
Cryptographical Algorithms 

Basic concepts 
Cryptography (the term) comes from the Greek words (κρυπτός) which means “hidden” and γράφειν 

which means “writing”. So, it means cipher. 

The topic itself has become independent over the years, even though it was always part of the 

computer science / information technology discipline and its major task was to study and decipher 

secret codes. 

With the widespread nature of electronic communication three major basic requirements appeared 

in the method and use. By them we can successfully build an online communication channel: 

The requirements of a secure channel: 

Secrecy: Apart from the parties which are communicating with each other nobody else should see the 

messages. 

Cryptographic algorithm. Our main goal in this task is to provide a method which is uncrackable, easy 

to use and calculate at the same time. 

The limits of this method must be demonstrated/proved mathematically. 

Credibility: The communicating parties can ascertain the identity of each other (even though they have 

never met in real life) 

Tools: Authentication services (authorities) It is a natural demand in the case of online communication 

that our identity must be protected by an algorithm even though we must use such remote servers 

that cannot be traced down or approached. 

There is no 100% security, but even in this case the boundaries must be known. 

Integrity: any kind of undetected alteration of our data must be blocked. 

Digital signature. Nowadays it is common that we must sign online contracts where the signatories to 

the treaty cannot be present physically. Even the signatures happen in different times. 

The use of digital signatures is now a mandatory area in Hungary too, for example in the case of court 

administration. 

The following figure describes the basic model of communication, and its notations. 

 

Alice wants to send a message denoted as m to Bob. The encoded message is c. 

Function E() is called as encrypt/encoding function 

Function D() is called decrypt/decoding function. 



DES (Data Encryption Standard) 
DES is a widespread encryption algorithm.  It was developed by IBM in early 1970’s and then registered 

by National Bureau of Standards [[1]] 

DES is a symmetric block cypher; the algorithm takes a fixed length 64 bit long plain text. The output 

of the algorithm is of the same size, DES uses a key which has a different bitsize: 56 bits. 

The key however appears to be 64 bit long, but the algorithm ignores every 8th bit. 

 

For the shake of simplicity, the 64 bit long block or key will be represented as 16 hexadecimal 

numbers.  

Steps 

1. A 64 bit long chunk of the plain text message is given to the initial permutation function for 

execution  

 

The 58th bit of the plain text becomes the 1st bit, 50th bit will be the 2nd, … and the 7th bit 

will be the 64th bit 

2. The permuted part splits the data into two 32 bit parts: left plain text (LFT) and right plain text 

part (RFT) 

3. Both undergo a 16 round of encryption process using the 56 bit key 



4. The two parts then rejoined, and a final permutation is performed on the combined block, 

so the 64 bit cypher block is generated. The final permutation is the inverse if the initial 

permutation: 

 
 

5. The 16 round of encryption looks as follows 

 



Each round generates the key Ki out of the 56-bit initial key. The key is divided into 28 bit long halves. 

In each round both halves are shifted left. In round 1, 2, 9 and 16 they are shifted by 1 bit, in other 

rounds two bits. Then a 48 bit subkey (Ki)is selected by a compression and permutation operation.  

LFTn = RFTn-1 

RFTn =LFTn-1 XOR f(Rn1, Kn) 

 

The calculation function f is described as follows: In each round the 32 bit block is expanded to 48 bit 

using the expansion permutation, which duplicates half of the bits. Then the result is combined with 

the subkey by an XOR operation. The 48 bit long result then substitutes some bits according to a 

nonlinear lookup table. Finally, the output is rearranged by a fixed permutation.  

 

 

Examples available at https://sandilands.info/crypto/DataEncryptionStandard.html#x16-840008.5 

DES in OPEN SSL 

AES (Advanced Encryption Standard) 
The Advanced Encryption Standard (AES) encryption specification was introduced by [[9]]. This 

algorithm as faster and more reliable than DES so became a US standard in 2001. It operates on 128 

bit data, the key can be 128, 182 or 256 bit long. it is a symmetric key cipher.  

AES is based on a substitution-permutation network. Some of its linked operations replaces inputs by 

specific outputs, some of them permutates the data. 

