchronously invoke the Web Service to check the travel
status of the worker by using the invoke activity. In order to invoke
the service, we have to specify the port type, the operation name,
and the input variable name. The input variable name here is
WorkerGoStatusRequest. The output of this synchronous call is stored
in the variable WorkerGoStatusResponse.

Lines 64–93

The code in these lines is used to make two asynchronous calls to the
United Airlines and US Airways Web Services and then to receive
the two callbacks from these services. These calls are made concur-
rently by using the flow structuring activity. For each of the two air-
lines, the invocation of the service consists of an invoke activity and a
receive activity, which is used to wait for the callback. The structur-
ing activity sequence is used to group these two activities. The results
obtained through the receive activities are stored in two variables:
UnitedAirlinesFlightResponse and USAirFlightResponse.

Lines 96–115

Next, a switch structuring activity is used to pick one of the two airlines
by comparing the quoted prices and choosing the airline with the lowest
price. The output of this activity is captured in the variable named
TravelResponse.

Lines 116–122

The code in these lines is used to return the lowest offer to the customer
through a callback and using an invoke activity. Once again, we have to

330 Chapter Sixteen

specify the port type, the operation name, and the variable name that
contains the input information for this callback.

Conclusion

This chapter covered the Business Process Execution Language (BPEL).
BPEL is used to describe the composition of a business process from
various services. A BPEL document can be used in a process server (such
as IBM’s WebSphere Process Server) to execute the business process.
The interface to the business process itself is described using WSDL.
The primary purpose of BPEL is to allow for a stateful environment
that is required for long-running processes that involve a chain of Web
Services invocations. BPEL is based on other standards, including XML,
XML schema, XPath, and WSDL.

A very important advantage of BPEL is that new processes can be
composed quickly from existing Web Services and then executed in a
process server. This provides a more agile method of composing services
compared to hard-coding the services in a programming language such
as Java.

Part

Appendixes

6

333

References

Common Database
 1. Silbershatz, A., H.F. Korth, and S. Sudarshan. Database System Concepts, Fifth

Edition, McGraw-Hill, 2005.
 2. Elmasri, R. and S.B. Noble. Fundamentals of Database Systems, Second Edition,

Addison-Wesley, 1994.

File-Based Data Sharing and FTP
 1. Folk, M.J., B. Zoellick, and G. Riccardi. File Structures: An Object-Oriented Approach

with C++, Addison-Wesley, 1998.
 2. http://tools.ietf.org/rfc959 (J. Postel and J. Reynolds, 1985).
 3. http://www.ftpplanet.com/ftprosources/basic.htm (FTP—New User Guide).

Sockets
 1. Stevens, W.R., B. Fenner, and A.M. Rudoff. Unix Network Programming: The Sockets

Network API, Volume 1, Third Edition, Addison-Wesley, 2004.

RPC (Remote Procedure Call)
 1. Unix Network Programming: Interprocess Communication, Volume 2, Second Edition,

Prentice-Hall, 1999.
 2. Eddon, Guy. RPC for NT, Elsevier Science Ltd., 1994.
 3. Bloomer, John. Power Programming with RPC (Nutshell Handbooks), O’Reilly &

Associates, Inc., 1992.

CORBA and Java RMI
 1. www.corba.org (CORBA home page).
 2. www.omg.org (Object Management Group home page).
 3. Rossenberger, J. Teach Yourself CORBA in 14 Days, Sams Publishing, 1999.
 4. Brose, G., A. Vogel, and K. Duddy. Java Programming with CORBA: Advanced

Techniques for Building Distributed Applications, Third Edition, Wiley, 2001.
 5. Henning, M. and S. Vinoski. Advanced CORBA Programming with C++, Addison-

Wesley, 1999.
 6. http://java.sun.com/j2SE/docs/rmi/ (Java RMI).
 7. http://java.sun.com/docs/book/tutorial/rmi/index.html (Java RMI tutorial).
 8. http://www-0.1.ibm.com/software/webservers/appserv/wasproductline/ (WebSphere

Application Server product information).
 9. http://www.redbooks.ibm/abstracts/redp3918.html (technical information on IBM’s

WebSphere Application Server).

Messaging
 1. Hohpe, G. and B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions, Addison-Wesley, 2004.

334 References

 2. http://www.ibm.com/software/integration.wmq (IBM’s WebSphere MQ product
information).

 3. http://www.redbooks.ibm.com/abstracts/sg247128.html (IBM’s red book of technical
details on WebSphere MQ).

 4. http://java.sun.com/products/jms/ (JMS API specification).
 5. Yosuf, K. Enterprise Messaging Using JMS and IBM WebSphere, IBM Press, 2004.
 6. Monson-Haefel, Richard. Enterprise Java Beans, Third Edition, O’Reilly, 2001

(message-driven beans).
 7. http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/MDB.html (a message-driven bean

example).

XML
 1. http://www.w3.org/TR/xml-infoset (XML Infoset, Second Edition).
 2. Means W.S. and E.R. Harold. XML in a Nutshell: A Desktop Quick Reference, O’Reilly,

2001.
 3. http://www.w3.org/TR/xmlschema-0/ (XML schema).
 4. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/structures.html (XML

Schema Part I: Structures, Second Edition).
 5. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html (XML

Schema Part II: Datatypes, Second Edition).
 6. http://www.w3schools.com/schema/default.asp (XML schema tutorial).
 7. http://www.w3.org/TR/xslt (XSLT specification).
 8. http://www.w3schools.com/xsl/ (XSLT tutorial).
 9. http://jcp.org/aboutjava/communityprocess/first/jsr173/ (StAX specification).
10. http://java.sun.com/j2ee/1.4/tutorial/doc/JAXPSAX.html (SAX tutorial).
11. http://www.w3.org/DOM/ (DOM specification).
12. http://java.sun.com/j2se/1.4.2/doc/api/org/w3c/dom/package-summary.html (Java API

for DOM).
13. http://java.sun.com/j2se/1.4.2/doc/api/org/w3c/sax/package-summary.html (Java API

for SAX).
14. http://www.saxproject.org/apidoc/overview-summary.html (overview of SAX API)
15. http://ws.apache.org/axis/java/user-guide.html (Apache Axis user guide).

SOAP
 1. http://www.w3.org/TR/soap/ (latest version of SOAP).
 2. http://schemas.xmlsoap.org/soap/envelope/ (SOAP schema).
 3. http://www.w3schools.com/soap/default.asp (SOAP tutorial).

WSDL
 1. http://www.w3.org/TR/wsdl (WSDL specification).
 2. http://www.w3.org/TR/WSDL20/ (WSDL version 2.0).
 3. http://www.w3schools.com/wsdl/default.asp (WSDL tutorial).

UDDI and SOA Registry
 1. http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm (UDDI

API specification).
 2. http://uddi.xml.org/ (online UDDI community).
 3. http://www.w3schools.com/WSDL/wsdl_uddi.asp (UDDI tutorial).
 4. http://www-0.1.ibm.com/software/integration/wsrr/ (WebSphere Registry and

Repository [WSRR] information).
 5. http://www.ibm.com/software/integration/library/faqs.html (frequently asked questions

and answers related to WSRR).

