

JBoss ESB
Beginner's Guide

A comprehensive, practical guide to developing
service-based applications using the Open Source JBoss
Enterprise Service Bus

Kevin Conner

Tom Cunningham

Len DiMaggio

Magesh Kumar B

BIRMINGHAM - MUMBAI

JBoss ESB
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1180112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-658-7

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

Credits

Authors

Kevin Conner

Tom Cunningham

Len DiMaggio

Magesh Kumar B

Reviewers

Ty Lim

Mark Little

Naveen Malik

Martin Večeřa

Acquisition Editor

Sarah Cullington

Lead Technical Editors

Chris Rodrigues

Pallavi Iyengar

Technical Editor

Vanjeet D'souza

Project Coordinator

Vishal Bodwani

Proofreader

Kevin McGowan

Indexers

Rekha Nair

Monica Ajmera Mehta

Graphics

Manu Joseph

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Authors

Kevin Conner is the Platform Architect for the SOA platform within JBoss, a division of Red
Hat. After graduating from Newcastle University, Kevin worked as a kernel programmer with
Integrated Micro Products, developing fault tolerant network drivers. IMP was later acquired
by Sun Microsystems where he was to discover Java. He has over 15 years, experience of
Java, predominately Enterprise technologies, which he has used to develop software for
technical, financial, and local government clients. Before joining JBoss he was a Senior
Engineer with Arjuna Technologies, working on transaction products.

I would like to thank everyone at Packt Publishing for giving me the
opportunity to write this book. Special thanks to Sarah Cullington for
guiding us through the initial work, Pallavi Iyengar and Chris Rodrigues
for continuing her work, Vishal Bodwani for his enthusiasm and
encouragement and all the technical reviewers.

I would also like to thank all my colleagues at Red Hat for providing a rich
and fertile environment in which ideas are encouraged to flourish, without
which this book would be rather brief. It is truly an inspiring place to work.

A big thank you must also go to my family and friends who, having heard
about this project, encouraged me to go forward with enthusiasm.

Finally my biggest thanks are reserved for those who are most important
to me, my wife and children. They have been patient and encouraging
throughout this process, allowing me to work late through the night and
on weekends in order to catch up with the schedule, all the while having
to deal with one of the most disruptive events any family can undertake—
emigration to a distant country. I began this process while planning to leave
one country, finishing it while setting up a home in a second. I love you all
very much.

Tom Cunningham is currently the project lead for JBoss ESB and has worked for Red Hat
since 2007 on JBoss ESB and SwitchYard. He is an active committer on the Apache jUDDI and
Apache Scout projects. Tom received a B.S. in Computer Science from Georgetown University
and an M.S. in Computer Science from Arizona State University and has worked in software
development for over 14 years.

I'd like to thank my sons Ben and Nate, my wife Sonia, and my parents for
their support in writing this book.

Len DiMaggio stumbled onto computer programming while studying Business
Administration and has never looked back. Len is a Graduate of Bentley University and has
worked for some of the better known pioneering technical companies such as DEC, BBN,
GTE, Rational, IBM, and now JBoss by Red Hat. He is the software test team lead for the open
source JBoss Service Oriented Architecture Platform (SOAP) which is built on JBoss ESB.

This is Len's first book. He is a "Most Valuable Blogger" at Dzone where he is a frequent
contributor. Len has also written over 50 articles for Dzone, Red Hat Magazine, Dr. Dobbs'
Journal, and other publications. Len writes a blog that is (mostly) dedicated to software testing
subjects (http://swqetesting.blogspot.com/). He is a proud member of the JBoss
community (http://community.jboss.org/people/ldimaggio) and, when he is not
testing software, is a frequent contributor to Fotopedia (http://www.fotopedia.com/).

I'd like to thank my wife Maria for her understanding and support during
many late night writing and editing sessions, and Mary and Robert for their
frequent (and extremely important!) interruptions for hockey, dancing,
baseball, soccer, and softball as they kept what's truly important in life
in perspective.

I'd also like to thank way too many current and former co-workers to
mention for everything I learned from them, my co-authors Kevin, Tom,
and Magesh, my mates' in Geordie Land and přátelé in Brno and the
open source communities that make JBoss ESB and all the other JBoss
projects possible. And finally, I'd like to thank Sarah, Chris, Vishal, Vanjeet,
and everyone else at Packt for giving us the opportunity to write this book!

Magesh Kumar B. is a Senior Software Engineer at JBoss, a division of Red Hat. He has a
Masters in Computer Applications from Coimbatore Institute of Technology. His passion is
coding in Java and has architected many enterprise applications prior to Red Hat. His
project contributions include JBoss WS and JBoss Portal. His current projects are
JBoss ESB and SwitchYard.

He hails from Ooty and lives in Bangalore, India with his wife, three kids and his parents. You
can reach him at mageshbk@gmail.com. This is his first book.

I would first like to thank Kevin Conner for introducing me to JBoss ESB.
Without him I wouldn't have been part of this book. I would like to thank
Len and Tom for those delightful days while we wrote this book.

Next I would like to thank Sarah Cullington from Packt for her initial review
when we started this book. I would like to thank my parents, my wife
Charu, my sons Lavesh and Shashwath for being so patient while they
missed my time with them. Lastly to my little daughter Yashtika for showing
her godly smile when the times were tough.

About the Reviewers

Ty Lim has been in the IT Industry for over 15 years. He has worked for several start-up
companies in the mid 1990s and found himself working at several major large corporations
after his stint in Silicon Valley. He has worked in the following industries: Software
Development, Consulting, Healthcare, Telecommunications, and Financial. He has
experience utilizing JBoss, Tomcat, and WebSphere middleware technologies.

He holds a Bachelor of Science degree in Computer Science from the University of the
Pacific, and is currently pursuing a Master of Science degree in CIS from Boston University.

He has worked on the IBM WebSphere Application Server v7.0 Security book.

I would like to thank all my friends and family for their continued support. I
am truly blessed to have such a great support system. It is because of all of
you that I consider myself a very happy man.

Dr Mark Little is CTO of the JBoss Division in Red Hat. Prior to this he was Technical
Development Manager for the Red Hat SOA Platform. Mark has extensive experience in the
areas of SOA and distributed systems, specializing in fault tolerance. Over the years he has
led various efforts including ESB and transactions. He has been a Distinguished Engineer at
Hewlett Packard, and author of many standards in the areas of Web Services, Java, CORBA,
and elsewhere.

He co-authored many books including Java 2 Enterprise Edition 1.4 (J2EE 1.4) Bible (Wiley),
Java Transaction Processing: Design and Implementation (Prentice Hall), Enterprise
Service Oriented Architectures: Concepts, Challenges, Recommendations (Springer),
and Service-Oriented Infrastructure: On-Premise and in the Cloud (Prentice Hall).

I'd like to thank my wife and family for putting up with my workloads over
the years. It can't have been easy and I value their support immeasurably.
I'd like to especially thank my nine year old son, Adam.

Martin Večeřa is a software quality engineer for JBoss by Red Hat interested in bleeding-
edge projects and technologies. His main area of interest is Java middleware where he
has seven years of experience. Previously he developed information systems for power
plants and medical companies. Martin publishes articles on Java middleware to various
international and local web magazines. Other main areas of his interest are data mining,
business intelligence, and rule-based systems.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Prologue—the need for an ESB	 1

Preface	 3
What is "JBoss"?	 3

JBoss is also a community	 4
What is Open Source and what are its advantages?	 4
What is middleware?	 6
What is an SOA? What is an ESB?	 8
What is JBoss ESB?	 9
What capabilities does JBoss ESB have?	 10
Why JBoss ESB?	 11
What is JBoss ESB's relationship with SOA?	 12
What resources does the JBoss ESB community provide?	 12

Online forums with a difference	 12
The user forum	 13
The developer forum	 13

Other useful documents	 13
Mailing lists	 14
JIRA announcements and bugs	 14
Live chat	 15

What are the JBoss project and product models?	 15
What this book covers	 15
Chapter bibliography	 18

Chapter 1: Getting Started	 23
Downloading JBoss ESB	 23
Downloading and installing an application server	 25
Time for action – downloading and installing JBoss AS	 25
Choosing which JBoss ESB distribution is right for you	 28

Table of Contents

[ii]

Time for action – downloading and installing jbossesb-4.10.zip	 29
Reviewing the contents of jbossesb-4.10.zip	 30

Time for action – deploying JBoss ESB to JBoss AS	 30
Keeping things slim	 33
Time for action – modifying a profile	 33

Deployable Java archives	 33
Testing the installation	 34
Time for action – testing the installation	 34
Looking at logs	 35

Finding the logs	 35
Time for action – viewing the deployment of an application in the server.log	 36
Consoles	 37
Time for action – examining an MBean	 38
What do you do if you see an error?	 39
Summary	 40

Chapter 2: Deploying your Services to the ESB	 41
The quickstarts	 41
Anatomy of a deployment	 43

Defining the providers, services, and listeners	 44
Other deployment files	 46
Helloworld quickstart	 47

Time for action – deploying the quickstart	 48
Deploying a JBoss ESB archive remotely	 50
Time for action – accessing the admin console	 50
Time for action – performing the deployment	 51
Introduction to JBDS	 54
Time for action – downloading JBDS	 54
Time for action – installing JBDS	 55
Running JBDS	 60
Time for action – setting up the ESB runtime in JBDS	 63
Time for action – using JBDS to run the quickstart	 68
Deploying the quickstart in JBDS	 70
Time for action – deploying the quickstart	 71
Summary	 75

Chapter 3: Understanding Services	 77
Preparing JBoss Developer Studio	 78
Time for action – opening the Chapter3 app	 78
Examining the structure of ESB messages	 80

Examining the message	 80

Table of Contents

[iii]

Time for action – printing the message structure	 81
Message implementations	 84
The body	 84

Time for action – examining the main payload	 85
The header	 89

Routing information	 89
Message identity and correlation	 90
Service action	 91

Time for action – examining the header	 91
The context	 93
Message validation	 94

Configuring through the ConfigTree	 95
Configuring properties in the jboss-esb.xml file	 95
Traversing the ConfigTree hierarchy	 96
Accessing attributes	 96

Time for action – examining configuration properties	 97
Service pipeline and service invocation	 99

Lifecycle methods	 99
Processing methods	 101

Time for action – examining exceptions	 103
Dynamic methods	 105
MEP (Message Exchange Pattern) and responses	 106
ServiceInvoker	 108

Synchronous delivery	 109
Asynchronous delivery	 109

Time for action – examining exceptions	 110
Composite services	 112

Service Chaining	 112
Service Continuations	 114

Transactions	 115
Security context	 117
Summary	 118

Chapter 4: JBoss ESB Service Actions	 119
Understanding actions	 119
What is an action class?	 120
The action chain	 121
Custom actions	 123

Lifecycle actions	 123
JavaBean actions	 126
Custom actions using annotations	 127

Lifecycle annotations	 128
Processing annotations	 129

Table of Contents

[iv]

Out-of-the-box (OOTB) actions—how and when to use them	 131
Scripting	 132
Services—invoking EJBs	 133
Web services/SOAP	 134

Time for action – running the quickstart	 134
Transformers/converters	 135
Smooks message fragment processing	 136