The number of encryption rounds is based on the key size: 

• 128 bits – 10 rounds 

• 192 bits – 12 rounds 

• 256 bit keys – 14 rounds 

Each round uses its own key Ki calculated from the original key, using the AES key schedule. [[9]] 

 

https://sandilands.info/crypto/DataEncryptionStandard.html#x16-840008.5


 

The relation between the number of rounds (N) and cipher key size is defined by the following table: 

N Key size 

10 128 

12 192 

13 256 

 

Description of the algorithm 

KeyExpansion – round key Ki is derived from the cipher key using the AES key schedule Initial round 

key addition: 

AddRoundKey – each byte of the state is combined with a byte of the round key using bitwise XOR. 

9, 11 or 13 rounds: 

SubBytes – a non-linear substitution step where each byte is replaced with another according to a 

lookup table. 

 



 

ShiftRows – a transposition step. The data is arranged to a 4 x 4 matrix, consisting of row r0, r1, r2, r3. 

Each row ri shifts I position left. 

 

MixColumns – a linear transformation operation which operates on the columns of the matrix. 

 

Attacks 

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#cite_note-fips-197-6 



RSA algorithm 
Rivest, Shanir and Adleman introduced their asymmetric cryptographic algorithm in 1977 [[7]]. The 

algorithm is based on exponentiation and modulo. Let us assume that if the following equation is 

true: 

Ted mod N = T 

in some special cases the equation can be decomposed into two pairs, one will encode and the second 

decode, as follows: 

Te mod N = C  

Cd mod N = T 

Unfortunately, this equation will not work with arbitrary triplets: (e,d,N) 

Theorem 
Let's originate from this old Greek equation: 

TN-1 mod N = 1 

where N > T and N is a prime number 

Primes are integer numbers whose do not have integer divisors, like 11, 13, 19, .... 

Let f(N) be a function called totient that indicates the number of positive integers up to N. Two integers 

are coprime if they share no common positive factors (divisors) except 1.  

For example f(9) = 6 as 9 has 6 relative primes {1, 2, 4, 5, 7, 8}. 

If N is a prime number, then calculation is straightforward. There is no integer number up to N that 

shares a common divisor, thus  

f(N)+ 1 = N => N-1 = f(N) 

If the exponent K is multiplied by a constant, then modulo will not be changed, so the following 

equation is still true 

TK f(N) mod N = 1 

This step ensures that there are theoretically infinity number of keys as K is an arbitrary number. Let's 

multiply each side by T: 

TK f(N)+1 mod N = T 

Let’s select e and d keys so that  

K f(N)+1 = e d 

RSA key generation 

Key generation can be carried out as follows. Let us have two random integer prime numbers: X and 

Y. Their product is N. 

N = X Y 

 



We know the how many relative primes X and Y have 

f(X) = X-1 

f(Y) = Y-1 

f(N) can be calculated as 

f(N) = (X-1) (Y-1) 

Decompose K f(N)+1 into a product of two integer numbers 

K f(N)+1 = e d 

In practice using the following equation can be used for the decomposition. Select e so that 

gcd(e, f(N)) = 1 

where gcd stands for the greatest common divisor, and choose a d so that  

1 < d < f(N)  

and 

e d mod f(N) = 1 

public key (e,N), private key (d,N) 

A working example 
Let’s choose two prime numbers: 67 and 11 

N = 67 11 = 737 

f(n) = 66 10 = 660 

Choose e so that gcd(e, 660) = 1, let e be 7. So, the public key will be: 

(N, e) = (737, 7) 

Calculate d: 

Find a K value so that K f(N)+1 = e d is true, in other words K f(N)+1 mod e =0 

K*660 + 1 mod 7 = 0 

K = 3 works, so  

d = (3 * 660 +1) / 7 = 283 

So private key is  

(N, d) = (737. 283) 

 

Encode the number 28 

287 mod 737 = 316 

Decode the number 316 



316283 mod 737 = 28 

Hash functions 
Hash function is a mathematical function which take inputs of variable lengths and returns a fixed 

length output.  