References 335

Web Services Development Tools
 1. http://www.ibm.com/software/awdtools/studioappdev/ (Rational Application Developer

home page).
 2. http://www.ibm.com/developerworks/library/library/ws-wsdk5/intro/ (WebSphere SDK

for Web Services 5.1).
 3. http://www.ibm.com/developerworks/rational/products/rad/ (Rational Application

Developer).
 4. http://www.redbooks.ibm.com/abstracts/sg247672.html (Rational Application

Developer V7.5 programming guide).
 5. http://ws.apache.org/axis/java/user-guide.html (Apache Axis user guide).
 6. http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm

.websphere.iseries.doc/info/ae/ae/rwbs_wsdl2java.html (WSDL2Java command).
 7. http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm

.websphere.iseries.doc/info/ae/ae/rwbs_wsdl2java.html (Java2WSDL command).
 8. Zimmermann, O., M. Tomlinson and S. Peuser. Perspectives on Web Services: Applying

SOAP, WSDL and UDDI to Real-World Projects, Springer, 2003.
 9. Singh, I., S. Brydon, G. Murray, V. Ramachandran, T. Violleau, and B. Stearns. Designing

Web Services with the J2EE 1.4 Platform: JAX-RPC, SOAP, and XML Technologies,
Addison-Wesley, 2004.

Mainframe Application Integration
 1. http://www.ibm.com/ims (IMS home page).
 2. http://www.ibm.com/cics (CICS home page).
 3. http://www.ibm.com/software/data/ims/toolkit/ (IMS Integration Suite).
 4. http://wmq.boulder.ibm.com/training/techconf/2005mq/M39.pdf (IMS Bridge).
 5. http://www.redbooks.ibm.com/redbooks/pdfs/sg245243.pdf (CICS Bridge).
 6. http://www.ibm.com/software/data/ims/soap (IMS SOAP Gateway).
 7. http://www.redbooks-ibm.com/abstracts/sg246794.html (IMS SOAP Gateway details).
 8. http://www.redbooks.ibm.com/redbooks/pdfs/sg245466.pdf (Web Service support in

CICS V3.1).
 9. http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm

.etools.ims.tmra.doc/topics/tmresoverview.htm (IMS TM Resource Adapter).
10. http://www.ibm.com/software/data/ims/connect (IMS Connect).

Package Applications
 1. http://w3.tap.ibm.com/w3ki/display/Adapters/Home (WebSphere application adapters).

BPEL
 1. http://www-106.ibm.com/developerworks/library/ws-bpel (BPEL4WS specification).
 2. Juric, M.B., B. Mathew and P. Sarang. Business Process Execution Language for Web

Services, Second Edition, Packt Publishing, 2006.

Enterprise Service Bus
 1. http://www-01.ibm.com/software/integration/wsesb (WebSphere Enterprise Service

Bus [WESB] home page).
 2. http://www.redbooks.ibm.com/abstracts/sg247212.html (Details of WESB, WESB

red book).
 3. http://www-01.ibm.com/software/integration/wbimessagebroker (WebSphere Message

Broker home page).
 4. http://www.redbooks.ibm.com/abstracts/sg247137.html (WebSphere Message Broker

red book).

336 References

 5. http://www-01.ibm.com/software/integration/datapower (WebSphere DataPower
home page).

 6. http://www.redbooks.ibm.com/abstracts/redp4327.html (WebSphere DataPower
red book).

SOA (General References)
 1. http://www.ibm.com/developerworks (an excellent source for up-to-date information

on SOA, Web Services, and SOA-related topics).
 2. Rosen, M., B. Lublinsky, K.T. Smith, and M.J. Balser. Applied SOA: Service-Oriented

Architecture and Design Strategies, Wiley, 2008.
 3. Earl, Thomas. Service-Oriented Architecture: Concepts, Technology, and Design,

Prentice Hall, 2006.
 4. Krafzig, D., K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture

Best Practices, Prentice Hall, 2005.

Application Integration
 1. Hohpe, G. and B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions, Addison-Wesley, 2007.
 2. Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

337

Glossary

ALE ALE stands for Application Linking and Enabling, which is used
in SAP applications integration. IDocs are the crux of ALE.

API API stands for application programming interface, which is employed
by developers to interface with a given piece of code or software.

application The term application has been used with more than one
meaning in the context of software. In this book, a restricted definition is
used, where application means a computer program or an executable.

application integration Application integration (sometimes called enter-
prise application integration or EAI) is the process of bringing data or
a function from one application program together with that of another
application program.

architecture In the context of software, architecture refers to the
policies and guidelines used in the design of software.

asynchronous message A message for which the receiving application
is not obligated to send a response.

axis Axis is essentially a SOAP engine—a framework for constructing
SOAP processors such as clients, servers, gateways, and so on. The cur-
rent version of Axis is written in Java, but a C++ implementation of the
client side of Axis is being developed.

B2B B2B is short for business-to-business and refers to commerce
between two or more businesses.

B2C B2C stands for business-to-consumer and refers to a type of
commerce where a company primarily sells directly to the consumer.
Amazon.com is a good example of B2C.

Basic Object Adapter (BOA) A BOA’s primary purpose is to interface
an objects’ implementation with its ORB. The BOA provides CORBA
objects with a common set of methods for accessing ORB functions.
These functions include user authentication, object activation, and
object persistence.

338 Glossary

BPEL BPEL stands for Business Process Execution Language. In
this book, BPEL is also used as a short form for BEPL4WS (BPEL for
Web Services). BPEL is a language for composing Web Services into
a business process. BPEL can be executed in a process server such as
WebSphere process server.

CICS CICS (Customer Information Control System) is a transaction
server that runs primarily on IBM mainframe systems under z/OS and
z/VSE. CICS is a transaction manager designed for rapid, high-volume
online processing.

client/server Same as remote procedure call (RPC).

correlationID An identifier used to correlate the response message with
the request message in simulating a synchronous call with asynchronous
messaging.

CORBA CORBA provides a standard mechanism for defining inter-
faces between components as well as some tools to facilitate the imple-
mentation of those interfaces using the developer’s choice of languages.
CORBA also provides language and platform independence.

CRM Customer Relationship Management (CRM) consists of the pro-
cesses a company uses to track and organize its contacts with its current
and prospective customers. Typical CRM goals are to improve services
provided to customers and to use customer contact information for
targeted marketing.

DCOM The Distributed Component Object Model (DCOM) from
Microsoft offers capabilities similar to CORBA. However, it is mostly
restricted to various Windows operating systems.

DOM DOM stands for Document Object Model. It is a platform- and
language-neutral interface that allows programs and scripts to dynamically
access and update the content, structure, and style of XML documents.

doors Doors is a form of restricted RPC. The limitation for the use of
Doors is that the application communicating must be running on the
same computer.

EJB EJB stand for Enterprise Java Beans. This technology is the server-
side component architecture for Java Platform, Enterprise Edition (Java
EE). EJBs come in three different varieties, including entity beans,
session beans (stateful and stateless), and message-driven beans.

Glossary 339

encapsulation Encapsulation is the central element of OOP and OOD.
Data and behavior are encapsulated in classes. Classes provide data
hiding. Access privileges can be managed and limited, which promotes
modularity and robustness.

ERP Enterprise Resource Planning (ERP) is an enterprise-wide infor-
mation system designed to coordinate all the resources, information,
and activities needed to complete business processes such as order ful-
fillment and billing.

ESB ESB stands for Enterprise Service Bus and refers to a distributed
middleware software system whose primary purpose is to allow the
service provider and the service consumer to communicate even when
they are not exactly matched in terms of their preferred communication
protocols and message formats.

FTP FTP stands for File Transfer Protocol, which is used to transfer a
file from one computer to another computer over a network.