Time for action – running the quickstart	 138
Routers	 140

Time for action – implementing content-based routing	 142
Notifiers	 144

Time for action – let's see how notifiers work	 144
Business Process Management	 145
Drools	 146
BPEL processes	 146

Chapter bibliography	 148
Summary	 148

Chapter 5: Message Delivery on the Service Bus	 149
The bus	 150
Preparing JBoss Developer Studio	 151
Time for action – creating File Filters	 151
Time for action – opening the Chapter5 app	 152
Transport providers	 154
Time for action – using a File provider	 155

InVM transport	 157
Transactions with InVM transport	 158

Time for action – testing InVM transactions	 159
InVM message optimization	 162
Controlling InVM message delivery	 164

Time for action – using lock-step delivery	 165
InVM threads	 168

Time for action – increasing listener threads	 168
Provider configurations	 170

JMS provider	 171
FTP provider	 171
SQL provider	 172
File provider	 173

Summary	 174

Table of Contents

[v]

Chapter 6: Gateways and Integrating with External Clients	 175
What is a gateway and a notifier?	 176

How do we compose messages?	 177
Simple composer example	 178

Preparing JBoss Developer Studio	 179
The JMS gateway	 180
Time for action – using the JMS gateway	 180
The File gateway	 182
Time for action – using the File gateway	 182
The HTTP gateway	 184
Time for action – using the HTTP gateway	 185

The HTTP bus and HTTP provider	 187
The Camel gateway	 188
The FTP gateway	 189
The UDP gateway	 189
Time for action – using the UDP gateway	 190
The JBoss Remoting gateway	 192
Time for action – using the JBR gateway	 193
The Groovy gateway	 194
The SQL gateway	 195
Time for action – using the SQL gateway	 195
The JCA gateway	 198
Summary	 199

Chapter 7: How ESB Uses the Registry to Keep Track of Services	 201
The registry—what, how, and why?	 202
UDDI—the registry's specification	 203
jUDDI—JBoss ESB's default registry	 205

Configuring jUDDI for different protocols	 205
Looking at jUDDI's database	 206

Time for action – looking at the jUDDI registry database	 208
Other supported UDDI providers	 209
Custom registry solutions	 209
End-point reference	 209
Time for action – looking at EPRs	 210
JAXR—introducing the Java API for XML registries	 212
Federation	 212
Load balancing	 213
Registry maintenance and performance	 213
Registry interceptors	 214

Table of Contents

[vi]

Monitoring	 214
Examining jUDDI query counts	 215

Time for action – querying the UDDI server	 216
Chapter bibliography	 220
Summary	 220

Chapter 8: Integrating Web Services with ESB	 221
Preparing JBoss Developer Studio	 222
Time for action – preparing the Chapter8 application	 222
Time for action – switching consoles	 224
Exporting ESB services as a web service	 225
Time for action – running the sample	 226

Action implementation	 228
Securing EBWS	 229

Time for action – securing the sample	 230
Other security mechanisms	 233

ESB web service client	 234
soapUI client	 234

Time for action – ESB SOAP client	 234
Request processing	 236
Response processing	 238

The Wise SOAPClient	 239
Time for action – Incorporating the Wise SOAP Client	 240

Request and response processing	 241
Custom handlers	 243

Co-located web services	 244
SOAPProcessor	 245

Time for action – incorporating a SOAPProcessor client	 245
Web service proxies	 248

SOAPProxy	 248
Time for action – incorporating SOAPProxy into the application	 248
Tweaking HttpClient	 250

SOAPClient	 250
SOAPProxy	 251
Sample properties	 251
Custom configurator	 252

SOAPProxy security pass through	 253
Cleaning up deployments	 254

Time for action – SOAPProxy security pass through	 255
Summary	 257

Table of Contents

[vii]

Appendix A: Where to go Next with JBoss ESB?	 259
Creating service definitions with the JBDS ESB editor	 259
Using other UDDI providers (HP Systinet and SOA Software Service Manager)	 262
Using other JBoss project technologies	 263

JBoss Drools and rules-based services	 263
JBoss Riftsaw and BPEL services	 268
JBoss jBPM and Business Process Management	 272

Using Maven with JBoss ESB	 274
Compiling with Maven	 275
ESB packaging with Maven	 276

How to test your ESB services	 278
Testing a single action	 279
AbstractTestRunner	 280
TestMessageStore	 282
Arquillian	 283
Cargo	 285

Chapter bibliography	 286

Appendix B: Pop-quiz Answers	 287

Index	 289

Prologue—the need for an ESB
It's 9AM Monday. After weeks of work, your team has almost completed a difficult systems
integration project. Your system was entirely based on a Java Messaging System (JMS)
interface, and you had to integrate it with a different team's web services based system. It
meant that your team had to write "glue code" to handle data translation between the two
systems, but all that was behind you now, so you could get back to concentrating on finishing
up the actual business logic code for the integrated system.

And then, your boss appears at your office door and casually announces that there is one
more integration needed for the system. But this time, you have to integrate the system with
an older legacy system that is text file and FTP based. Text files! Suddenly you see weeks of
writing more new glue code to handle data transformation, protocol conversion, and who
knows what else.

How long would it be until you would be able to get back to being able to focus on your "real
job" of working on the business logic challenges that your system was intended to solve?
What you need is a tool that will enable you to connect these systems together.

Preface
In this preface, we'll introduce JBoss, Open Source, and, of course, JBoss ESB. We'll also
introduce thinking in Service Oriented Architecture terms, how JBoss ESB can help you, and
why JBoss ESB is the best choice for your SOA needs.

This preface is organized into a series of questions and answers. We'll begin at the beginning,
the beginning of JBoss, that is.

What is "JBoss"?
In 1999, Marc Fleury (http://www.thedelphicfuture.org/) started an open source
project that he named "EJBoss" (for "Enterprise Java Beans open source software"). The goal
of the project was to provide an open source server implementation of the EJB specification.

The server quickly became popular due to its low cost and ease of use. In 2001, the name
was changed to "JBoss" due to Sun Microsystem's legal concerns over the use of the term
"EJB". (http://community.jboss.org/thread/69613).The JBoss Group was first
incorporated in 2001. In 2006, JBoss was acquired by the world's leading open source
software company, Red Hat (http://www.redhat.com). JBoss is currently known as
"JBoss by Red Hat" (http://www.jboss.org/).

As Javid Jamae and Peter Johnson point out in their 2009 book, JBoss in Action
(http://www.amazon.com/JBoss-Action-Configuring-Application-Server/
dp/1933988029), the word "JBoss" is often used to describe the company, its application
server, and other JBoss technologies, including JBoss ESB. The full list of JBoss open source
technologies and projects can be found at http://www.jboss.org/projects/matrix.

Preface

[4]

JBoss is also a community
One aspect of JBoss that is especially striking is the significant market and market mind share
presence that it has, given its relatively small size. The number of JBoss employees who lead,
develop, test, and document all the JBoss open source projects is very small, especially when
compared to industry giants such as IBM and Oracle. So, how does JBoss do it? It takes
a community.

It's really misleading to look at the small number of JBoss employees relative to the large
shadow that JBoss casts, as behind JBoss the company; there's JBoss the community. "JBoss"
is also the open source community that supports and contributes to the development,
testing, and documentation of JBoss projects. Literally tens of thousands of people (as of
this writing, over 80,000 people have registered as members of the JBoss community
http://community.jboss.org) all around the world have contributed in one way or
another to JBoss projects. Some of them have contributed actual code, while others have
contributed documentation, feedback on design or bugs, or have promoted JBoss projects
in their personal and commercial blogs.

What is Open Source and what are its advantages?
In its simplest terms, "open source" describes software where the source code, that is, the
human readable source from which the software is built, is freely available.

Why is this important?

If you can see the source code of software, you can study and review not just the outward
behavior of the software, but also its internal functioning and logic. You can understand how
it works, how it fails, and how it can be improved.

Let's take a step back and think about just what software is. It's not a physical medium like
steel or concrete (in his book, The Art of Software Testing, Glenford Myers refers to software
being "malleable" in comparison to physical media). Rather, it is a manifestation of human
logic, packaged into a form that can be used to accomplish specific tasks. These tasks can
take the form of executing business processes, spacecraft navigation, or even just tools to
enable us to waste time surfing the web. Software is, effectively, a bunch of ideas.

Now, how can you improve an idea? You subject it to a rigorous review that is also public, so
that the idea must stand on its own merits. Where's a better place to have a review like this,
in a cathedral, or a bazaar?

Eric Raymond contrasted the differences between closed source and open source software
development with the analogy that is the title of his book, The Cathedral and the Bazaar
(Raymond, Eric Steven, http://www.catb.org/~esr/writings/homesteading/
cathedral-bazaar)

Preface

[5]

In the bazaar there is a free exchange of ideas. Those ideas, and criticisms of those ideas, can
come from many sources and a wide number of people. The bazaar may seem to be chaotic,
but it also allows for freedom and innovation and the unfettered filtering out of bad ideas.
Think about it, if you are trying to design a complex system, wouldn't it be more successful if
the design process includes a review by the widest possible audience?

In contrast, in the cathedral, only the members of a small, closed society are able to
participate in the review of an idea and influence its ultimate design. The ideas are held
secret from the outside world. The members of this closed society may be skilled, but they
will be few in number and their actions are constrained by the rules of cathedral life.

These two worlds parallel these software development models:

�� In the closed source model, the ideas are secrets:

�� Only a small, select number of people can see the inner workings behind
these ideas. They review, refine, debug, and correct the software that
represent these ideas, and release them to the public in a closed form.

�� Design and security flaws, unless they are caught by the holders of the
secrets, are built into the software.

�� Bad decisions can be hidden from the consumers of the software. These
consumers see only the external form and output from the software. The
consumers can ask for changes to be made to the software, but do not
have a way to make the changes themselves. The consumers are often
locked into complex, expensive, and restrictive license agreements with
the software producers.

�� In the open source model, the ideas are open:

�� Anyone can review them, critique them, attempt to improve them, and
even look for ways to exploit them. A large community of people participate
in the conversion of these ideas into software. These people bring their
own experiences, outlooks and their "many eyes" to the task of building
the software.

�� Design and security flaws are often uncovered by people other than the
original designers.

�� Bad decisions are often held up to public ridicule by members of the
community, until the decisions are corrected.

�� The consumers of the software see both the external form and output from
the software as well as its inner workings. These consumers are able to both
request changes to the software, and can make those changes themselves,
within the framework of flexible license agreements. The consumers can
even retain the use of the software after their licenses expire.

Preface

[6]

�� Closed source leads to more bloat-ware as there is no community to weed
this out. In large closed source companies more complexity is viewed as
good. In an open source community, this bloat will be exposed to the light
of day and removed.

What is middleware?
Like many technology terms "middleware" can be difficult to define. One interesting
definition is:

Middleware: The kind of word that software industry insiders love to spew.
Vague enough to mean just about any software program that functions as a link
between two other programs, such as a Web server and a database program.
Middleware also has a more specific meaning as a program that exists between
a "network" and an "application" and carries out such tasks as authentication.
But middleware functionality is often incorporated in application or network
software, so precise definitions can get all messy. Avoid using at all costs.

http://www.salon.com/technology/fsp/glossary/index.html

That's not a very informative definition. Let's define what middleware is in terms of where it
resides in a software system's architecture and the functions that it performs.