The preferred hash function is  

• easy to calculate for any data 

• difficult to compute the plain text of a given hash 

• different plain text of any length must not have the same hash 

• dispersion property is preferred: small change in the plain text should result big changes in 

the hash 

 

 

Usually plain text processed in data blocks. The output of one block will be the input of the following 

hash calculation step and so on. This called as an avalanche effect of hashing  

Message-digest (MD5) 
This message-digest algorithm is a widely used hash function producing a 128-bit hash value.  
The plain text message is split into chunks of 512-bit blocks.  
The plain text message is padded so that its length to be divisible by 512. 
 
RFC1321 specifies padding instruction as follows: 

3.1 Step 1. Append Padding Bits 

The message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo 512. That 

is, the message is extended so that it is just 64 bits shy of being a multiple of 512 bits long. Padding is 

always performed, even if the length of the message is already congruent to 448, modulo 512. 

Padding is performed as follows: a single "1" bit is appended to the message, and then "0" bits are 

appended so that the length in bits of the padded message becomes congruent to 448, modulo 512. 

In all, at least one bit and at most 512 bits are appended. 

3.2 Step 2. Append Length 

A 64-bit representation of b (the length of the message before the padding bits were added) is 

appended to the result of the previous step. In the unlikely event that b is greater than 264, then only 

the low-order 64 bits of b are used. (These bits are appended as two 32-bit words and appended low-

order word first in accordance with the previous conventions.) 

 



At this point the resulting message (after padding with bits and with b) has a length that is an exact 

multiple of 512 bits. Equivalently, this message has a length that is an exact multiple of 16 (32-bit) 

words. Let M[0 ... N-1] denote the words of the resulting message, where N is a multiple of 16. 

The main MD5 algorithm operates on 128-bit chunks which are first divided into four 32 bit words (A, 

B, C, D) 

The processing of a message block consists of four rounds; each round is composed of 16 similar 

operations based on a non-linear function, modular addition, and left rotation.  

There are four possible functions; a different one is used in each round: 

F(B, C, D) = (B and C) or (not B and D) 

G(B, C, D) = (B and C) or (C and not D) 

H(B, C, D) = B xor C xor D 

I(B, C, D) = C xor (B or not D) 

 

 

""" 

The implementation of the MD5 algorithm is based on the original RFC at 

https://www.ietf.org/rfc/rfc1321.txt and contains optimizations from 

https://en.wikipedia.org/wiki/MD5. 

""" 

 

import struct 

from enum import Enum 

from math import ( 

    floor, 

    sin, 

) 

 

from bitarray import bitarray 



 

 

class MD5Buffer(Enum): 

    A = 0x67452301 

    B = 0xEFCDAB89 

    C = 0x98BADCFE 

    D = 0x10325476 

 

 

class MD5(object): 

    _string = None 

    _buffers = { 

        MD5Buffer.A: None, 

        MD5Buffer.B: None, 

        MD5Buffer.C: None, 

        MD5Buffer.D: None, 

    } 

 

    @classmethod 

    def hash(cls, string): 

        cls._string = string 

 

        preprocessed_bit_array = cls._step_2(cls._step_1()) 

        cls._step_3() 

        cls._step_4(preprocessed_bit_array) 

        return cls._step_5() 

 

    @classmethod 

    def _step_1(cls): 

        # Convert the string to a bit array. 

        bit_array = bitarray(endian="big") 

        bit_array.frombytes(cls._string.encode("utf-8")) 

 

        # Pad the string with a 1 bit and as many 0 bits required such that 

        # the length of the bit array becomes congruent to 448 modulo 512. 

        # Note that padding is always performed, even if the string's bit 

        # length is already conguent to 448 modulo 512, which leads to a 

        # new 512-bit message block. 

        bit_array.append(1) 

        while bit_array.length() % 512 != 448: 

            bit_array.append(0) 

 

        # For the remainder of the MD5 algorithm, all values are in 

        # little endian, so transform the bit array to little endian. 

        return bitarray(bit_array, endian="little") 

 

    @classmethod 

    def _step_2(cls, step_1_result): 