HTTP HTTP stands for Hypertext Transfer Protocol, which is used most
commonly by a web browser to communicate with a back-end server.
It can also be used by applications to communicate among themselves
over a network.

HTTPS HTTPS is the secure form of the Hypertext Transfer Protocol.

IDocs IDocs (Intermediate Documents) help with exchanging data
between SAP R/3 and non-R/3 systems. As the name suggests, these
documents act as intermediate storage of information, which can be
sent bidirectionally.

IIOP IIOP is an acronym of Internet Inter-ORB Protocol. IIOP’s main
purpose is to provide a standard protocol for ORBs from different
vendors to communicate. All CORBA 2.0–compliant vendors must
implement IIOP.

IMS IBM Information Management System (IMS) is a joint hierar-
chical database and information management system with extensive
transaction-processing capabilities. For this book, the transaction-
processing part is the most important component and is also referred
to as IMS TM.

inheritance Inheritance in OOP and OOD refers to the fact that a
new class can be derived from an existing class, called the base class.

340 Glossary

This allows the creation of a hierarchy of related classes. This mecha-
nism promotes code reuse.

Interface Definition Language (IDL) IDL specifies interfaces between
CORBA objects, which ensure the language independence of CORBA.
Interfaces defined in IDL can be mapped to any programming lan-
guage; thus CORBA applications and components are independent of
languages used to implement them. This allows a client written in Java
to communicate with a server written in C/C++.

J2EE J2EE stands for Java 2 Enterprise Edition. Sun Microsystems
has now simplified the name to JEE. The J2EE platform defines the
standard for developing multitier enterprise applications. The J2EE
platform simplifies enterprise applications by basing them on stan-
dardized modular components, providing a complete set of services to
those components, and handling many details of application behavior
automatically, without complex programming. Enterprise Edition adds
full support for Enterprise Java Beans components, Java servlets API,
Java Server Pages (JSP), and XML technology.

Java Remote Method Invocation (RMI) Java RMI is a very CORBA-like
architecture but is restricted to programs written in Java.

Java RMI Registry Java RMI Registry is a simple remote objects registry
that provides methods for storing and retrieving remote object refer-
ences bound with arbitrary string names.

Java Server Page (JSP) Java Server Pages (JSP) is a Java technology
that allows software developers to dynamically generate HTML, XML,
or other types of documents in response to a web client request. The
technology allows Java code and certain predefined actions to be embed-
ded into static content.

JAXB Java Architecture for XML Binding (JAXB) allows Java devel-
opers to map Java classes to XML representations. JAXB provides two
main features: the ability to marshal Java objects into XML and the
inverse (that is, to unmarshal XML back into Java objects).

JAXP The Java API for XML Processing (JAXP; pronounced Jacks-P)
is one of the Java XML programming APIs. It provides the capability to
validate and parse XML documents, and as well provides three interfaces:
DOM, SAX, and StAX.

JCA JCA is short for Java EE Connecter Architecture, which is a
Java-based technology solution for connecting application servers and

Glossary 341

enterprise information systems (EIS) as part of enterprise application
integration (EAI) solutions. Whereas JDBC is specifically used to connect
Java EE applications to databases, JCA is a more generic architecture
for connection to legacy systems (including databases).

JDBC Java Database Connectivity (JDBC) is an API for the Java pro-
gramming language that defines how a client may access a database. It
provides methods for querying and updating data in a database. JDBC
is oriented toward relational databases.

JMS The Java Message Service (JMS) API is a messaging standard
that allows application components based on J2EE to create, send,
receive, and read messages. It is independent of specific implementa-
tions of the messaging system.

JNDI JNDI stands for Java Naming and Directory Interface, which is
a Java API for a directory service that allows Java software clients to
discover and look up data and objects via a name. Like all Java APIs
that interface with host systems, JNDI is independent of the underlying
implementation. Additionally, it specifies a service provider interface
(SPI) that allows directory service implementations to be plugged in to
the framework. The implementations may make use of a server, a flat
file, or a database.

JSR 109 This specification defines the programming model and run-
time architecture for implementing Web Services in Java.

marshalling (and unmarshalling) Marshalling refers to the transforma-
tion of the parameters of a method into a format that can be transmit-
ted across a network. The transformed format is platform independent.
Unmarshalling is the reverse of the marshalling process.

MessageListener MessageListener is a Java interface that is used to
receive asynchronously delivered messages. This Java interface has a
single method, onMessage(), that processes the received asynchronous
message.

Message-Driven Bean (MDB) MDBs are stateless, server-side, transaction-
aware components for processing asynchronous messages. These beans
implement the Java MessageListener interface with a single method,
onMessage(), for processing the received message.

MOM MOM stands for message-oriented middleware, which is software
used to send and receive asynchronous messages, usually over a net-
work. IBM’s WebSphere MQ is the prime example of a MOM.

342 Glossary

MQI MQI stands for Message Queue Interface and is an API for send-
ing and receiving asynchronous messages using IBM’s WebSphere MQ
messaging software.

Object Management Group (OMG) OMG’s charter is to provide a common
architectural framework for object-oriented applications based on widely
available interface specifications. OMG achieved its goal by establishing
Object Management Architecture (OMA), of which CORBA is a part.

Object Request Broker (ORB) An ORB provides the following functionality:
When an application component wants to use a service provided by
another component, it must first obtain the reference for the remote object
providing the service. After an object reference is obtained, the component
can call methods on the remote object, thus accessing the services pro-
vided by the remote object. In addition, ORB provides for marshalling and
unmarshalling the parameters of the methods being called. See Chapter 5
for more information on marshalling and unmarshalling.

OOD OOD stands for Object-Oriented Design, which is a process of
planning interacting classes for the purpose of solving a software prob-
lem. OOD employs UML, and the output is a set of diagrams, including
class and sequence diagrams.

OOP OOP stands for Object-Oriented Programming, which is a pro-
gramming style based on polymorphism, encapsulation, and inheritance.
Generally speaking, these features are obtained by encapsulating data
and behavior in classes and then using inheritance to build subclasses.

polymorphism Polymorphism is a OO programming language feature
that allows values of different data types to be handled by a uniform
interface. The concept of polymorphism applies to both data types
and functions. A polymorphic function, method, or operator has many
forms or meanings. For example, polymorphic methods have the same
name but different meanings, determined by the type of arguments
provided.

registry In the context of SOA, a registry is used by a service provider
to register the services it offers. It is also used by the service consumer
to find the services it needs. UDDI provides one standard way to register
and discover these services.

Remote Procedure Call (RPC) RPC is also known as client/server archi-
tecture. In RPC, one application, called the client, is able to invoke a
function or procedure in another application, called the server. The client

Glossary 343

and server typically run on two different computers connected by a
network. RPC is built on top of sockets and hides the low-level network
programming from a developer.

repository In the context of SOA, a repository holds the artifacts related
to services. In particular, it is used as a governance tool that includes ver-
sion control. Quite often the functions of a repository are combined with
the functions of a registry in a single product. WebSphere Service Registry
and Repository is the prime example of such a combined product.

SAX SAX stands for Simple API for XML and is a more efficient alter-
native to the DOM parser. SAX is a serial XML parser and is used to
retrieve information from an XML document.

servlet Servlets are the Java counterpart to nonJava dynamic web
content technologies such as PHP, CGI, and ASP.NET. Servlets can
maintain state across many server transactions by using HTTP cook-
ies, session variables, or URL rewriting.