The "where" is easy. Middleware occupies the "middle," in between the operating system
and your applications.

One of its primary tasks is to connect systems, applications, and databases together in a
secure and reliable way. For example, let's say you bought a sweater at a store web site
last night. What happened? You looked through various sweaters' images, selected color
and size, entered a charge card number, and that was it, right? Well, behind the scenes,
middleware made sure that the store's inventory database showed that sweater in stock,
connected to the charge card company's database to make sure that your card wasn't
maxed out, and connected to the shipping company database to verify a delivery date.
Additionally, it made sure that hundreds or thousands of people could all shop on that
site at the same time. Also, while it looked to you like you were looking at one web site,
middleware tied together many different computers, each in a different location, all running
the store's e-commerce application, into a cluster. Why is this important? To make sure that
you can always get to the store online, even if some of these computers are down due to
maintenance or power failures.

Preface

[7]

Before we move on, let's look at middleware in terms of a real-world analogy:

Middleware is plumbing.

There are four ways that this is true.

First, it's mostly invisible.
You don't generally see much of the plumbing in your house. What you see is
the water. As a consumer, you don't see middleware. You see the web sites
and the information flow that middleware makes possible. This is part of why
middleware is hard to define. If you live and work with software, and if you're
reading this you probably do, then you're very aware of software packages
at the top level in a logical view, such as e-commerce web applications, and
packages that exist at the bottom level, such as databases and the operating
system. The middle part, that plumbing that ties everything together, can seem
less concrete and identifiable.

Second, as a developer, you rely on middleware to provide a standard way of
doing things.
If you wanted to build your own plumbing from scratch, you could. But it's
much easier to just buy plumbing fixtures. You, as a software developer, could
design and build your own application servers, database connection drivers,
authentication handlers, messaging systems, etc. But these wouldn't be easy
to build and maintain. It's much easier to make use of middleware components
that are built according to established (and especially open!) standards. In
middleware, these standards take the form of libraries of functions that your
applications use through well-defined application programming interfaces
(APIs). You call these functions instead of having to invent your own to handle
tasks such as accessing databases or executing transactions.

Third, it ties together parts of complex systems.
There's another similarity about your household plumbing and middleware;
tying systems together. They both enable you to tie together systems that were
built by different people, at different times, without your having to reconstruct
everything from scratch. Think about your house for a minute. If your house is
older, you probably have several generations of plumbing all working together.
You didn't have to upgrade your washing machine with multiple service packs
when you installed a new hot water heater. In middleware, one of the most
powerful approaches is Service-oriented Architecture (SOA) based on an
Enterprise Service Bus (ESB). As its name implies, an ESB provides a server,
messaging, and APIs that function like a hardware bus. In order to integrate
enterprise software applications developed at different times, by different
organizations, and even communicating via different protocols, you don't
have to rewrite them to speak one consistent language. The ESB enables you

Preface

[8]

to "plug" these applications as services into the bus. The ESB takes care of
transforming messages between the protocols and routing the messages to
the correct services.

Fourth and finally, it lets you worry about other things.
When you put an addition onto a house, what do you worry about? Bathroom
fixtures, kitchen appliances, flooring, colors, and how to pay for it all. It's a very
stressful process. The last thing you want to worry about is whether you want
3/4-inch or half-inch pipe, copper or PVC connectors, #9 or #17 solder, etc.
With middleware taking care of all the invisible functions, you, as a software
developer, can concentrate on building software to solve your business
problems and fulfill your customers' needs.

http://magazine.redhat.com/2008/03/11/what-is-middleware-in-plain-
english-please/

What is an SOA? What is an ESB?
Service Oriented Architecture (SOA) is not a single program or technology. It's really a
matter of software architecture or design. Some of the basic principles of SOA are:

�� Based on inter-operable services: Instead of building an application from a huge
monolithic program, SOA design calls for breaking systems into multiple services.
These services are not rigidly coded together, but interact by sending and receiving
messages.

�� Software reuse: By dividing large applications into services, individual services, or
groups of services can be reused.

�� Loose coupling: Services are not rigidly coded together, but rather interact through
"loose coupling" where services communicate by sending and receiving messages.

�� Abstraction: The messages sent between services follow a well-defined contract. No
information on the internal implementation of the services is needed.

�� Location: Clients and services don't store the network or server location of target
services. The information is made discoverable in a registry.

Preface

[9]

In hardware terms, a "bus" is a physical connector that ties together multiple systems or
subsystems. Instead of having a large number of point-to-point connectors between pairs of
systems, you connect each system to the bus once.

An Enterprise Service Bus (ESB) does the same thing, logically, in software. Instead of passing
electric current or data over the bus to and from the connections (or "endpoints") on the
ESB, the ESB logically sits in the architectural layer above a messaging system. The messaging
system allows for asynchronous communications between services over the ESB. In fact,
when you are working with an ESB, everything is either a service (which in this context is
your application software) or a message being sent between services. It's important to
note that a "service" is not automatically a web service. Other types of applications, using
transports such as FTP or JMS, can also be services.

For more information on what an ESB is, a great resource is Enterprise Service Bus: Theory in
Practice by David Chappell.

What is JBoss ESB?
JBoss ESB is JBoss' open source Enterprise Service Bus.

One of the main goals of JBoss ESB is to enable you to knit together disparate systems.
JBoss ESB does this by abstracting the differences between these systems by treating each
of them as a logical service on the ESB. The services communicate via messages, as on the
bus, everything is either a message or a service. As a result, regardless of the inner workings/
architecture of any service, you can "plug" them into the ESB and connect them without
having to write system-specific "glue code".

JBoss ESB does not dictate to you specific integration patterns for any types of legacy
systems. They are all treated as logical services on the ESB. This approach ensures that JBoss
ESB itself does not become one more legacy system that you have to compensate for by
writing integration "glue code".

Preface

[10]

What capabilities does JBoss ESB have?
Some of the main capabilities of JBoss ESB are as follows:

�� Service registration and hosting: We'll talk a lot about services in this book,
and after all, the ESB is the vehicle to host the service, and the services are what
we use to implement our business logic. A registry is used to look up service
endpoints at runtime. UDDI (Universal Description, Discovery and Integration—
http://uddi.xml.org) is a registry standard. JBoss ESB provides jUDDI
(http://juddi.apache.org) as a registry implementation; it stores internal
ESB Endpoint References (EPRs) in the jUDDI registry. Without the registry, your
client application won't be able to locate its target services. Don't worry about the
location of the services, you can find them through the registry. We will discuss the
registry in Chapter 7.

�� Protocol translation through Adapters: In order to support connecting legacy
applications over the ESB, JBoss ESB must be able to translate data submitted
from various protocols to a format that can be transmitted over the ESB. JBoss ESB
manages this translation using Adapters (for JMS, FTP, files, and so on) to "on-board"
messages onto the ESB. JBoss ESB translates the messages into a format referred
to as "ESB-aware" when the messages are on-boarded onto the ESB. We'll discuss
messages' "ESB awareness" in Chapter 6.

Preface

[11]

�� Process orchestration: "Orchestration" refers to the control of multiple processes
by a central process (sort of like an orchestra conductor). JBoss ESB supports
service orchestration through its integrations with JBoss jBPM (for business process
orchestration) and JBoss RiftSaw for web service orchestration using BPEL (Business
Process Execution Language—http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html).

�� Change management: It's rare that a service will be deployed to the ESB only once.
The service will have to change over time and be updated. JBoss ESB handles this by
supporting the hot deployment of services and versioning services, and monitoring/
managing deployed services through administrative consoles.

�� Quality of service: Bad things can always happen to good services and servers. JBoss
ESB supports transactions to ensure that services are reliable.

�� Rich set of out-of-the-box actions: Creating a custom service is that much easier
as one of JBoss ESB's features is an extensive set of predefined ("out of the box")
actions that can be incorporated into your services. These actions support a wide
variety of tasks including:

�� Transformers and converters: converting message data from one form to
another.

�� Business Process Management: integrating with JBoss jBPM.

�� Scripting: automating tasks in supported scripting languages.

�� Services: integration with EJBs Routing—moving message data to the
correct services.

�� Notifier: sending data to ESB-unaware destinations.

�� Webservices/SOAP: support for web services as service endpoints.

Why JBoss ESB?
Why should you choose JBoss ESB? Well, in addition to the rich feature set we just listed in
the previous section (and also making the authors of this book very happy), here are some
other good reasons:

�� Low entry cost: It's free. You can download, evaluate, and use JBoss ESB at no cost.

�� It's open: You can see the code, the documents, the bugs, and even the e-mails and
IRC chat between members of the development team.

�� You won't be alone: Thousands of individuals and organizations have downloaded
and are using JBoss ESB. It's supported by a vibrant user community. We'll discuss
the full set of community resources in a bit.

Preface

[12]

�� It's easy to get started: Included in the JBoss ESB distributions are over 80 example
programs referred to as "quickstarts." Each quickstart is a fully operational JBoss
ESB service that can be used as a learning tool, or can be extended to service as the
basis for your own custom services.

�� It's Standards Based: JBoss ESB supports such standards as JMS and UDDI. In
addition, all of the configuration files used by JBoss ESB and ESB serve are
written in XML.

What is JBoss ESB's relationship with SOA?
Is an ESB the same thing as SOA? Not exactly. An ESB does not provide a Service Oriented
Architecture, but it does provide the tools than can be used to build one—especially loose-
coupling and asynchronous message passing. SOA is a series of principles, patterns, and
best practices. JBoss ESB is the base SOA infrastructure that JBoss has contributed to the
community which can be used to develop SOA applications.

In middleware, one of the most powerful approaches is SOA based on an ESB. In order
to integrate enterprise software applications developed at different times, by different
organizations, and even communicating via different protocols, you don't have to rewrite
them to speak one consistent language. JBoss ESB enables you to "plug" these applications
as services into the bus. JBoss ESB takes care of transforming messages between the
protocols and routing the messages to the correct services.

What resources does the JBoss ESB community provide?
We mentioned previously that JBoss ESB, just like other JBoss open source projects, is
a community project. It's free for you to use, but it is not supported with a service level
agreement (SLA). You don't get a 1-800 number to call for help at 2AM on a Sunday.

Remember, you're a member of a community, and you are not alone. You have access to
multiple resources.

Online forums with a difference
You can ask questions, and review questions that have been asked in the past in
online forums.

At first glance, being told to search a user forum for an answer to a problem that you are
having with software may sound like a brush in the same league as RTFM ("read the fine
manual") After all, every commercial software product has a user forum these days. Actually,
every product of any kind has a forum these days.

Preface

[13]

There are, however, very important differences between JBoss project forums and forums
for closed software products. In forums dedicated to closed source software, you can often
see conversations between users where they share experiences and attempt to discern the
root causes of problems, where the inner workings and designs of the software is a black
box. They, in effect, pool their ignorance in the hope of solving a puzzle from the outside in.
Also, In JBoss forums, the community members who respond to forum questions are either
the people who have designed and built the software, or are other users who all share one
common characteristic; they all have access to the source code.

There are actually two separate forums.