        # Extend the result from step 1 with a 64-bit little endian 

        # representation of the original message length (modulo 2^64). 

        length = (len(cls._string) * 8) % pow(2, 64) 

        length_bit_array = bitarray(endian="little") 

        length_bit_array.frombytes(struct.pack("<Q", length)) 

 

        result = step_1_result.copy() 

        result.extend(length_bit_array) 

        return result 



 

    @classmethod 

    def _step_3(cls): 

        # Initialize the buffers to their default values. 

        for buffer_type in cls._buffers.keys(): 

            cls._buffers[buffer_type] = buffer_type.value 

 

    @classmethod 

    def _step_4(cls, step_2_result): 

        # Define the four auxiliary functions that produce one 32-bit word. 

        F = lambda x, y, z: (x & y) | (~x & z) 

        G = lambda x, y, z: (x & z) | (y & ~z) 

        H = lambda x, y, z: x ^ y ^ z 

        I = lambda x, y, z: y ^ (x | ~z) 

 

        # Define the left rotation function, which rotates `x` left `n` bits. 

        rotate_left = lambda x, n: (x << n) | (x >> (32 - n)) 

 

        # Define a function for modular addition. 

        modular_add = lambda a, b: (a + b) % pow(2, 32) 

 

        # Compute the T table from the sine function. Note that the 

        # RFC starts at index 1, but we start at index 0. 

        T = [floor(pow(2, 32) * abs(sin(i + 1))) for i in range(64)] 

 

        # The total number of 32-bit words to process, N, is always a 

        # multiple of 16. 

        N = len(step_2_result) // 32 

 

        # Process chunks of 512 bits. 

        for chunk_index in range(N // 16): 

            # Break the chunk into 16 words of 32 bits in list X. 

            start = chunk_index * 512 

            X = [step_2_result[start + (x * 32) : start + (x * 32) + 32] for x in range(16)] 

 

            # Convert the `bitarray` objects to integers. 

            X = [int.from_bytes(word.tobytes(), byteorder="little") for word in X] 

 

            # Make shorthands for the buffers A, B, C and D. 

            A = cls._buffers[MD5Buffer.A] 

            B = cls._buffers[MD5Buffer.B] 

            C = cls._buffers[MD5Buffer.C] 

            D = cls._buffers[MD5Buffer.D] 

 

            # Execute the four rounds with 16 operations each. 

            for i in range(4 * 16): 

                if 0 <= i <= 15: 

                    k = i 

                    s = [7, 12, 17, 22] 

                    temp = F(B, C, D) 

                elif 16 <= i <= 31: 

                    k = ((5 * i) + 1) % 16 

                    s = [5, 9, 14, 20] 

                    temp = G(B, C, D) 

                elif 32 <= i <= 47: 

                    k = ((3 * i) + 5) % 16 

                    s = [4, 11, 16, 23] 



                    temp = H(B, C, D) 

                elif 48 <= i <= 63: 

                    k = (7 * i) % 16 

                    s = [6, 10, 15, 21] 

                    temp = I(B, C, D) 

 

                # The MD5 algorithm uses modular addition. Note that we need a 

                # temporary variable here. If we would put the result in `A`, then 

                # the expression `A = D` below would overwrite it. We also cannot 

                # move `A = D` lower because the original `D` would already have 

                # been overwritten by the `D = C` expression. 

                temp = modular_add(temp, X[k]) 

                temp = modular_add(temp, T[i]) 

                temp = modular_add(temp, A) 

                temp = rotate_left(temp, s[i % 4]) 

                temp = modular_add(temp, B) 

 

                # Swap the registers for the next operation. 

                A = D 

                D = C 

                C = B 

                B = temp 

 

            # Update the buffers with the results from this chunk. 

            cls._buffers[MD5Buffer.A] = modular_add(cls._buffers[MD5Buffer.A], A) 

            cls._buffers[MD5Buffer.B] = modular_add(cls._buffers[MD5Buffer.B], B) 

            cls._buffers[MD5Buffer.C] = modular_add(cls._buffers[MD5Buffer.C], C) 

            cls._buffers[MD5Buffer.D] = modular_add(cls._buffers[MD5Buffer.D], D) 