SLA SLA stands for Service Level Agreement, which describes a docu-
ment that captures the agreement between the service consumer and
service provider as it regards the quality of service. In other words, SLA
captures the nonfunctional requirements for a service.

SOA SOA stands for Service-Oriented Architecture. SOA provides
methods for systems development and integration, where systems
group functionality around business processes and package these as
interoperable services. SOA also describes the IT infrastructure, which
allows different applications to exchange data with one another as they
participate in business processes. Service orientation aims for a loose
coupling of services with operating systems, programming languages,
and other technologies that underlie applications. SOA separates
functions into distinct units, or services, that developers make acces-
sible over a network so that users can combine and reuse them in the
production of business applications.

SOAP SOAP is a simple XML-based message format or protocol for
exchanging information between applications.

SOAP engine A SOAP engine (or processor) aids both consumers of Web
Services and their providers to accomplish their tasks without having
to worry about the intricacies of SOAP message handling. As far as the
consumer is concerned, it invokes an operation in a way similar to how
a remote procedure call is invoked. The Web Service provider needs to

344 Glossary

implement only the logic required by the business problem it solves.
The consumer’s SOAP processor converts the method invocation into a
SOAP message.

socket A socket is a data structure that allows programs to exchange
data. It is generally used by computer programs running on different
computers. Whenever different programs are communicating, sockets
are always working in the background.

SQL SQL stands for Structured Query Language and is a compre-
hensive database language. It has statements for data definition,
query, and update operations. In addition, it has facilities for, among
others things, embedding SQL statements in almost any programming
language.

StAX StAX stands for Streaming API for XML. StAX is a standard
XML-processing API that allows you to stream XML data from and to
your application.

synchronous message A synchronous message is a message for which
a response from the receiver is expected.

TCP/IP TCP/IP is a set of low-level network protocols used to make con-
nections on a computer network. TCP is an acronym for Transmission
Control Protocol, and IP stands for Internet Protocol. TCP puts data into
packets and provides reliable delivery across a network. IP delivers data
packets across the network.

UDDI UDDI stands for Universal Description, Discovery, and Integration.
UDDI is a standards-based specification for Web Services registration,
description, and discovery. Service providers register their services in a
UDDI registry, and the service clients use the registry to find services.

UML Unified Modeling Language (UML) is a standardized general-
purpose modeling language in the field of software engineering. UML
includes a set of graphical notation techniques to create abstract models
of specific systems.

W3C W3C is short for World Wide Web Consortium. W3C is an organi-
zation that coordinates standards for the World Wide Web.

WAS IBM’s WebSphere Application Server (WAS) is built using open
standards such as Java EE, XML, and Web Services.

Glossary 345

WebSphere MQ WebSphere MQ is the leading (asynchronous) messag-
ing software from IBM. It can run on almost any platform.

WSDL WSDL stands for Web Services Description Language, which is an
XML format for describing network services as a set of end points oper-
ating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described
abstractly and then bound to a concrete network protocol and message
format to define an end point. Related concrete end points are combined
into abstract end points (services).

WS-I Basic Profile WS-I Basic Profile is a set of specifications for Web
Services that promotes interoperability between services on different
platforms.

XDR XDR stands for External Data Representation. This data format
is typically used for passing data between the RPC client and the server.
The use of this format makes RPC platform independent.

XSD XSD stands for XML Schema Definition. XSD is an XML schema
language standardized by W3C to describe XML documents.

XSL XSL stands for Extendible Stylesheets Language. XSL contains an
XML vocabulary for specifying formatting semantics.

XSLT XSLT stands for XSL Transformation. It is a language for trans-
forming one XML document into another.

347

Index

A
ABAP (Advanced

Business Application
Programming), 205

abstract interface descriptions,
251–252, 254–262

abstract namespace reference
roles, 277

accessPoint elements, 280–281
AccountServer, 88
acquisitions, 23
ActiveBPEL engines, 315
adapters

defined, 197
in ESB, 144–145
for package applications,

199–201
Advanced Business Application

Programming (ABAP), 205
Advanced Event Processing

interfaces, 208–209
ALE (Application Link

Enabling), 205–208
Apache

Agila BPEL servers, 315
Axis, 293–294, 303
SOAP engines, 291–293

APIs
BAPIs, 205–206
SAX, 222–224, 231–232
StAX, 221, 224–226, 231–232
UDDI, 272, 285–288

Application Link Enabling
(ALE), 205–208

application servers and
distributed objects. See
distributed objects and
application servers

applications, 25
assign activities, 319
asynchronous function calls, 51
asynchronous messaging.

See also messaging
advantages of, 117
in business processes,

323–324
ESB with, 137
overview of, 8
RPC vs., 67

attributes
in SOAP, 238–242
in WSDL, 261–264
in XML, 214–215, 218

auditing services, 142
authentication, 82
authorization, 82
Axis (Apache eXtensible

Interaction Systems),
293–294, 303

B
BAPIs (Business Application

Programming Interfaces),
205–206

348 Index

base classes, 87
Basic Profile, 130
Batch Data Communications

(BDC), 205
BDC (Batch Data

Communications), 205
Bean2WebService, 307
BEA’s WebLogic Server, 90
bexee BPEL server, 315
big endian vs. little endian, 40
binding

attributes in WSDL, 264
element definitions in WSDL,

126–127, 263–264
sections with WSDL2Java

tool, 300–301
SOAP HTTP, 245–248
templates. See binding

templates
UDDI registry and, 128–129

binding templates
bindingTemplate and,

280–282
introducing, 14, 272
publishing calls for, 287
removing, 287
structure of, 280–282
WSDL implementation

documents and, 285
bindingTemplate

businessService and, 275
overview of, 273–274, 290
publishing, 286–287
technical fingerprint roles

and, 275
tModel and, 276
WSDL implementation

documents in, 284–285
Body elements, 233–237
body of messages, 99, 101
bookkeeping tasks, 39–40
bottom-up approach to Web

Services implementation,
292, 305–306

BPEL (Business Process
Execution Language),
311–330

assign activity in, 319
business process example

using, 323–330
conclusions about, 330
flow activity in, 320–321
introducing, 311–312
invoke activity in, 317
miscellaneous events/

activities, generally, 315
overview of, 313–315
partnerLinks element in,

313–314, 316, 328
pick activity in, 323
primitive activities in,

313–314, 317–320
process element in, 313–316
receive activity in, 317–318
reply activity in, 318
sequence activity in, 320–321
structuring activities in,

313–314, 320, 328–329
switch activity in, 321–322
throw activity in, 319–320
variables element in, 313–314,

316–317
wait activity in, 319
while activity in, 322

BPEL4WS, 312. See also BPEL
brokered ESBs, 149–150, 161
brokers in package applications

integration
adapters and, 199–201
defined, 197
JCA defining, 201

Business Application
Programming Interfaces
(BAPIs), 205–206

business organizations, 26,
271–272

Business Process Execution
Language (BPEL). See BPEL

Index 349

business processes, 311,
323–330. See also BPEL

business relationships, 23–25
businessEntity, 14, 273
businessService, 14, 273
BytesMessage, 103

C
C language code for sockets,

43–47
categorization schemes,

277–280
categoryBag, 278–280
channels

multiple, 154
overview of, 96–98
point-to-point, 98, 100–101
publish-and-subscribe, 98, 101

CICS (Customer Information
Control System)

integrating, 168–169
as mainframe application, 167
Service Flow Runtime in, 181
Transaction Gateway in,