The user forum
This forum (http://community.jboss.org/en/jbossesb?view=discussions) is
intended to handle all problems using JBoss ESB. For example, if you have a problem with an
installation, or cannot find a specific resource, or have any type of question on your initial
experiences, you should ask it in the user forum. But, as literally thousands of people have
used JBoss ESB before you, there is a good chance that whatever question you are asking has
already been asked before. So, before you post a new question, search the forum to see if it's
really an old question that has already been asked (and answered) before.

The developer forum
This forum (http://community.jboss.org/en/jbossesb/dev?view=discussions)
is intended for questions related to the development of JBoss ESB. You should try to make
sure to ask your questions related to the use of JBoss ESB on the user forum, which is
higher traffic and has a higher participation rate from members of the community in the
User Forum. You can also subscribe to RSS feeds for these forums, so that you can see new
questions as they are asked and answers to new and old questions.

Other useful documents
In addition to the forums you also have access to the JBoss ESB project wiki and blog.
The wiki (http://community.jboss.org/wiki/JBoss ESB) contains hundreds of
useful articles on configuring and using specific features of JBoss ESB. The JBoss ESB blog
(http://jbossesb.blogspot.com/) has a lower level of traffic, and tends to cover new
announcements and more time-critical subjects.

Preface

[14]

Mailing lists
The JBoss ESB project has multiple active mailing lists (http://www.jboss.org/
jbossesb/lists). All of these are open for anyone to subscribe to. It's a good idea to
look at the archive of these lists before you subscribe so you can get an idea of the type of
information communicated through the lists, and the frequency of the mail messages:

�� esb-announce (https://lists.jboss.org/mailman/listinfo/esb-
announce): This list is used for general announcements, such as when a new
release of JBoss ESB is available.

�� esb-users (https://lists.jboss.org/mailman/listinfo/esb-users):
This list is intended to complement the user forum, not duplicate or replace it.
It's intended to provide a way for users and the JBoss ESB development team to
communicate. If you are tempted to use this list to ask basic, newbie type questions,
please don't! Questions of that type are better asked in the user forum.

�� esb-commits (https://lists.jboss.org/mailman/listinfo/esb-
commits): This list is used for svn (subversion) commit announcements. You
probably don't want to subscribe to this list unless you are actively involved in
making changes to JBoss ESB project code.

�� esb-dev (https://lists.jboss.org/mailman/listinfo/esb-dev): This
list is intended to complement the development forum by providing a way for the
developers to communicate.

�� esb-issues (https://lists.jboss.org/mailman/listinfo/esb-issues):
JBoss ESB uses JIRA for bug and issue tracking. When a JIRA is logged or modified,
an announcement is sent to this list.

JIRA announcements and bugs
There's one aspect of closed source software that can make systems integration work
difficult. Just as the source is closed, so are the bugs. When you purchase a closed source
product, you may receive a list of resolved problems, but it is likely that this list is incomplete
and sanitized so as to present a positive view of the product.

With JBoss open source software, in contrast, the bug tracking database is as open as the
code. You can see all the bugs, tasks related to the project, and the feature requests at
http://jira.jboss.org. Now, it may at first appear as though JBoss projects are plagued
with alarmingly large numbers of bugs. It's important to keep in mind that since ALL the bugs
are logged in JIRA, some of the bugs are actually user errors, duplicates, problems with the
samples or documentation, or even problems that have already been resolved.

Preface

[15]

Remember, you're not looking at a carefully screened Potemkin Village-like
(http://en.wikipedia.org/wiki/Potemkin_village) view of the bug database,
you're looking at all of them. Note that the only bugs that are not publicly viewable are
related to security issues. These issues are generally kept private until they are resolved so as
to not put users of the software at risk. And, if the number of bugs in JIRA for an open source
project does seem too large, just try asking your closed source software suppliers for full and
open access to their bug tracking systems. It's doubtful that any access that you receive will
be full and open.

Live chat
Finally, you can talk to live people! The JBoss ESB project has an IRC (Internet Relay Chat),
channel at irc.freenode.net #jbossesb. You can use this channel to direct questions to JBoss
ESB project community members. Check this out when you get a chance. Regardless of your
timezone, you'll find someone online in the #jbossesb channel.

What are the JBoss project and product models?
You've probably noticed that we have consistently referred to JBoss software as "projects"
and not as "products." We've done this intentionally as in the JBoss model, while all the
software is open source, there are definite differences between JBoss projects and products.
The major differences are:

The JBoss Enterprise Platforms (http://www.redhat.com/jboss/platforms/)
combines multiple projects, into an integrated, certified package. The JBoss Application
Server (JBoss AS) is the core of "Enterprise Application Platform" (http://www.jboss.
com/products/platforms/application/) and JBoss ESB is the core of the SOA
Platform (http://www.jboss.com/products/platforms/soa/).

You could assemble platforms like these on your own, but this would be a complex task.
And, you would then be faced with the need to maintain the packages over time and ensure
that you located and correctly integrated all new bug fixes, functional updates, and security
updates. Or, you can buy a product subscription and have JBoss do this for you.

It's a common model for organizations to start with JBoss software by using one or more
projects, and then "graduate" to purchasing products as their use of the projects expands.

What this book covers
Congratulations! You now have an understanding of JBoss's history, open source software
and JBoss projects and products, Service Oriented Architecture and the role of an ESB in it,
as well as a good idea of how JBoss ESB fits into SOA, and the level and types of support that
are provided to you in the JBoss ESB community.

Preface

[16]

The chapters in this book will enable you to work hands-on with JBoss ESB as you learn how
to build, deploy, and administer your own ESB services. Each chapter builds on what you
learned in the previous chapter.

The chapters cover the following subjects:

Chapter 1, Getting Started
In this chapter, you begin to get hands-on with JBoss ESB. When you complete this chapter,
you'll have JBoss ESB downloaded, deployed to an application server, and running. This
chapter describes the JBoss ESB distributions that are available, how you decide which
distribution is right for you and how you can download it. After you download JBoss ESB, this
chapter walks you through the steps you take to deploy JBoss ESB to a JBoss AS server, and
how to start the server. Once you have the server running, this chapter shows you how to
verify that the server is running correctly with JBoss ESB. And, if there are problems with the
server or the deployment of JBoss ESB to that server, this chapter shows you how to debug
these problems.

Chapter 2, Deploying your Applications to the ESB
Once you have JBoss ESB deployed to an application server and running, it's time to learn
how to deploy and manage deployed services. You'll learn how to do that in this chapter by
using one of JBoss ESB's "quickstart" example programs. This chapter starts by reviewing
the core components of JBoss ESB, how they work and how your services can use them.
The chapter then describes "ESB-awareness." This concept is important to understand as
it defines how you can "onboard" messages onto the ESB through gateways from external
sources. After this, you get hands on with the JBoss ESB quickstart example programs; how
you build, deploy, and run the quickstarts, and how they illustrate JBoss ESB features. Finally,
this chapter introduces the eclipse based JBoss Developer Studio (JBDS). JBDS makes service
development easier for you through its IDE-based ESB editor and makes it easier for you to
deploy and administer deployed services.

Chapter 3, Understanding Services
Running a simple service is a useful first step, but in this chapter, you'll expand on that by
learning in-depth about services and how they perform tasks with the actions pipeline, and
how services are able to support transactions. The chapter also shows how services can be
made secure by using authentication and authorization, and how services can be executed
based on schedules that you define. You'll also learn how to make your services more robust
with load-balancing, fail-over and fault-tolerance configuration.

Preface

[17]

Chapter 4, Understanding Actions
Actions enable your services to perform simple and complex tasks. This chapter shows you
how to use the built-in actions provided with JBoss ESB. These actions support JBoss ESB's
core functions of transformation, routing, and support for web services, and JBoss ESB's
integrations to use Business Process Management with jBPM, Rules services with Drools,
BPEL processes with Riftsaw, and virtual databases with Teiid. The chapter also shows you
how to create and debug your own custom actions.

Chapter 5, Preparing for Message Delivery on the Service Bus
One of the major features of JBoss ESB is how it is able to deliver messages to services. In
this chapter you'll learn how to use connectors to get messages onto and off of the JBoss ESB
bus. You'll also learn how JBoss ESB uses message transport providers and how to configure
them. This chapter describes how you use the transports that the ESB supports in your
services, and how transactions, security, pass-by-value and pass-by-reference get affected
with such transports. The transports covered include JMS, JCA, file, ftp, sftp, ftps, sql.

Chapter 6, Gateways and how to integrate with External Clients
In addition to moving messages over the ESB between services, it's important for the ESB to
be able to "on-board" messages from external sources. JBoss ESB does this with Gateways.
This chapter shows you how to write clients and then use gateways to enable your services
to receive ESB unaware messages through gateways from those clients. The chapter also
shows you how to use notifiers to send messages off the JBoss ESB bus to external ESB
unaware destinations.

Chapter 7, How the ESB Uses the Registry to Keep Track of Services
How does JBoss ESB keep track of deployed services? In a registry. In this chapter you'll learn
how the registry works, and how to extend the the default operations performed by the
service registry. This chapter introduces you to the UDDI (Universal Description Discovery
and Integration) protocol and shows how your clients can use it to locate services. The
chapter also introduces you to federated registries, where you can segment your services
into hierarchical groupings, and shows you steps that you can take to maintain your service
registry to keep it running reliably.

Chapter 8, Integrating Web Services with the ESB
In this chapter you'll learn how to take your ESB services and export them over SOAP/HTTP
and about the choices available for invoking local and remote web services. This chapter
shows you how to automatically expose ESB services through a web service with EBWS,
invoking co-located web services with SOAPProcessor, invoking remote web services
with SOAPClient, and dynamic proxying of web services with SOAPProxy. This chapter
concludes by showing you how to integrate web service security with JBoss ESB.

Preface

[18]

Appendix A, Where to Go Next with JBoss ESB?
This appendix looks into topics like using the JBDS Editor and other UDDI Providers
(HP Systinet, SOA Software Service Manager). We will also see Drools and Rules Based
Services, RiftSaw and BPEL-based services, jBPM and Business Process Management.
Other topics covered include using Maven with JBoss ESB—creating a project from
scratch with Maven archetype and using the JBoss Maven plugin and testing ESB
Services (TestMessageStore and Arquillian).

Appendix B, Pop-quiz Answers
Check how well you scored in the quizzes.

Chapter bibliography
JBoss in Action by Javid Jamae and Peter Johnson (http://www.amazon.com/JBoss-
Action-Configuring-Application-Server/dp/1933988029/ref=sr_1_1?s=book
s&ie=UTF8&qid=1325764563&sr=1-1).

"Middleware.'' Smart Environments by Eric Steven Raymond and G. Michael, Addison-
Wesley: New York. 101-127. 2004 (http://serenity.uncc.edu/youngblood-old/
publications.html)

The Art of Software Testing by Glenford Myers (http://www.amazon.com/Art-
Software-Testing-Second/dp/0471469122)

Conventions
In this book, you will find several headings appearing frequently. To give clear instructions of
how to complete a procedure or task, we use:

Time for action – heading
Action 1

Action 2

Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

Preface

[19]

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The decompose method also has access to the
original request".