 

    @classmethod 

    def _step_5(cls): 

        # Convert the buffers to little-endian. 

        A = struct.unpack("<I", struct.pack(">I", cls._buffers[MD5Buffer.A]))[0] 

        B = struct.unpack("<I", struct.pack(">I", cls._buffers[MD5Buffer.B]))[0] 

        C = struct.unpack("<I", struct.pack(">I", cls._buffers[MD5Buffer.C]))[0] 

        D = struct.unpack("<I", struct.pack(">I", cls._buffers[MD5Buffer.D]))[0] 

 

        # Output the buffers in lower-case hexadecimal format. 

        return f"{format(A, '08x')}{format(B, '08x')}{format(C, '08x')}{format(D, '08x')}" 

SHA 
Secure Hash Algorithm (SHA-1) is a cryptographic hash function. It produces a 160 bit hash of the data. 

Generally, this message digest is represented as a hexadecimal number. 

In the beginning, we have 160 bits input, we break it down into 5 parts which we name to be A, B, C, 

D and E.  



 

An iteration of SHA algorithm consist of the following: 

• A, B, C, D, and E are 32-bit words 

• F is a nonlienar function that varies 

• <<<x denotes a left circular shift by x places, x varies 

• Wt is the expanded message word of eound t 

• Kt is a round constant of t 

•  denotes addition modulo 232 

 

For every 20 rounds, Fi and Ki are constant they have a set of predefined values and function 

description which remains common as follows: 

Rounds 1-20 

Fi = (B and C) or ((not B) and D) 

Ki = 0x5A827999 

Rounds 21-40 

Fi = B xor C xor D 

Ki = 0x6ED9EBA1 

Rounds 41-60 

Fi = (B and C) or (B and D) or (C and D)  

Ki = 0x8F1BBCDC 

Rounds 61-80 

Fi = B xor C xor D 



Ki = 0xCA62C1D6 

Circular shift operation operates on X bit long words. The following figure depicts left-shift and right-

shift operation by 1 bit. 

 

 

 

Creating expanded message  

1. The message is then padded by appending a 1, followed by enough 0s until the message is 

448 bits. The length of the message represented by 64 bits is then added to the end, 

producing a message that is 512 bits long 

2. The padded input obtained above, MM, is then divided into 512-bit chunks, and each chunk 

is further divided into sixteen 32-bit words, W0…W15 

3. For each chunk, begin the 80 iterations, ii, necessary for hashing (80 is the determined 

number for SHA-1), and execute the following steps on each chunk 

4.  the following operation is performed: 

Wi=S1 (Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16) 

S is the shift operator 

5. Store the hash values defined in step 1 in the following variables: 

A = H0 

B = H1 

C = H2 

D = H3 

E = H4 

6. For iteration 80 compute 

TEMP = S5 (A) + F(B;C;D)+E+Wi+Ki 

E=D 

D=C 

C=S30(B) 

B=A 

A=TEMP 

7. Store the result of the chunk’s hash as follows 

H0= H0+A 

H1= H1+B 

H2= H2+C 

H3= H3+D 

H4= H4+E 

8. The final step is to compute the 160-bit message digest 

H = S128(H0) OR S96(H1) OR S64(H2) OR S32(H3) OR H4 

9. Message Authentication Code 



Message Authentication Code 
Let’s overview the terminology. Message Authentication Code (MAC) are also called cryptographic 

checksums. MAC algorithm is a symmetric key algorithm to provide message authentication. Both the 

sender and receiver share the same key. 

Basically, a MAC is an encrypted checksum of the plain text message. It is attached to the message to 

ensure its authentication. The receiver regenerates the MAC of the message received. If the computed 

MAC matches, then the message can be accepted. If the computed MAC does not match, then it is not 

possible to determine whether the message or the origin is genuine. 

MAC like the hash functions generate a fixed length output of the input field.  The difference is that 

MAC uses a secret key for the output generation. Main characteristic of the process is that MAC 

algorithm is public, the MAC value is produced by the secret key.  