182–185
TS V3.1, 179–182
WebSphere Message Broker

and, 192
CICSTG (CICS Transaction

Gateway), 192
classes, 19, 89
client/server architecture, 58, 116
client-side applications

defined, 52
in Doors process, 57–58
in RPC, 62–65

clients
in CORBA, 78–80, 88–89
in messaging, 99
in Web Services

implementation, 296–298
close tags in XML, 214
COBOL (Common Business-

Oriented Language), 182–184

COM (Component Object
Model), 233

commercial organizations, 26
commercial viability of UDDI,

288–289
Common Business-Oriented

Language (COBOL), 182–184
common databases, 25, 40–43, 48
Common Object Request Broker

Architecture (CORBA).
See CORBA

communication protocol
mismatches, 10

complexType in XML, 218–220
Component Object Model

(COM), 233
concurrency, 58
concurrent servers, 82
connection management

contracts, 203
connectivity, 43, 157–159
containment structures

of categoryBag and
identifierBag, 277–279

of WSDL, 256–257, 265–266
content-based routing, 137,

140–141
context-based routing, 137,

140–141
contracts in JCA, 202–205
CORBA (Common Object

Request Broker
Architecture), 92–93

AccountServer, binding, 88
applications in, 83–90
base classes, extending, 87
class members in, 89
clients in, 78–80, 88–89
communication model of,

80–81
exceptions, catching, 88
IDL in, 74–75, 83–85
imported classes in, 86–87
introducing, 20

350 Index

CORBA (Continued)
methods in, 87, 90
model of, 72–73
NamingContext object in, 87
object model in, 75–78
obtaining references to

servers, 90
ORB in, 73–74, 87, 92
overview of, 71–72
packages in, 86, 89
servers in, 80, 85–87, 90
services of, 82–83

correlation, 101, 144
CRM (Customer Relationship

Management) systems,
30, 197

Customer Relationship
Management (CRM)
systems, 30, 197

D
data-binding processing model,

228–230
data enrichment in ESB,

143–144
data formats

diversity of, 119–120
in ESB, 139–140
introducing, 9–10

data model of UDDI, 273
data sharing, 35–48

common database method of,
40–43

conclusions about, 48
file-based method of, 35–40
introducing, 35
methods for, 115
sockets for, 43–48

Data Universal Numbering
System (DUNS), 279

default namespaces, 217
definitions element in WSDL,

257–258
delegates in ESB, 146

deployment configurations in
ESB, 147

deployment descriptors in Web
Services, 304–305

descriptors in Doors, 55
deserialization, 222
development time binding, 129
DIIs (dynamic invocation

interfaces), 295
direct expose of CICS

applications, 181
directly connected ESBs,

148–149, 161
dispatchers in ESB, 146
distributed computing, 19–21, 25
distributed objects and

application servers, 69–93
conclusions about, 92–93
CORBA model for.

See CORBA
introducing, 69–71
review of, 116
shortcomings of, 95–96

distribution in ESB, 143–144
Document Object Model (DOM).

See DOM
DOM (Document Object Model)

defined, 221
processing model of, 226–227
use of, 231–232

Doors, 52–58
calling server functions

with, 57
client-side code for, 56–57
descriptors in, 55
header files in, 55
input parameters of, 57
introducing, 52–54
main server thread pauses in,

55–56
opening, 57
output parameters of, 57
printing results, 57
process of, 57–58

Index 351

server function cube_proc(), 55
server-side code for, 54–55
services-based integration

and, 53
summary of, 58

Dun & Bradstreet, 279
DUNS (Data Universal

Numbering System), 279
dynamic invocation interface

(DII), 294, 295

E
EAN International

Association, 279
EDI (Electronic Data

Interface), 205
EISs (Enterprise Information

Systems). See Enterprise
Information Systems

EJB2WebService, 307
EJBs (Enterprise Java

Beans)
application servers

supporting, 90–92
overview of, 15
in Web Services

implementation, 307
Electronic Data Interface

(EDI), 205
elements

in SOAP, 235–238
in WSDL, 126–127, 262–264
in XML, 214–215
in XML instances, 218

encapsulation of functionality
in Doors, 53, 58
in libraries generally, 50
review of, 116

end points
defined, 99
in messaging, 104, 107–109

endian numerical data, 40
enrichment component of ESB,

146–147

Enterprise Information
Systems (EISs)

adapters specific to, 199–201
JCA defining interfaces for,

201–202
overview of, 12
package applications as,

197–198
Enterprise Java Beans (EJBs).

See EJBs
Enterprise Resource Planning

(ERP), 30, 197
Enterprise Service Bus (ESB).

See ESB
enterprise software, 25–28
entities, 14
Envelope element, 233–236
ERP (Enterprise Resource

Planning), 30, 197
ESB (Enterprise Service Bus),

133–162
adapters in, 144–145
application server-based,

150–151
auditing services in, 142
brokered, 149–150
conclusions about, 93,

160–162
connectivity between domains

with, 157–159
core functionalities of,

140–142
correlation in, 144
creating, 111
data enrichment in, 143–144
data/message transformation

with, 139–140
deployment configurations

in, 147
directly connected, 148–149
dispatchers in, 146
distribution in, 143–144
enrichment component of,

146–147

352 Index

ESB (Continued)
exception handling

component of, 147
federated, 149
global, 147–148
hardware-based, 152–153
integrating mainframe

applications with, 170,
185–188

interaction protocol in, 141
interfaces in, 141
introducing, 4, 21, 133–134
location and identity

virtualization in, 140–141
logging component of, 147
logical components of, 144–147
messaging system-based,

151–152
monitoring in, 144
multichannel access for

existing systems with,
154–155

objectives regarding, 4–5
open standards-based internal

access with, 155–156
optional features of, 143
overview of, 8, 10–11, 22
in package application

integration, 197–198
practical usage scenarios

of, 153
protocol transformation with,

138–139
Quality of Service

requirements and, 142
request handler in, 146
for routing and scalable

connectivity, 134–137
routing task in, 146
rules engine in, 146
securing services in, 142
service delegates in, 146
third-party providers,

connecting to, 156–157

transformation engine in, 146
types of, 150

event processing, 201
exception catching in

CORBA, 88
exception handling in ESB, 147
execution and return values in

RPC, 61–62
exposure as Web Services, 209
extensibility elements in

WSDL, 255
Extensible Markup Language

(XML). See XML
Extensible Stylesheet Language

Transformation (XLST), 221
external data representation

(XDR), 50, 116

F
false values, 241
fault elements

binding, 263–264
in SOAP, 237–239
in WSDL, 261–264

federal government, 26
federated ESBs (Enterprise

Service Buses), 149, 161.
See also ESB

file-based data sharing,
35–40, 48

File Transfer Protocol (FTP),
36–40

find qualifiers, 286–288
FiveSight PXE, 315
fixed-length record files, 36–38
flat text files, 36–38
flow activity in BPEL, 320–321
format of data. See data formats
format of messages. See

message formats
FTP (File Transfer Protocol),

36–40
function name and arguments

in RPC, 61

Index 353

G
GE (General Electric), 26
General Electric (GE), 26
GLNs (Global Location

Numbers), 279
global ESB (Enterprise Service

Bus), 147–148, 161.
See also ESB

Global Location Numbers
(GLNs), 279

H
hairball problems, 135
hardware-based ESB

(Enterprise Service Bus),
152–153

Header element in SOAP,
233–236

headers
in Doors, 55
in messages, 99, 101–102
in SOAP, 233–236

hostingRedirector element,
280–281

HTML (Hypertext Markup
Language), 214

HTTP (Hypertext Transfer
Protocol)