A block of code is set as follows:

public void readReply() throws JMSException {
 QueueReceiver receiver = session.createReceiver(replyQueue);
 Message msg = receiver.receive();
 if (msg instanceof TextMessage) {
 System.out.println(((TextMessage) msg).getText());
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public void readReply() throws JMSException {
 QueueReceiver receiver = session.createReceiver(replyQueue);
 Message msg = receiver.receive();
 if (msg instanceof TextMessage) {
 System.out.println(((TextMessage) msg).getText());
 }

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now click Run | Run As |
Java Application".

Preface

[20]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[21]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Getting Started

As we stated in the Preface, JBoss ESB is JBoss' open source Enterprise Service
Bus. JBoss ESB enables you to quickly integrate new and legacy systems,
exposing their combined functionality through services "plugged" into the
service bus. JBoss ESB takes care of routing and processing service requests
while you concentrate on your system's design and development.

In this chapter we will:

�� Discuss the choices that you have for which distribution of JBoss ESB to run

�� Show where you can find the distributions, and how to install them

�� We'll also introduce you to the ESB's Administrative Console

�� Walk you through how to locate services in the console

�� Show you how to debug server errors

In short, you'll learn how to get JBoss ESB up and running. Okay, it's time to get hands-on
with JBoss ESB!

Downloading JBoss ESB
One of the ways in which JBoss projects make it easy to get started is that they are easy to
install and get running. In most cases, you simply download a ZIP file, and remember, since
these are Java projects, you can use the same ZIP project file on any supported operating
system and with any supported JVM. Unzip the file to a directory, and run a shell script or
.bat file coincidentally named run, and you're off and, well, running. You can install JBoss
ESB into any directory that you choose. You can even have multiple installations on the
same system.

Getting Started

[24]

Please note that in the examples and illustrations in this book, we
will download to, and install software into the /opt directory, which
is a standard Unix directory for optional software packages. All
references to download and installation directories will be relative to
/opt. Please note that you may install the JBoss Application Server
and JBoss ESB into any directory you want.

Let's begin by looking at how you can download the bits for JBoss ESB.

At the time of this writing, the download page for JBoss ESB was aptly named
http://www.jboss.org/jbossesb/downloads. The webpage is as follows:

If you explore around this page, you'll find several older releases of JBoss ESB. The newest
releases are always displayed at the top of the page. This is the release (4.10) that we'll
install and use throughout the remainder of the book. We'll use the 4.10 release as, at the
time of this writing, it was the most up-to-date release, and it includes many features and
bug fixes that were not present in earlier releases.

Chapter 1

[25]

Before we go any further with JBoss ESB, we have to download the application server on
which JBoss ESB will run. It's really something of a misnomer to say that you run a JBoss ESB
server. What you really do is deploy JBoss ESB to an application server and then deploy your
services to JBoss ESB.

So, let's get ourselves an application server.

Downloading and installing an application server
Application servers provide many functions, such as clustering, supporting resource
pooling and sharing (for example database connections), caching, transaction support, and
persistence. We'll use JBoss Application Server (JBoss AS) as the application server onto
which we'll deploy JBoss ESB.

The version of JBoss AS that we will use in this book is version 5.1.0.GA. We'll use this version
of JBoss AS as it has been widely used and tested with JBoss ESB 4.10.

Time for action – downloading and installing JBoss AS
Follow these steps to download and install JBoss AS release 5.1.0.GA:

1.	 Go to the following page: http://www.jboss.org/jbossas/downloads. Go to
Projects | Servers | Application Server. Click on Download, and you should reach
the following page:

Getting Started

[26]

2.	 Scroll down and select 5.1.0.

3.	 When the download is finished, move the jboss-5.1.0.GA.zip file to the
directory where you want to install and run the server. For the remainder of
the book, we'll use the /opt directory.

4.	 Unzip the jboss-5.1.0.GA-jdk6.zip file. Unzipping the file will create a
directory named jboss-5.1.0.GA-jdk6. Under this directory, you'll see the
following directories:

�� conf: Configuration files are stored here.

�� data*: Information used by the server, such as references to deployed
service endpoints are stored here.

�� deploy: We've already seen this directory, this is where deployed archives
are kept.

�� deployers: These are the deployer binaries that initialize the deployed
archives and services.

Chapter 1

[27]

�� deploy-hasingleton: You're probably already noticing files with a prefix
of "ha". In this context, "ha" indicates "high availability". In other words,
something to do with running your server and applications in a cluster.
A clustered singleton service is deployed to servers in a cluster, but is
only available on one of those servers. These "ha-singleton" services are
deployed in this directory.

�� farm: The clustered services that are available on multiple servers in a
cluster are deployed in this directory.

�� lib: The server's .jar files are kept here.

�� log*: The logs are kept here.

�� tmp* and work*: Temporary files used by the server are kept in these
directories.

5.	 In a terminal/shell window, go to that directory, and then the bin sub-directory,
and execute run.sh. (Note that on Windows, you would execute a file named
run.bat in the same directory.) The server will start up and write logging
information to the screen. When you see a message that looks like this,
then the server is up and running:

19:52:22,708 INFO [ServerImpl] JBoss (Microcontainer) [5.1.0.GA
(build: SVNTag=JBoss_5_1_0_GA date=200905221634)] Started in
44s:251ms

6.	 You can check that the server has started successfully by going to
http://localhost:8080/. Here you'll see the top-level JBoss AS server page:

Getting Started

[28]

A complete description of JBoss AS and all its capabilities is beyond
the scope of this book. Our primary interest in the server is as a
platform where we can deploy JBoss ESB. For additional information
on JBoss AS see http://www.jboss.org/jbossas/

7.	 Stop the server by pressing Ctrl + C.

What just happened?
As we discussed earlier in this chapter, you don't really "run" a JBoss ESB server. You
deploy it to an application server. Therefore, before we could do anything with JBoss ESB,
we needed an application server. Based on its wide adoption and its integration with JBoss
ESB, we choose JBoss AS as our application server. Now, it's time for us to select a JBoss ESB
distribution, download, and install it.

Choosing which JBoss ESB distribution is right for you
There are a number of different choices for the distribution you may use for JBoss ESB.
We'll discuss those now to give you a better idea what you may want to start with.

Chapter 1

[29]

�� jbossesb-server-4.10.zip: The jbossesb-server binary distribution is a
pre-configured JBoss AS server distribution. The ESB Server comes pre-installed with
JBoss Messaging, JBoss Webservices, all of the base ESB capabilities and is the best
choice for those who want to get started quickly.

Note that the ESB server is configured with version 4.2.3 of JBoss AS. While this
distribution makes it easy to get started, we won't spend much time with it as
this configuration is based on an older version of JBoss AS. What's not in this
distribution? Well, this is not a full-blown Java EE server. As such, this distribution
does not include support for clustered configurations, hibernate, or transactions
and is probably not suited to being run in a large production environment.

�� jbossesb-4.10-src.zip: This is the next distribution you might want to consider
and it is the source code distribution for JBoss ESB. You can use this distribution to
build your own copy of jbossesb-server-4.10.zip. Because JBoss ESB, like all
the other JBoss projects, is open source, you can examine all the source code, learn
from it, modify it, and even make contributions to it.

As you've probably already guessed, we're following the Goldilocks principle here.
The first one was the simplest to get started with, but was limited. The second one
didn't have those limitations, but is more complicated to get started with.

�� jbossesb-4.10.zip: (This is referred to on the download page as the "binary"
distribution), it is a standalone distribution of JBoss ESB. The binary distribution
comes with installation scripts allowing it to be installed into a full JEE application
server. We'll install this distribution into our JBoss AS 5.1.0.GA server and use it for
the bulk of work in this book.

Time for action – downloading and installing jbossesb-4.10.zip
Okay. Enough with the preliminaries. It's time for the main event. Let's look at the jbossesb
binary distribution. This is the distribution that we'll use for the remainder of the book.

As was the case with our installation of JBoss AS, to install JBoss ESB 4.10, simply select the
file for download, save the file, and then unzip it.

What just happened?
Unzipping the jbossesb-4.10.zip file creates a directory named jbossesb-4.10 under
our current directory. (Remember that we are using the /opt directory for our work with
JBoss ESB.)

Getting Started

[30]

Reviewing the contents of jbossesb-4.10.zip
When you unzip the jbossesb-4.10.zip file, you'll see the following directory tree under
the jbossesb-4.10 directory:

�� Contributors.txt: These are the names of the people who have contributed to
JBoss ESB.

�� docs: The user, programmer, and admin docs for JBoss ESB.

�� install: This is the directory from which you'll install JBoss ESB into the JBoss AS
server. We'll get back to this directory in a minute.

�� javadocs: The code is open source, so here are the javadocs so that you can easily
view the classes and methods.

�� JBossEULA.txt: What's an EULA? The acronym stands for "End User License
Agreement". These are the rules that govern how you can use or repackage JBoss
ESB, and its supporting software, for commercial use.

�� lib: This directory contains all the Java .jar files needed by JBoss ESB.

�� README_FIRST.txt: The title says it all. This file includes a brief introduction to
JBoss ESB, and a pointer to the community user forum.

�� samples: These are the "quickstart" example programs. We'll describe the
quickstarts in detail, and walk through how to run them, later in the book.

�� xml: This directory deserves a closer look. If you look in this directory, you'll see a
number of XSD (XML Schema Definition) files. These files define the elements used
to construct JBoss ESB services.

The files named jbossesb-<version number>.xsd are especially interesting as
these define the full set of JBoss ESB service configuration attributes. We'll explore these
attributes, such as service providers, gateways, IDs for services, and so on in the next chapter
when we take a close look at a JBoss ESB service. We'll also revisit these files when we start
to use the ESB editor in JBoss Developer Studio (JBDS).

Time for action – deploying JBoss ESB to JBoss AS
Okay, now it's time to install JBoss ESB into the JBoss AS server we installed previously.
But, wait. Before we do that, let's examine just what it means to "deploy" JBoss ESB to an
application server. "Deploying" something to the application server means putting it in a
location where the application server can recognize it, control it, and start the application's
lifecycle. Follow these steps to deploy JBoss ESB:

1.	 The first step is to set our current directory to the install directory under the
jbossesb-4.10 directory:

	 cd install

Chapter 1

[31]

2.	 Before we deploy JBoss ESB, we need to tell it where it will be deployed. You'll find a
file named deployment.properties-example in the install directory. Copy this
file to a file named deployment.properties:

	 cp deployment.properties-example deployment.properties

3.	 Next, we have to define the location of the JBoss AS server directory in the
deployment.properties file. Open up your favorite text editor and define
these properties in that file:

org.jboss.esb.server.home=/opt/jboss-5.1.0.GA-jdk6
org.jboss.esb.server.config=all

You probably noticed that we just referenced a property named org.jboss.
esb.server.config. What's a server config?

Each JBoss server profile consists of a set of server configurations (to control the
level of logging detail, server start up memory requirements, and so on) and the
set of services to install. JBoss AS 5.1.0.GA is shipped with these profiles:

�� all: starts all available services

�� default: a base Java EE server

�� minimal: a bare, slimmed down configuration, the minimum for
starting the application server

�� production: a profile designed for use in production environments

�� standard: a Java EE certified configuration of services

�� web: a small set of services designed to mimic a web profile

We'll use either the default or all profile for most of our work in this book.