The main limitations are as follows: 

• participant must be known in advance 

• secret key must be established and shared in advance 

• MAC can not proof that that a message was sent by the Sender 

• it is not possible to determine which party generated the MAC 

 

MAC with internal error code 
Sender can encrypt the content before sending it through the network. In this way the message will 

gain confidentiality. 

 

 



Password storage 
Hash functions provide protection to password storage. Rather than storing password as plain text 

logon process stores the hash values of passwords in the database. 

The Password file consists of a table of pairs which are in the form  

(user_identifier, hash(PASSWORD)). 

 

Data Integrity Check 

H ash functions are widely used to check data integrity. The hash function is used to generate the 

checksums of the data  

 

 

If the original data is modified, then checksum will not match. However, if an attacker can modify both 

the data and its checksum then the originality can not be checked.  



Exercise 
Password File Location and Content in Kali linux 

Kali stores password data in file /etc/shadow. Only root user can write the file. The file stores 

username, hashed password, password change date, expiry date etc. in colon (:) separated format.  

To query the file enter 

sudo cat /etc/shadow 

kali:$6$GHNiMeXhVU70giNl$vpm87wq/tB5X5rA8MYnsw8ssB7iyW.9gh5m/drfTmMJdvRtArB/3Xtyan

1/DmOeBdpxs9cfKaDt0n15nqupvn/:18583:0:99999:7::: 

Value Meaning 

$6$ Value between starting two $ sign represents 
algorithm used for hashing. Here number 6 
suggests sha-512 been used. 

$GHNiMeXhVU70giNl$ the text between second and third $ sign is a salt 
used for hashing 

vpm87wq/tB5X5rA8MYnsw8ssB7iyW.9gh5m/ 
drfTmMJdvRtArB/3Xtyan1/ 
DmOeBdpxs9cfKaDt0n15nqupvn/: 

Hashed password 

 

Let’s generate the password for user ‘kali’ 

Python 2.7.18 (default, Apr 20 2020, 20:30:41)  

[GCC 9.3.0] on linux2 

Type "help", "copyright", "credits" or "license" for more information. 

>>> import crypt 

>>> password="kali" 

>>> hashing_scheme_with_salt="$6$GHNiMeXhVU70giNl$" 

>>> crypt.crypt(password, hashing_scheme_with_salt) 

'$6$GHNiMeXhVU70giNl$vpm87wq/tB5X5rA8MYnsw8ssB7iyW.9gh5m/drfTmMJdvRtArB/3Xtyan1/D

mOeBdpxs9cfKaDt0n15nqupvn/' 

>>> 

A native python implementation 

#!/usr/bin/env python 

 

from __future__ import print_function 

import struct 

import io 

 

try: 

    range = xrange 

except NameError: 

    pass 



 

 

def _left_rotate(n, b): 

    """Left rotate a 32-bit integer n by b bits.""" 

    return ((n << b) | (n >> (32 - b))) & 0xffffffff 

 

 

def _process_chunk(chunk, h0, h1, h2, h3, h4): 

    """Process a chunk of data and return the new digest variables.""" 

    assert len(chunk) == 64 

 

    w = [0] * 80 

 

    # Break chunk into sixteen 4-byte big-endian words w[i] 

    for i in range(16): 

        w[i] = struct.unpack(b'>I', chunk[i * 4:i * 4 + 4])[0] 

 

    # Extend the sixteen 4-byte words into eighty 4-byte words 

    for i in range(16, 80): 

        w[i] = _left_rotate(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1) 

 

    # Initialize hash value for this chunk 

    a = h0 

    b = h1 

    c = h2 

    d = h3 

    e = h4 

 

    for i in range(80): 

        if 0 <= i <= 19: 