Get usage, 246–247
POST usage, 247–248
in SOAP generally, 245
UDDI APIs and, 285

Hypertext Markup Language
(HTML), 214

Hypertext Transfer Protocol
(HTTP). See HTTP

I
IBM

BPEL servers from, 315
as business organization, 26
CICS. See CICS
commercial Web Services

from, 307

Information Management
System of. See IMS

integrating mainframe
applications, 170–171

Tivoli Suites, 142, 156
on UDDI’s commercial

viability, 288–289
WebSphere Application

Server, 90, 151
WebSphere DataPower

Appliances, 152–153, 157
WebSphere Enterprise Service

Bus, 153
WebSphere ESB, 151, 156
WebSphere ESB-based

application integration,
186–191

WebSphere Message Broker,
152–155, 159

WebSphere MQ, 151–152
WebSphere Services Registry

and Repository, 152, 157
identification

identifierBag for, 277–279
of messages, 101
in UDDI, 278–280
virtualization in ESB,

140–141
IDL (Interface Definition

Language)
in CORBA generally, 74–75
interface declarations in,

83–85
language independence via,

93, 117
IDocs (Intermediate

Documents), 205
IDs. See identification
IEEE (Institute of Electrical and

Electronics Engineers), 26
implementation description

parts in WSDL, 254–256
implementation template, 304
import subelement in XML, 219

354 Index

imported classes in CORBA,
86–87

IMS (Information Management
System)

bridges for MQ, 174–176
Connect, 171–174
integrating mainframe

applications with, 167–168
JDBC Connector, 168
point-to-point integration for,

185–186
SOAP Gateway, 176–178, 190
TM Resource Adapter,

178–179
WebSphere Message Broker

for, 193
inbound connectivity, 204
inbound processing interfaces,

208–209
include subelement in

XML, 219
infosets, 224
input arguments in RPC, 60
input element in WSDL,

261–264
input parameters in Doors, 57
inquiry APIs, 272, 286–288
instanceDetails, 281–282
Institute of Electrical and

Electronics Engineers
(IEEE), 26

integration
defined, 28
of mainframe applications.

See mainframe applications,
integrating

of package applications. See
package applications,
integrating

interaction protocols in ESB, 141
interface declarations

diversity of, 119
introducing, 9
in RPC, 59–61, 116

Interface Definition Language
(IDL). See IDL

interfaces
abstract, in WSDL, 251–254,

257–262
declarations of. See interface

declarations
in ESB, 141
Java Naming and Discovery, 91
for package application

integration, 205–206
semantics of, 30–31

Intermediate Documents
(IDocs), 205

interpretability problems, 92
invoke activity in BPEL, 317
invoking methods in

CORBA, 90

J
J2EE Connector Architecture

(JCA). See JCA
J2EE (Java 2 Enterprise

Edition)
application servers

supporting, 90–91
Axis and, 294
Connector Architecture.

See JCA
environment of, 15
integrating applications

of, 170
JAX-RPC and, 294–295
message-driven beans in, 109
XML processing models

for, 221
Java

API for XML RPC, 291–296
application servers

supporting, 90–91
J2EE. See J2EE
overview of, 12
for reading and writing text

from files, 38

Index 355

for reading from databases,
40–42

XML binding, 227–230
Java Database Connectivity

(JDBC), 99
Java Message Service (JMS)

end points with, 104–109
ESB and, 155–156
messaging with, 99–104

Java Naming and Discovery
Interface (JNDI), 91

Java RMI (Remote Method
Invocation), 20

Java Specification Requests
(JSRs), 295–296

Java2WSDL, 296–302, 305
JavaServer Pages (JSPs), 90
JAX-RPC (JavaAPI for XML

remote procedure call),
291–296

JAXB (Java Architecture for
XML Binding), 227–230

JCA (J2EE Connector
Architecture), 201–205

inbound connectivity in, 204
introducing, 198, 201–203
life cycle and thread

management in, 204–205
outbound connectivity in, 203
overview of, 12
for package applications,

integrating, 201–205
as resource adapter, 168, 178,

181–182
JD Edwards, 11, 197
JDBC (Java Database

Connectivity), 99
JMS (Java Message Service).

See Java Message Service
JNDI (Java Naming and

Discovery Interface), 91
JSPs (JavaServer Pages), 90
JSRs (Java Specification

Requests), 295–296

K
keyed references, 279–280
keyName, 280
keyValue, 280

L
legacy applications, 167
libraries

in Doors, 53, 58
remote procedure call and, 50
runtime, 61–62

life cycles
management contracts

for, 204
services in CORBA, 83
thread management and,

204–205
little endian vs. big endian, 40
local function calls, 51–53
location transparency, 11
location virtualization, 140–141
logging components of ESB, 147
logical components of ESB,

144–147
logical relationships in

WSDL, 264
looking up services, 119
loose coupling, 29

M
main methods in CORBA, 87, 90
main server thread pauses,

55–56
mainframe applications,

integrating, 165–196
CICS applications generally,

168–169
CICS Transaction Gateway,

182–185
conclusions about, 194–196
ESB-based integration

options, 185–188
with IMS applications,

167–168, 176–179

356 Index

mainframe applications,
integrating (Continued)

introduction to, 3–5, 165–167
MQ enablement for, 171–174
MQ with CICS/IMS bridges

for, 174–176
overview of, 11–12
point-to-point integration,

185, 192–194
preliminaries for, 169–171
types of applications in, 167
Web Services Support in CICS

V3.1, 179–182
WebSphere ESB-based

integration, 188–191
WebSphere Message Broker-

based integration, 191–194
mandatory header blocks, 241
MapMessage, 104
market conditions, 23
marshalling of arguments

overview of, 50
review of, 116
in RPC, 60, 65
in XML, 222

MBDs (message-driven
beans), 109

mediation patterns, 143
memory (RAM), 48
mergers, 22
message-driven beans (MDBs),

109–110
message formats. See also

messages
in ESB-based integration,

186–187
mismatches of, 10, 132,

139–140
transforming in ESB, 139–140

message-oriented middleware
(MOM), 29–31, 97

message queue (MQ), 171–176
messages

attributes in WSDL, 261–262

brokers, 8, 111
defined, 98–99
element in WSDL, 126–127,

254, 259–260
end points of, 99
exchange types of, 242–248
format of. See message

formats
inflow contracts, 204
in messaging. See messaging
in SOAP, 233–235

messaging, 95–111
channels in, 100–101
conclusions about, 111
end points in, 104, 107–109
ESB and, 151–152
introducing, 95–96
message-driven beans, 109–110
overview of, 22, 96–99
receiving messages, 107–109
sending messages, 104–107
system, 97–99

methods
common database, 40–43
in CORBA, 87, 90
file-based, 35–40
Java RMI, 20
Remote Method Invocation,

20, 91
middleware heterogeneity, 9, 118
mismatch problems. See data

formats; message formats
MOM (message-oriented

middleware), 29–31, 97
monitoring in ESB, 144
MQ (message queue), 171–176
multichannel access, 154–155
mustUnderstand attribute,

240–241

N
NAICS (North American

Industry Classification
System), 280

Index 357

name attributes in WSDL
of binding elements, 263–264
of input, output, and fault

elements, 261–262
of service and port

elements, 264
namespaces

in BPEL, 328
default, 217
service types vs., 275
in XML, 215–217

naming service in CORBA, 82
NamingContext, 87
NetWeaver, 149
nonprofit organizations, 26
nonrepudiation, 82
North American Industry

Classification System
(NAICS), 280

notification type operations, 261

O
Object Message, 103
object model in CORBA,

75–78
object-oriented design (OOD),

92–93
object-oriented languages, 19.