4.	 Before we actually deploy JBoss ESB to our JBoss AS server, it's a good idea to save a
copy of the server, in the event that we ever want to reset the server to its original
configuration. There's another useful aspect of the server profiles that's important
to keep in mind; they are very easy to copy. To save a copy of the original all
configuration, just copy its directory tree:

	 cp -pR all all.original

5.	 Apache Ant is used for many JBoss AS and JBoss ESB deployment tasks. This book
assumes you use Apache Ant version 1.8.1 with JBoss ESB 4.10. The ant command
to deploy JBoss ESB to JBoss AS is very simple:

	 ant deploy

Getting Started

[32]

What just happened?
We accomplished two tasks in this section, namely:

�� We protected ourselves from any problems that we might inadvertently introduce
in modifying a JBoss AS server's configuration profile by making and saving a copy
of that profile. This is an easy thing to do as it only requires a copy command. You
might never need to use the copy, but as a backup system for your PC, it's a nice
(and easy) insurance policy.

�� We deployed JBoss ESB to our JBoss AS server, and in the process, made our first use
of Apache Ant to administer JBoss ESB. We'll make a lot more use of ant later in the
book, when we work with the JBoss ESB quickstarts and other example code.

But, what exactly does this invocation of ant deploy actually do? In the context of this
installation, just what JBoss ESB bits are installed? The installed JBoss ESB bits are:

�� server/default/deployers/esb.deployer: The name is a dead giveaway
here. This component enables the server to deploy .esb archives.

�� server/default/deploy/jbossesb-registry.sar: This service archive
contains ESB's integration to its service registry. A registry is used to look up
service endpoints at runtime; a repository is used to store and manage the life
cycle of services. We'll describe the registry, how it works, and how you use it
in a subsequent chapter.

�� server/default/deploy/jbossesb.esb: This ESB archive contains internal
support for messages and message redelivery.

�� server/default/deploy/jbpm.esb: This ESB archive contains the JBoss ESB
integration to the jBPM Business Process Management system.

�� server/default/deploy/jbrules.esb: This ESB archive contains the JBoss ESB
integration to JBoss Rules for building rules-based services.

�� server/default/deploy/smooks.esb: This ESB archive contains the JBoss ESB
integration to the Smooks message transformation and routing engine.

�� server/default/deploy/soap.esb: This ESB archive contains the JBoss ESB
support for hosting Web Services.

�� server/default/deploy/spring.esb: This ESB archive contains the JBoss ESB
support for applications built with the Spring framework.

Chapter 1

[33]

Keeping things slim
You may want to experiment with a "slimmed" configuration where you can reduce the
server's memory use by removing services. The ability to modify the configuration of a JBoss
server is actually one of its most important features. You can remove features that you don't
use to save memory, or CPU resources, or to enhance the security of your installation by
reducing complexity and the number of features. But, before you start modifying a profile,
you should make a copy of it, so, in the event you make some mistakes in your modifications,
you can easily restore the original profile.

Time for action – modifying a profile
For example, to modify the default profile, just make a copy of it first:

cp -pR server/default server/default_original

Then hack away at the default profile, secure in the knowledge that you can easily
restore it.

Deployable Java archives
What types of artifacts are deployable to application servers?

There are several, namely:

�� .jar: This is a Java archive. A JAR file is used to distribute multiple Java classes in
one file.

�� .war: This is a web application archive. A WAR file* is used to deploy web
applications such as JavaServer Pages (JSPs) and Servlets.

�� .ear: This is an enterprise application archive. An EAR file is used to deploy
enterprise applications which include such assets as EJBs.

�� .sar: This is a JBoss service archive. A SAR file is used to deploy a service to a JBoss
application server.

�� .esb: This is a JBoss ESB service archive. An ESB file is used to deploy a JBoss ESB
service to an application server that has JBoss ESB deployed.

* WAR, EAR, SAR, and ESB can be deployed either as files where the file format is
actually a compressed file, or as a directory with the same .war, or other extension
in its name. If the compressed file has been uncompressed into a directory, it is
referred to as an "exploded" WAR, EAR, and so on.

In a nutshell, the act of deploying JBoss ESB to an application server deploys these archives
to the server.

Getting Started

[34]

Testing the installation
Okay, after you've deployed JBoss ESB to the application server, what's next? Let's start the
server and make sure there are no problems.

Time for action – testing the installation
The following steps will demonstrate how to start our server allowing us to test the installation:

1.	 We'll start by running the JBoss AS server all profile. Change to the bin directory
and enter the following command to start the server using the all server profile:

	 sh ./run.sh -c all

2.	 At this point, many, many lines of logging information are written to the screen.
Near the end of the display, you should see lines that look like this:

19:52:20,592 INFO [TomcatDeployment] deploy, ctxPath=/admin-
console

19:52:20,670 INFO [config] Initializing Mojarra (1.2_12-b01-FCS)
for context ‘/admin-console'

19:52:22,410 INFO [TomcatDeployment] deploy, ctxPath=/

19:52:22,452 INFO [TomcatDeployment] deploy, ctxPath=/jmx-console

19:52:22,672 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on
http-127.0.0.1-8080

19:52:22,697 INFO [AjpProtocol] Starting Coyote AJP/1.3 on ajp-
127.0.0.1-8009

19:52:22,708 INFO [ServerImpl] JBoss (Microcontainer) [5.1.0.GA
(build: SVNTag=JBoss_5_1_0_GA date=200905221634)] Started in
44s:251ms

(If you are not seeing this, but you are seeing lots of lines of text that include ERROR,
then skip ahead a few sections to the section named And what to do if you see
an error.)

Chapter 1

[35]

What just happened?
We had previously started the JBoss AS server without specifying a server profile. This time,
we used the -c option to select the server profile into which we had deployed JBoss ESB.

So far, so good. The server seems to be running, based on a quick look—correct at the
surface. Now, let's look a little deeper and see what you can do to verify that the JBoss ESB
installation is correct and that you will be able to use it for the remainder of the book.

Looking at logs
You might be tempted to think about server logs with the same enthusiasm that you
would have approached a college course in financial accounting: probably useful, but
definitely boring.

Don't fall into this trap. The server logs are a gold mine of useful information. You'll see in
the logs the results of both successful and failed operations. We'll be examining server logs
in detail as we work through the examples in this book.

Let's start by finding the logs.

Finding the logs
You saw a lot of logging information displayed on the screen when you started the server
a few minutes ago. The problem with this information, however, is that it scrolled by faster
than anyone could read and analyze it. Fear not. The same information, and actually, more
information, was also written to log files.

Within the all server profile, you'll see a log directory. This directory contains the following
log files:

�� boot.log: This shows the actual boot sequence followed by the server.

�� server.log: The primary server log file which tracks the lifecycle of managed
resources as well as output and error messages written from those resources. The
JBoss ESB logger is based on Apache log4j (http://logging.apache.org/
log4j/). The level of detail written to the server.log is configurable in each server's
jboss-log4j.xml file.

Getting Started

[36]

The degree of detail of information that is written to the logs is defined in the server/
[profile]/conf/jboss-log4j.xml file as JBoss AS and ESB make use of the Java
Log4J library. Log4J defines:

�� Appenders that enable you to have logging messages sent to a console or
different files

�� Log message levels such as INFO, WARNING, ERROR, DEBUG, and FATAL

�� Categories that enable you to filter log messages based on a package

We found the logs. Well, this was pretty easy, seeing as how they are in the logs directory.
But, seriously, make a mental note as to the location of the logs as you will be returning to
them frequently to diagnose problems, or to confirm that your server is running as expected.

What sort of things can you see in the server.log? Here's a simple example. Remember
how we described the .esb archives that were added to the server when we deployed JBoss
ESB? Let's look to see if they were initialized successfully when the server was started.

Time for action – viewing the deployment of an application
in the server.log

The following steps will show the deployment of an application in the server.log:

1.	 Let's look for errors in the server.log file:

	 grep ERROR server.log

Good, no ERROR. (Yes, the logs are case-sensitive.)

2.	 Let's move on and look for logging information related to JBoss ESB by "grepping"
the server.log:

	 grep ESB server.log

What just happened?
There they are, the very .esb archives that we discussed earlier:

2011-04-14 21:21:40,998 INFO [org.jboss.resource.connectionmanager.
ConnectionFactoryBindingService] (main) Bound ConnectionManager
‘jboss.jca:service=DataSourceBinding,name=JBossESBDS' to JNDI name
‘java:JBossESBDS'

2011-04-14 21:21:41,009 INFO [org.jboss.internal.soa.esb.dependencies.
DatabaseInitializer] (main) Initializing java:/JBossESBDS from listed sql
files

2011-04-14 21:21:41,132 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘jbossesb.esb'

Chapter 1

[37]

2011-04-14 21:21:42,788 INFO [org.quartz.impl.StdSchedulerFactory]
(main) Quartz scheduler ‘ESBScheduler:jbossesb.esb' initialized from an
externally provided properties instance.

2011-04-14 21:21:42,789 INFO [org.quartz.core.QuartzScheduler] (main)
Scheduler ESBScheduler:jbossesb.esb_$_NON_CLUSTERED started.

2011-04-14 21:21:45,645 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘jbpm.esb'

2011-04-14 21:21:52,498 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘jbrules.esb'

2011-04-14 21:21:53,567 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘slsb.esb'

2011-04-14 21:21:53,614 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘smooks.esb'

2011-04-14 21:21:56,000 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘soap.esb'

2011-04-14 21:22:07,005 INFO [org.jboss.soa.esb.listeners.deployers.
mc.EsbDeployment] (main) Starting ESB Deployment ‘spring.esb'

Consoles
The main goal of this book is to help you to create your own JBoss ESB services. At this point
in the book, however, we haven't done that yet, so we'll look at some of the ESB's services to
verify that the server is running and that the deployment of JBoss ESB was successful. Let's
start by looking at the server's Java Management Extension (JMX) console. You access the
console here: http://localhost:8080/jmx-console/ JMX Console JMX Console

Getting Started

[38]

JMX is a Java technology that makes it possible to monitor and administer assets such
as servers or software. You do this with JMX by defining Managed Beans (MBeans) that
abstract/represent the managed objects.

How do they help us? MBeans monitor and control many attributes of the services and
actions you will be building and using. They are a wonderful diagnostic tool in situations
where you want to track what is happening on your server, and help you examine and
control your deployments.

Time for action – examining an MBean
Let's look at one service that is accessed through an MBean. JBoss AS also has
an administration console. This console is part of the JBoss "RHQ" project
(http://www.jboss.org/jopr) and is the newest administrative tool for
JBoss AS. This console provides a system and server-level interface and enables
you to monitor and manage resources such as deployed applications, JMS queues
and topics, and the server system itself (for example, memory use).

1.	 Start your server and browse to http://localhost:8080/admin-console/.

2.	 Log on as the default user (username "admin", password "admin").

3.	 Browse through the different trees under Applications. Note all of the different
types of applications which can be controlled and monitored:

Chapter 1

[39]

For more information on the admin console, see:

http://community.jboss.org/en/jbossas/embjopr

http://community.jboss.org/thread/145880

What do you do if you see an error?
Problems can happen in the best of families, and software is no exception. If you see an error
when you start the server, or when you deploy your own JBoss ESB service what should you
do? Here's a set of steps that you should take: an easy way to start is to try to reconstruct the
steps that you took before the error occurred. It may be that the root cause of the error was
a configuration change or some other form of action that you performed. Remember that
if you made a copy of the server profile before you started making changes, you can easily
restore it.