            # Use alternative 1 for f from FIPS PB 180-1 to avoid bitwise not 

            f = d ^ (b & (c ^ d)) 

            k = 0x5A827999 

        elif 20 <= i <= 39: 

            f = b ^ c ^ d 

            k = 0x6ED9EBA1 

        elif 40 <= i <= 59: 

            f = (b & c) | (b & d) | (c & d) 

            k = 0x8F1BBCDC 

        elif 60 <= i <= 79: 

            f = b ^ c ^ d 

            k = 0xCA62C1D6 

 

        a, b, c, d, e = ((_left_rotate(a, 5) + f + e + k + w[i]) & 0xffffffff, 

                         a, _left_rotate(b, 30), c, d) 

 

    # Add this chunk's hash to result so far 

    h0 = (h0 + a) & 0xffffffff 

    h1 = (h1 + b) & 0xffffffff 

    h2 = (h2 + c) & 0xffffffff 

    h3 = (h3 + d) & 0xffffffff 

    h4 = (h4 + e) & 0xffffffff 

 

    return h0, h1, h2, h3, h4 

 

 

class Sha1Hash(object): 



    """A class that mimics that hashlib api and implements the SHA-1 algorithm.""" 

 

    name = 'python-sha1' 

    digest_size = 20 

    block_size = 64 

 

    def __init__(self): 

        # Initial digest variables 

        self._h = ( 

            0x67452301, 

            0xEFCDAB89, 

            0x98BADCFE, 

            0x10325476, 

            0xC3D2E1F0, 

        ) 

 

        # bytes object with 0 <= len < 64 used to store the end of the message 

        # if the message length is not congruent to 64 

        self._unprocessed = b'' 

        # Length in bytes of all data that has been processed so far 

        self._message_byte_length = 0 

 

    def update(self, arg): 

        """Update the current digest. 

        This may be called repeatedly, even after calling digest or hexdigest. 

        Arguments: 

            arg: bytes, bytearray, or BytesIO object to read from. 

        """ 

        if isinstance(arg, (bytes, bytearray)): 

            arg = io.BytesIO(arg) 

 

        # Try to build a chunk out of the unprocessed data, if any 

        chunk = self._unprocessed + arg.read(64 - len(self._unprocessed)) 

 

        # Read the rest of the data, 64 bytes at a time 

        while len(chunk) == 64: 

            self._h = _process_chunk(chunk, *self._h) 

            self._message_byte_length += 64 

            chunk = arg.read(64) 

 

        self._unprocessed = chunk 

        return self 

 

    def digest(self): 

        """Produce the final hash value (big-endian) as a bytes object""" 

        return b''.join(struct.pack(b'>I', h) for h in self._produce_digest()) 

 

    def hexdigest(self): 

        """Produce the final hash value (big-endian) as a hex string""" 

        return '%08x%08x%08x%08x%08x' % self._produce_digest() 

 

    def _produce_digest(self): 

        """Return finalized digest variables for the data processed so far.""" 

        # Pre-processing: 

        message = self._unprocessed 

        message_byte_length = self._message_byte_length + len(message) 

 



        # append the bit '1' to the message 

        message += b'\x80' 

 

        # append 0 <= k < 512 bits '0', so that the resulting message length (in bytes) 

        # is congruent to 56 (mod 64) 

        message += b'\x00' * ((56 - (message_byte_length + 1) % 64) % 64) 

 

        # append length of message (before pre-processing), in bits, as 64-bit big-endian 

integer 

        message_bit_length = message_byte_length * 8 

        message += struct.pack(b'>Q', message_bit_length) 

 

        # Process the final chunk 

        # At this point, the length of the message is either 64 or 128 bytes. 

        h = _process_chunk(message[:64], *self._h) 

        if len(message) == 64: 

            return h 

        return _process_chunk(message[64:], *h) 

 

 

def sha1(data): 

    """SHA-1 Hashing Function 

    A custom SHA-1 hashing function implemented entirely in Python. 

    Arguments: 

        data: A bytes or BytesIO object containing the input message to hash. 

    Returns: 

        A hex SHA-1 digest of the input message. 