See also Java
object-oriented programming

(OOP), 92–93
Object Request Broker (ORB).

See ORB
one-way type operations,

260–261
OO (object-oriented)

distributing systems, 30
OOD (object-oriented design),

92–93
OOP (object-oriented

programming), 92–93
Open(), 57
open standards-based internal

access, 155–156

open tags in XML, 214
Open Transaction Management

Access (OTMA)
IMS Connect and, 174
IMS SOAP Gateway and,

176–177
IMS TM Resource Adapter

and, 178
introducing, 171

operation element in WSDL,
254, 260–263

operation units in WSDL, 261
Oracle, 197
ORB (Object Request Broker)

conclusions about, 93
in CORBA, 73–74, 87
with ESB, 137
objectives regarding, 4
overview of, 7–8, 20, 22
review of, 116–117
RPC vs., 67

OTMA (Open Transaction
Management Access).
See Open Transaction
Management Access

outbound processing
defined, 201
JCA’s contract for, 203
WebSphere Adapter for SAP

Software, 206–208
output arguments in RPC, 60
output element in WSDL, 261,

263–264
output parameters in Doors, 57

P
package applications,

integrating, 197–210
adapters for, 199–201
ALE and IDocs in, 206
conclusions about, 209–210
inbound connectivity in, 204
introducing, 197–199
JCA for, 201–205

358 Index

package applications,
integrating, (Continued)

life cycle and thread
management in, 204–205

outbound connectivity in, 203
RFCs in, 206
SAP for, 205–209
Web Services and, 209
WebSphere Adapter for SAP

Software in, 206
packaged applications, 11–12
packages in CORBA, 86, 89
parsing models

generally, 222–223
pull, 225
streaming and, 224
XML, 221–222, 231–232

part element in WSDL, 254,
259–260

partly runtime binding,
129–130

partnerLinks element in BPEL,
313–316, 328

pathnames in Doors, 55
payload semantics, 30–32
PeopleSoft, 197
performance issues in ESB, 142
pick activity in BPEL, 323
point-to-point channels, 98,

100–101
point-to-point connections, 133.

See also ESB
point-to-point integration

ESB-based integration
options vs., 188

of mainframe applications,
185, 192–194

as preliminary to ESB,
169–170

types of, 166
point-to-point messaging,

100–101, 104–106
port elements in WSDL, 127, 264
port mappers, 64–65

portType element in WSDL,
126–127, 254, 261–262

portTypes section in WSDL, 300
PremierBank example, 153–159
primitive activities in BPEL,

313, 317–320
procedural languages, 18–19
process element in BPEL,

313–316
processing models in XML

data-binding, 228–230
DOM processing model for,

226–227
generally, 221–222, 231–232
SAX, 222–224
StAX, 224–226
XSLT, 230–231

producers in messaging, 99
proprietary extensions of

CORBA specifications, 92
protocol heterogeneity, 9, 118
protocol mismatches, 119, 131,

138–139
providers in messaging, 99
publish-and-subscribe channels,

98, 101
publish-and-subscribe

messaging, 101, 106–107
publisherAssertion, 14, 274–275
publishing APIs, 272, 286
pull streaming processing

model, 225

Q
QoS (Quality of Service), 11, 142
Quality of Service (QoS), 11, 142
Query interfaces, 206
queues, 96–98, 100–101, 104–106

R
RAD (Rational Application

Developer), 307–308
RAM (random access

memory), 48

Index 359

random access memory
(RAM), 48

Rational Application Developer
(RAD), 307–308

reading text from files, 38–39
receive activity in BPEL,

317–318
receiving messages, 107–109
registries, 14, 128. See also

UDDI
relay attribute in SOAP,

241–242
Remote Function Calls (RFCs),

205–206
Remote Method Invocation

(RMI), 20, 91
Remote Procedure Calls (RPCs).

See RPCs
reply activity in BPEL, 318
request handler in ESB, 146
request processing, 201
request/response type

operations, 260–261
restricted RPCs, 51–53
return values in RPCs, 61–62
reusability, 18
RFCs (Remote Function Calls),

205–206
RMI (Remote Method

Invocation), 20, 91
role attributes in SOAP, 238–240
routers

adding to messaging
systems, 111

defined, 8
ESB and, 134–137, 146

RPCs (Remote Procedure Calls),
49–67

client-side code and
compilation for, 62–63

conclusions about, 66–67
defined, 20
distributed objects and, 95–96
Doors vs., 52

interface declaration
and use in, 59–61

introducing, 49–51, 58–59
objectives regarding, 4
overview of, 6–7, 22
process of, 64–65
restricted RPC, 51–58
review of, 115–116
scalability of, 93
server-side code and

compilation for, 61–62
SOAP (Simple Object Access

Protocol), 242–245
types of function calls, 51–53

rules engine in ESB, 146
runtime binding, 130
runtime components of CICS

TG, 181–182
runtime libraries, 61–62

S
SAP (System Analysis

and Protocol)
ESB with, 148–149
integrating package

applications with, 205–209
overview of, 12
as software supplier, 197

SAPGUI (SAP graphical user
interface), 202–205

SAX (Simple API for XML)
defined, 221
recommendations for

use of, 231–232
for XML, 222–224

scalability of RPCs, 93, 117
scalable connectivity for ESB,

134–137
security

auditing, 82
in connectivity to third-party

providers, 156–157
contracts, 203
service in CORBA, 82

360 Index

sending messages, 104–107
sequence activity in BPEL,

320–321
serialization, 222
server class members in

CORBA, 87
server functions, 55–57
server-side applications

defined, 52–53
in Doors process, 57–58
review of, 116
RPC, 61–62, 64–65

server-side skeleton
classes, 303

server skeletons, 80
service

consumers, 58
delegates in ESB, 146
elements in WSDL, 127, 264
end points, 125
implementation in WSDL,

254–256
lookups, 9
providers, 58
registries, 14, 271
section in Web Services,

301–302
types vs. namespaces, 275

Service Flow Runtime (SFR),
CICS, 181

Service-Oriented Architecture
(SOA). See SOA

services-based integration, 53
SFM (WebSphere Developer

Service Flow Modeler), 181
SFR (Service Flow Runtime),

CICS, 181
shared memory, 48
Simple Object Access Protocol

(SOAP). See SOAP
simpleType in XML instances,

218
skeleton class in Web Services,

303–304

SOA (Service-Oriented
Architecture), 3–15, 17–32

business problems addressed
by, 21–25

conclusions about, 32
definitions, 25–29
ESB in. See ESB
goals of, 288
integration technologies

based on, 8–9
interface and payload

semantics in, 30–32
introducing, 17
IT professionals and, 5
loose coupling in, 29–30
objectives regarding, 4–5
overview of book on, 3–6
services in software and,

17–21
Web Services and. See Web

Services
SOAP (Simple Object Access

Protocol), 233–249
address extensibility element

in, 268
attributes in, 238–242
binding, 264–265
Body element in, 233–237
conclusions about, 249
elements in, 235–238
Envelope element in, 236
Fault element in, 237–239
fault extensibility elements

in, 267–268
finding extensibility element

in, 265–266
Header element in, 233–236
HTTP binding in, 245
HTTP GET usage in, 246–247
HTTP POST usage in,