If you can't easily identify or remember the cause of the error, then it's time to do some
investigation of the logs.

First, examine the server log. Look at the messages that were displayed before or after the
error occurred. What sort of things might be in the log? The following are a few examples:

�� "Class not found" (CNF) exceptions: These problems may be caused by a
missing .jar, or an incomplete deployment. The root cause of this may be that
the CLASSPATH environment is not set correctly. Note that, in order to start the
server, you don't have to have CLASSPATH pre-defined. The start-up scripts will
do it for you.

�� "Java not found" exceptions: The root cause of this problem may be that the PATH
environment variable is not set correctly. Try to verify that you can invoke the Java
runtime from the command line and check its version (java -version).

�� "Address already in use" exceptions: The root cause of this problem is that another
server is already running on the port that the server you are starting is trying to use.
By default, JBoss AS, with or without JBoss ESB deployed, runs on port 8080. If you
see this error when you are trying to start the server, it's because another server is
already running.

�� "Illegal state" exceptions: These problems may be caused by an invalid
configuration file. Examine the error in the log and if it specifies an ESB
validation error, check your jboss-esb.xml file for errors.

If the error that you see doesn't make sense to you, you can always use a search engine to
query pertinent information about your error, or ask a question on the user forum and attach
your server.log to the post.

Getting Started

[40]

Pop quiz
Before we move on, it's time to see what you've learned. Pencils ready? Let's begin!

1.	 JBossESB can run in standalone mode, without being deployed to an application
server. True or false?

2.	 Name the (3) JBossESB distributions.

3.	 You can always get 24/7 support for all JBoss community projects simply by calling a
super secret 1-800 telephone number. True or false?

4.	 The best way to get help on a question you have on JBoss community projects is to
immediately make a vague post to the projects' forum. True or false?

5.	 What is a server "profile"?

6.	 How do you make a copy of a server profile, and why would you want to have a copy
if the software is free?

7.	 The server logs are a waste of disk space. You should always delete the log files. True
or false?

8.	 What is an MBean? And how does the JBoss JMX make it easy for you to use them?

Summary
Congratulations! You're off to a great start. You have a running JBoss AS with JBoss ESB
installed. Application servers are very cool things. But, what makes them even more cool is
that they are the vehicle on which you can build and run your own applications and servers.

In the next chapter, we'll take a close look at what a running service looks like and how you
can start to build your own. Can you say "helloworld"?

2
Deploying your Services to the ESB

In the previous chapter we learned some basics about how to set up JBoss ESB
in conjunction with JBoss AS. In this chapter we'll go a little deeper and start to
learn what you can do with the JBoss ESB deployed to the server you have
just configured.

In this chapter you will:

�� Learn about the core components of JBoss ESB, how they work, and what it means
for your services.

�� Get hands on with a sample application, one of the JBoss ESB quickstarts. Using this
quickstart as a live example, you'll explore deploying and administering services.

�� Learn how to develop, deploy, and administer your services by using the
eclipse-based JBoss Developer Studio.

The quickstarts
In this section we'll examine the "quickstart" example programs that are packaged with JBoss
ESB. You'll find these in the /samples/quickstarts directory of the JBoss ESB installation.

For a writer starting a new assignment, facing a blank piece of paper (or word processing
screen) can be an intimidating prospect. As a programmer, facing a blank editor or IDE
window can be an equally intimidating prospect when you are learning a new technology.
It's common for software development packages to make learning a new technology easier
by including a few examples, but these can be either too small or too simple to illustrate key
concepts, or may combine so many features into a single example that it becomes confusing.

Deploying your Services to the ESB

[42]

JBoss ESB takes a different approach with its "quickstart" example programs. There are
a large number of individual quickstarts, each of which illustrates one or more JBoss
ESB features. It is also an explicit goal of the quickstarts for them to be usable both as
educational examples and as the starting point for your own custom applications. As the
name "quickstart" indicates, these programs are intended to give you an understanding
of JBoss ESB and help you build your own applications quickly. At the time of this writing,
there are over 80 quickstarts included with JBoss ESB in the samples/quickstarts
directory. These quickstarts demonstrate JBoss ESB features such as listeners, routing, data
transformations with JBoss Smooks, JBoss ESB integrations with JBoss jBPM and JBoss Rules,
and many other features.

While they all demonstrate different features and technologies, the quickstarts share some
common characteristics in that they are all built, deployed, and run with a small number
of simple Apache Ant commands. The quickstarts also include a readme file that explains
the features that each quickstart demonstrates, as well as the steps to run the quickstart.
Note that each quickstart includes its own ant build.xml file. These ant files are used
to define quickstart-specific tasks. A common build task file (this file is named samples/
quickstarts/conf/base-build.xml) is used to define tasks common to all the
quickstarts, such as quickstart deployment.

For the most part, you can run the JBoss project software with no changes after a
download, but the quickstarts require you to define some environmental variables.
While each quickstart includes its own build.xml ant file, all the quickstarts make use of
a set of common environmental variables. As a prerequisite before you run any quickstart,
you have to configure these common variables. The quickstarts expect these variables
to be defined in a file named quickstarts.properties. The easiest way to set these
variables' values is by copying the file in the samples/quickstarts directory named
quickstarts.properties-examples to quickstarts.properties and then editing
the quickstarts.properties file you just created to set the variables to match your
server configuration.

The environment variables are as follows:

�� org.jboss.esb.server.home: Set this to the home directory of your JBoss AS
server installation. In the case of the configuration that we are using in this book,
this would be set to /opt/jboss-5.1.0.GA.

�� org.jboss.esb.server.config: Set this to the server profile to which JBoss ESB
has been deployed. In the case of the configuration that we are using in this book,
this would be set to all.

Chapter 2

[43]

�� jbpm.console.username and jbpm.console.password: These two variables
are used by the jBPM-related quickstarts. Both of these should be set to "admin"
unless you have defined security settings different from the out-of-the-box
configuration. Obviously, "admin/admin" is not a very secure username and
password for a production. We'll talk about the options that JBoss ESB supports for
production level password security later in the book in Chapter7. For now, we'll keep
things simple and stick with "admin/admin".

�� jbossesb.ftp.hostname, jbossesb.ftp.username, jbossesb.ftp.
password, and jbossesb.ftp.directory: Some of the quickstarts demonstrate
aspects of JBoss ESB's support for the FTP protocol (for example, the FTP gateway
listener), so you will have to define these environment variables to be able to have
your services access an FTP server.

Additionally, the quickstarts all have one more thing in common; whether they are small or
large, they are all fully-functioning and deployable JBoss ESB applications. You can take any
of them and use it as a starting point to develop your own custom application. A great way
to begin is to take a quickstart, make some small changes, deploy it, verify that it works as
intended, then rinse and repeat, and extend it. We'll build, deploy, and run a quickstart later
in this chapter. Later, in Chapter 4, we'll extend a quickstart.

Anatomy of a deployment
Before we take an in-depth look at one quickstart, it's important to understand the
deployment requirements for any JBoss ESB service-based application. When we discussed
the types of archives that are deployable to the JBoss AS servers in the first chapter, we
briefly talked how in addition to WAR files (.war), EAR files (.ear), and SAR files (.sar),
JBoss ESB added the .esb archive. Let's now take a look at just what has to be in a .esb
archive, in order for it to be deployed.

Note that the quickstarts all create complete and deployable .esb archives. The
base-build.xml file includes the definition of the "deploy" task and this creates
the deployable .esb archives.

Deploying your Services to the ESB

[44]

If you look inside a JBoss ESB .esb archive, you'll see a similar directory tree of files
and directories:

Defining the providers, services, and listeners
The most important part of the configuration file for an .esb archive is jboss-esb.xml.
Depending upon the complexity of your application, jboss-esb.xml can be an intimidating
file to edit, but if you keep in mind that despite the complexity of any application, the goals
of this file are to define the application's providers, listeners, and services.

We've discussed services already in this book, but who are these providers? And, what do
they provide?

Providers are servers or packages that exist outside of JBoss ESB that—for the lack of a
better word—"provide" resources to the services defined in the .esb archive. You define
the endpoints through which the services access these resources in jboss-esb.xml. Some
examples of the types of resources that providers make available are JMS topics and queues,
FTP servers, or SQL access to a database.

Let's take a high-level look at what a jboss-esb.xml file looks like. We'll take a much more
in depth look at a specific quickstart's jboss-esb.xml, and other configuration files, in the
next section of this chapter. For now, we'll ease into the water and save the detailed XML
for a later chapter. The following image describes the connection of the services contained
within the jboss-esb.xml file:

Chapter 2

[45]

The file is divided into two main sections: Providers and Services.

Each provider definition includes:

�� A Name, and, depending on the type of the provider, Attributes. For example, FTP
providers will include the FTP server name as an attribute.

�� A busid that is important to make note of, as this ID will be used in the service and
listener definitions later in the jboss-esb.xml file. This ID is used to reference
the endpoint that the provider defines, and is used instead of the provider name,
to reference that endpoint.

As its name implies, the busid is the ID of the service and
listener endpoints on the bus (the ESB). A service or listener
finds its providers using the busid.

�� A Message filter is used to specify details about the resource made available by the
provider. For example, for a JMS provider, the filter will reference the JMS queue
provided, and for an FTP provider, the filter will reference the FTP server, directories,
and so on.

�� For schedule-related providers, you define the details of the schedule, such as
cron settings.

Deploying your Services to the ESB

[46]

Each service definition includes:

�� Category, Name, and Description, the combination of these are used in the
service registry.

�� Listeners; a service definition contains one or more listeners. What's interesting
to note here is that just as the providers must define ESB-aware providers to
correspond to non-aware providers, the listeners must also define ESB-aware
listeners to correspond to the non-aware providers.

What does it mean to be "ESB-aware?"

It refers to being able to handle messages in the format used by
the ESB as opposed to any message format such as JMS or HTTP.
The providers that you define work in pairs. The ESB-unaware
provider helps you to bring messages "onboard" onto the ESB,
and the ESB-aware provider handles messages once they are on
the ESB. The ESB-unaware providers work with processes that we
refer to as "gateways" to "onboard" messages onto the ESB. We'll
discuss this in detail in Chapter 5 and Chapter 6 when we look at
message delivery and gateways.

�� In the event that a listener is a gateway listener and corresponds to a provider, then
the listener will include this property is-gateway="true".

�� Each listener will cross reference the busid of the provider on which it relies.

�� Actions; the sequential action pipeline. These are the actions that are performed by
the service.

Other deployment files
In addition to jboss-esb.xml, some quickstarts include other deployment-related files, for
example, deployment.xml.