    """ 

    return Sha1Hash().update(data).hexdigest() 

 

 

if __name__ == '__main__': 

    # Imports required for command line parsing. No need for these elsewhere 

    import argparse 

    import sys 

    import os 

 

    # Parse the incoming arguments 

    parser = argparse.ArgumentParser() 

    parser.add_argument('input', nargs='*', 

                        help='input file or message to hash') 

    args = parser.parse_args() 

 

    data = None 

    if len(args.input) == 0: 

        # No argument given, assume message comes from standard input 

        try: 

            # sys.stdin is opened in text mode, which can change line endings, 

            # leading to incorrect results. Detach fixes this issue, but it's 

            # new in Python 3.1 

            data = sys.stdin.detach() 

 

        except AttributeError: 

            # Linux ans OSX both use \n line endings, so only windows is a 

            # problem. 

            if sys.platform == "win32": 

                import msvcrt 



 

                msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY) 

            data = sys.stdin 

 

        # Output to console 

        print('sha1-digest:', sha1(data)) 

 

    else: 

        # Loop through arguments list 

        for argument in args.input: 

            if (os.path.isfile(argument)): 

                # An argument is given and it's a valid file. Read it 

                data = open(argument, 'rb') 

                 

                # Show the final digest 

                print('sha1-digest:', sha1(data)) 

            else: 

                print("Error, could not find " + argument + " file." ) 

 

Digital signatures 
People use handwritten signatures to indicate authentication of their  

• contracts (sales, insurance, employment, etc.) 

• administrative papers (tax declarations, statements, etc.) 

• transactions (banking) 

In the digital word there is a need for a similar technique to identify a person, or any digital entity. 

An electronic signature is defined as "data in electronic form which is attached to or logically 

associated with other data in electronic form and which is used by the signatory to sign" (eIDAS Article 

3) [[8]] 

Public key cryptography can be a solid base of digital signatures scheme: 

 

The workflow is as follows: 

• each entity has a public + private key pair 

• in general, those keys are different.  

• private keys are used for signing, public keys are for verification  



• sender generates the hash of data 

• signature algorithm is applied to the hash value and private key 

• signature is appended to the data 

• the package being sent contains both the data and the signature 

• receiver puts the data and signature to the verification algorithm which produces a hash 

• if the senders hash and receivers hash is the same then the signature is valid 

The digital signature is created by means of a secret private key. The original creator of the data can 

be identified. 

 

 

 

RSA is commonly used as the signing algorithm. Signing large document would be time consuming. 

The hash of the document is much smaller, thus signing a hash is more efficient than signing the entire 

document. 

Main usages of digital signatures: 

• Authenticate messages – the private key is known by its oner so any valid digital signature can 

be created by only the sender who owns the key 

• Check data integrity – if someone modifies the document then its hash will change so 

verification provide no matching hash. Receiver can verify that the document has no change 

since signed.  

References 
[1] Data Encryption Standard, Federal Information Processing Standard (FIPS) Publication 46, 

National Bureau of Standards, U.S. Department of Commerce, Washington D.C. (January 

1977). 

[2] https://sandilands.info/crypto/DataEncryptionStandard.html#x16-840008.5 

[3] https://en.wikipedia.org/wiki/Data_Encryption_Standard 

[4] https://www.youtube.com/watch?v=cVhlCzmb-v0 

[5] R. Rivest: The MD5 Message-Digest Algorithm, 1992 https://www.ietf.org/rfc/rfc1321.txt 

[6] https://github.com/timvandermeij/md5.py 

[7] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital 

signatures and public-key cryptosystems." Communications of the ACM 21.2 (1978): 120-

126. 

https://sandilands.info/crypto/DataEncryptionStandard.html#x16-840008.5
https://www.youtube.com/watch?v=cVhlCzmb-v0
https://www.ietf.org/rfc/rfc1321.txt
https://github.com/timvandermeij/md5.py


[8] REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 

23 July 2014 on electronic identification and trust services for electronic transactions in the 

internal market and repealing Directive 1999/93/EC 

[9] Daemen, Joan, and Vincent Rijmen. "AES proposal: Rijndael." (1999). Federal Information 

Processing Standards Publication 197 Announcing the ADVANCED ENCRYPTION STANDARD 

(AES), November 26, 2001 

[10] https://github.com/ajalt/python-sha1 

https://github.com/ajalt/python-sha1