247–248
introducing, 10, 233
message exchange types in,

242–248

Index 361

messages in, 103–104,
233–235

mustUnderstand attribute
in, 240–241

operation extensibility
element in, 266–267

overview of, 13–15
relay attribute in, 241–242
role attributes in, 238–240
RPCs, 242–245
UDDI APIs and, 285
in Web Services

implementation, 291–293
XML and, 121–122

sockets and data sharing, 35–48
common databases in, 40–43
conclusions about, 48
file-based data-sharing, 35–40
introducing, 19–20
overview of, 6, 22, 35
review of, 115–116
sockets in, 43–48

solicit/response type
operations, 261

specification files, 60, 116
specification levels of CORBA

ORBs, 92
StAX (Streaming API for XML)

defined, 221
recommendations for use of,

231–232
for XML, 224–226

stream processing, 222–225
streaming, 224
StreamMessage, 103
structuring activities in BPEL

defined, 313
overview of, 320
practical example of, 328–329

stubs, 50, 116
switch activity in BPEL,

321–322
Synchronous Callback

interfaces, 208

synchronous function calls, 51
synchrony heterogeneity, 9, 118
System Analysis and Protocol

(SAP). See SAP
system-level contracts in JCA,

202–205

T
tags in XML, 214
tcpmon, 307
technical fingerprint roles in

UDDI, 275–277
technical model (tModel).

See tModel
technological advances, 23
text-based data transfer, 36–40
TextMessage, 103
Thomas Register, 279
thread management, 204–205
throttling, 98
throw activity in BPEL,

319–320
Tivoli Suites, 142, 156
tModel (technical model)

abstract namespace reference
role in, 277

overview of, 14, 275–278
structure of, 277–278
technical fingerprint role in,

275–277
in UDDI registry, 273–274
WSDL and, 283–284

top-down approach to Web
Services development,
291–292, 303

topics, 101
transaction contracts, 203–204
Transaction Gateway, 192
transaction service in CORBA,

82–83
transactions, 167
transformation engine in

ESB, 146
true value, 241

362 Index

TX Series, 169
type attributes of binding

elements in WSDL, 263
types element in WSDL,

126–127, 254, 258–259
types section in Web Services,

298–299

U
UDDI (Universal Description,

Discovery, and Integration),
271–290

abstract namespace reference
role in, 277

APIs, 272, 285–288
bindingTemplate data type in.

See bindingTemplate
businessEntity data

type in, 273
businessService data

type in, 273
categorization schemes in,

278–280
commercial viability of,

288–289
conclusions about, 289–290
data model of, 273
identification schemes in,

278–280
inquiry APIs, 272, 286–288
introducing, 10, 271–272
overview of, 21, 128–130,

272–273
publisherAssertion data type

in, 274–275
publishing APIs, 272, 286
technical fingerprint role in,

275–277
tModel in. See tModel
WSDL use in, 282–285
XML and, 121

Universal Description,
Discovery, and Integration
(UDDI). See UDDI

Universal Standard Product
and Services Classification
(UNSPSC) system, 280

unmarshalling, 222
UNSPSC (Universal Standard

Product and Services
Classification) system, 280

V
variable-length record files,

36–38
variables declaration in RPC, 63
variables element in BPEL,

313–314, 316–317
VB (Visual Basic), 93
Visual Basic (VB), 93

W
wait activity in BPEL, 319
WANs (wide area networks), 43
WAS (WebSphere

Application Server)
ESB and, 151
introducing, 170
UDDI and, 288

Web Services, 115–132
conclusions about, 131–132
developing, 12–14, 20–22
heterogeneity issues in,

117–120
implementing. See Web

Services implementation
integrating through BPEL

and, 323–330
introducing, 115–117
in mainframe application

integration, 170
as pillar of SOA, 162
SOAP in, 122–124
UDDI and, 128–130,

271–273, 288
WS-I Organization, 130
WSDL in, 124–127
XML in. See XML

Index 363

Web Services Deployment
Descriptor (WSDD), 303

Web Services Description
Language (WSDL).
See WSDL

Web Services implementation,
291–310. See also Web
Services

binding section in, 300–301
bottom-up approach to, 292,

305–306
building clients, 296–298
building Web Services,

303–305
choices for, 292–296
commercial tools for,

306–308
conclusions about, 308–309
deployment descriptors in,

304–305
implementation template

for, 304
introducing, 291–292
overview of, 14–15
portTypes section in, 300
service section in, 301–302
skeleton class in, 303–304
types section in, 298–299

Web Services Interoperability
(WS-I) Organization, 130

Web Services Support in CICS
V3.1, 179–182

WebSphere Adapter for SAP
Software, 206

WebSphere Application Server
(WAS), 151

WebSphere DataPower
Appliances, 152–153, 157

WebSphere Developer Service
Flow Modeler (SFM), 181

WebSphere Enterprise Service
Bus (WESB)

introducing, 170
overview of, 151–156, 188–191

WMB-based integration
options vs., 191–194

WebSphere Message
Broker (WMB)

IBM and, 152–155, 159
integrating mainframe

applications with,
166–167, 191–192

introducing, 170
WebSphere MQ, 166–167, 170
WebSphere Services Registry

and Repository (WSRR),
152, 157, 288

WESB (WebSphere Enterprise
Service Bus). See WebSphere
Enterprise Service Bus

while activity in BPEL, 322
wide area networks (WANs), 43
WMB (WebSphere Message

Broker). See WebSphere
Message Broker

work management
contracts, 204

writing text from files, 38–39
WS-I (Web Services

Interoperability)
Organization, 130

WSDD (Web Services
Deployment Descriptor), 303

WSDK (WebSphere Services
Development Kit)
Toolset, 307

WSDL (Web Services
Description Language),
251–269

abstract interface descriptions
in, 251–254, 257–262

binding elements in,
263–264

BPEL and, 313, 328, 330
building Web Service clients

with, 296–302
CICS TG and, 182–184
conclusions about, 269

364 Index

WSDL (Continued)
containment structure of,

256–257, 265–266
definitions element in,

257–258
elements of implementation

part, 262–264
fault element in, 261, 263–264
implementation description

parts in, 254–256
IMS SOAP Gateway and, 176
input element in, 261,

263–264
introducing, 10, 21, 251–252
logical relationship in, 264
message element in, 254,

259–260
operation element in, 254,

260–261, 263
output element in, 261,

263–264
overview of, 13–15, 124–127,

252–256
part element in, 254, 259–260
port element in, 264
portType element in, 254,

261–262
service element in, 264
SOAP and, 264–268
types element in, 254,

258–259
in UDDI, 282–285
XML and, 121, 213, 251

WSDL2Java
building Web Service clients

with, 296–302
building Web Services with,

303–306

WSDL2WebService, 307
WSRR (WebSphere Services

Registry and Repository),
152, 157, 288

X
XDR (external data

representation), 50, 116
XLST (Extensible

Stylesheet Language
Transformation), 221

XML (Extensible Markup
Language), 213–232

conclusions about, 231–232
data-binding in, 221, 228–230
DOM processing model for,

226–227
files in, 36–40
introducing, 213
namespaces in, 215–217
overview of, 10, 12–13,

214–215
processing/parsing models

generally, 221–222,
231–232

SAX processing model for,
222–224

schemas in, 217–221, 313, 330
StAX processing model for,

224–226
XSLT processing model and,

230–231
XPath, 227, 313, 330
XSLT processing model,

230–231

Z
z/OS operation systems, 167

	Team rebOOk