When an .esb archive is deployed, the sequence of actions is that message queues are
deployed first, then ESB-aware services, and finally the gateways. This sequence is important
so the application services are always running before any clients can push data to them.
After this, the registry is updated, so that clients and other services can find the deployed
services (http://community.jboss.org/wiki/JBossESBDeploymentStrategies).
This requirement is specified by the deployment.xml file. This file defines the exact order
in which the message queues are deployed. In addition, you can use this file to make your
.esb deployment dependent on other deployments. In this way you can be sure that your
.esb will have all the resources that it needs to run when it is deployed.

Chapter 2

[47]

Depending on the types of resources that your .esb requires, there may be additional
configuration files. One type of file that you'll see with many of the quickstarts is used
to define the service dependencies needed by JMS queues. These files are named
jbm-queue-service.xml (where "jbm" stands for JBoss Messaging).

Let's stop looking at quickstarts in the abstract and examine a quickstart in detail. The
tasks that the quickstart performs are very simple, but every configuration and operational
characteristic of the quickstart is used and expanded upon by the other quickstarts or
custom applications that you build. The quickstart that we'll look at is the ESB version
of the classic programming example; helloworld.

Helloworld quickstart
In this section, we'll walk through running a quickstart. This will give you hands on
experience in deploying, running, reviewing the operations that the quickstart performs,
and then undeploying an .esb archive.

In keeping with programming tradition, the simplest of the quickstarts is "helloworld". It's a
small program, but there are those who love it!

Apologies to Daniel Webster

"It is, as I have said, a small college, and yet there are those who love it."

http://www.dartmouth.edu/~dwebster/speeches/
dartmouth-peroration.html

What does this quickstart do? It performs one of two functions, depending on how the
quickstart is invoked. It either receives a message through a JMS gateway listener and passes
that message to the gateway's corresponding ESB-aware listener, or it skips the gateway and
receives the message directly at an ESB-aware listener. After that, the quickstart writes the
message to the server log and exits.

While, at first glance, the helloworld quickstart may appear too simple to serve as an useful
example of a .esb archive, it is a fully functioning and deployable .esb. As it is simple, it
will let us concentrate on the configuration, deployment, and execution of .esb archives,
without being distracted by examples of JBoss ESB many features or integrations.

Let's start with the deployment.

Deploying your Services to the ESB

[48]

Time for action – deploying the quickstart
As we discussed earlier in this chapter, a .esb archive is deployed by copying it to the target
server profile's deploy/ directory. The best way to do this is to use the quickstart's "deploy"
ant target with this command:

cd samples/quickstarts/helloworld

ant deploy

What just happened?
There's quite a bit of output from this command. It's worthwhile looking at some of this in
detail so that you understand what's happening here, as you may want to re-use some of
either the base-build.xml ant script shared by all the quickstarts, or the ant build.xml
script used by this quickstart.

Some of the highlights are listed as follows:

1.	 First, the programs that are used to send the ESB-aware and unaware messages,
and the custom action that will write the received message to the server log
are compiled:

compile:

[mkdir] Created dir: /jboss/local/book_downloads/
jbossesb-4.9/samples/quickstarts/helloworld/build/
classes [javac] Compiling 3 source files to /jboss/
local/book_downloads/jbossesb-4.9/samples/
quickstarts/helloworld/build/classes

2.	 Next, remember how we talked about the deployment.xml file being used to
specify the JMS queues that the quickstart needs? One of the JBossESB's features
is that it can be used with multiple JMS providers. By default, it's configured to
use JBoss Messaging, but it also supports other JMS providers such as HornetQ.
This XML transformation is performed to generate a deployment.xml file that
is specific to the correct JMS provider for your configuration.

transformDeploymentXml:

[xslt] Processing /jboss/local/book_downloads/jbossesb-4.9/
samples/quickstarts/helloworld/build/META-INF/
deployment.xml to /jboss/local/book_downloads/jbossesb-4.9/
samples/quickstarts/helloworld/build/META-INF/
deployment.xml.transformed

[xslt] Loading stylesheet /jboss/local/book_downloads/
jbossesb-4.9/samples/quickstarts/conf/deployment-xml.xsl

Chapter 2

[49]

[delete] Deleting: /jboss/local/book_downloads/jbossesb-4.9/
samples/quickstarts/helloworld/build/META-INF/deployment.xml

[move] Moving 1 file to /jboss/local/book_downloads/
jbossesb-4.9/samples/quickstarts/helloworld/build/META-INF

3.	 Here is where the .esb archive is created:

package-deployment:

[jar] Building jar: /jboss/local/book_downloads/jbossesb-4.9/
samples/quickstarts/helloworld/build/Quickstart_helloworld.esb

4.	 And, here is the actual deployment to the server:

deploy-esb:

[copy] Copying 1 file to /opt/local/jboss-5.1.0.GA/
server/all/deploy

5.	 Finally, the quickstart is deployed:

display-instructions:

[echo] Quickstart deployed to target JBoss ESB/App Server at ‘/
opt/local/jboss-5.1.0.GA/server/all/deploy'.

[echo] 1. Check your ESB Server console to make sure
 the deployment was executed without errors.

[echo] 2. Run ‘ant runtest' to run the Quickstart.

[echo] 3. Check your ESB Server console again.
 The Quickstart should have produced some output.

deploy: BUILD SUCCESSFUL Total time: 2 seconds

Now, let's run it and trace through the actions that it performs.

When you run the quickstart, you have two options:

�� ant runtest: generates a JMS message and inserts it into a JMS queue. This causes
a JMS gateway listener to wake up, wrap the message in an ESBMessage (thereby
making the message ESB-aware), and pass the message to an ESB-aware listener.
After that, a custom action prints the message to the server log.

�� ant sendesb: generates an ESB-aware message, and sends it directly to the
ESB-aware listener. After that, the same custom action prints the message to
the server log.

Deploying your Services to the ESB

[50]

The server log shows the result, as follows:

2011-05-29 23:20:36,599 INFO [STDOUT] (pool-23-thread-1) &&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
2011-05-29 23:20:36,602 INFO [STDOUT] (pool-23-thread-1) Body: Hello
World
2011-05-29 23:20:36,602 INFO [STDOUT] (pool-23-thread-1) &&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Quickstart-specific help

While we have been reviewing one of the simpler quickstarts, some of the
other quickstarts are more complicated and require a number of steps on the
part of the user in order to demonstrate the functionality of the quickstart. A
quickstart like simple_cbr requires that the user set up two extra terminal
processes that will receive messages. Each quickstart contains a readme.txt (or
in some cases a readme.html) that explains how to run that specific quickstart.
Just follow along the steps of the readme, which also should explain what the
purpose of the quickstart is, the functionality that is being demonstrated, and
the output you may expect to see.

When you are finished running a quickstart, you can undeploy it from your current server by
running the following command in the quickstart's directory:

ant undeploy

That will remove the ESB archive and any additional custom deployments that may have
been installed while deploying the quickstart.

Deploying a JBoss ESB archive remotely
What happens when you want to deploy a JBoss ESB archive to a machine you have a server
on, but do not have command line access to? The easiest way to deploy a JBoss ESB archive
is to copy it into the /deploy directory, whether by SSH or a shared network drive, but if
you don't have either of those luxuries, JBoss provides a console which allows you to upload
a deployment directly onto the server.

Time for action – accessing the admin console
To access the admin console, follow these steps:

1.	 We'll use JBoss ESB's admin console at this URL: http://localhost:8080/
admin-console (or whatever the equivalent for your machine might be for the
server to which JBoss ESB is deployed.

Chapter 2

[51]

2.	 Use admin as the username and admin as the password and login.

Time for action – performing the deployment
Follow these steps to perform the deployment:

1.	 Once you are successfully logged in, click on the JBoss ESB link in the directory tree.
You should see something like the following:

Deploying your Services to the ESB

[52]

The summary on the right-hand side of the previous screenshot shows the total
message count and bytes processed by your JBoss ESB server—we will dive more
deeply into that information in a later chapter

2.	 Click on Deployments below the JBoss ESB link in the directory. The screen you see
should show a list of the JBoss ESB archives that are deployed. If you are wondering
where these came from, these deployments are standard internal deployments for a
JBoss ESB server.

3.	 Click on Add a New Resource. You should be given a screen which allows you to
browse and choose an ESB deployment file from your file system.

4.	 Browse and select your archive and choose whether you would like to deploy it
compressed or uncompressed and then click Continue.

Chapter 2

[53]

If your deployment was successful, you should see something like the screenshot that
follows—if not, you will see the same type of error messages that are written to the server
log. The console makes it easier to examine these messages as you can view them without
leaving the browser.

Deploying your Services to the ESB

[54]

Introduction to JBDS
So far in this book we've been working with JBoss ESB from a command shell, and our tools
have been ant and your favorite text editor. This is a valid and usable approach, but it has
its limits. When you start working with more and more complex applications, editing .esb
configuration files' raw XML can become difficult and error prone. Likewise, deploying
.esb archives with ant, while straightforward, forces you to start the server manually,
and remember to deploy and re-deploy as you perform development and testing.

Happily, there is another approach available to you. You can use JBoss Developer Studio
(JBDS). JBDS is an eclipse-based integrated development environment. JBDS is fully
integrated with JBoss AS, and includes a forms-based editor that makes it easier to
read and edit jboss-esb.xml files. Additionally, it's free!

There is another version of JBDS that is bundled with Red Hat Enterprise Linux (RHEL)
JBoss' Enterprise Application Platform that is for sale. We'll use the free version throughout
this book.

Time for action – downloading JBDS
Let's get our copy of JBDS. Follow these steps:

1.	 Go to the download page at http://devstudio.jboss.com/download/.

2.	 Before you can actually download JBDS, you have to register. Just select Register for
Free Here.

3.	 Select Sign Up and then select Create a personal Red Hat login. At this point you
may be asked to confirm your e-mail address. And finally, you'll see the download
page, as shown:

Chapter 2

[55]

4.	 Select the download that matches your computer system and architecture and save
the download file. The file name will look something like jbdevstudio-product-
linux-gtk-x86_64-4.1.0.v201108011413R-H647-GA.jar.

Time for action – installing JBDS
Once the download is complete, you can start the JBDS installation. Note that unlike JBoss AS
or JBoss ESB, JBDS is installed by means of a GUI-based installer. Follow these steps:

1.	 In a command shell window, move to the directory to which the JBDS distribution
file was downloaded.

2.	 Run the installer by locating the JBDS file that you downloaded and running it with
Java. For example, on a 64-bit Linux system, you'd use the following command:
java -jar jbdevstudio-product-linux-gtk-x86_64-
4.1.0.v201108011413R-H647-GA.jar

3.	 The installer now presents the following nine steps to you. Step 1 is an introduction
and step 2 asks you to accept the license terms (we promise that nothing bad
will happen).

4.	 In step 3 of the installer, you specify the directory where you want JBDS to be
installed. We'll use /opt/devstudio/ as our installation directory. If you specify
a directory that does not exist, the installer will create that directory for you. Click
Next to continue.

Deploying your Services to the ESB

[56]

5.	 Select the Java JVM that you want to use. Remember how we said that Java 6 was
a prerequisite? You should simply select the Java 6 JVM that you have installed on
your computer. Then, click Next to continue:

6.	 IDE stands for Integrated Development Environment. In JBDS, this integration
includes enabling you to run a server without leaving JBDS. Select Add and we'll
configure our JBoss AS server:

Chapter 2

[57]

7.	 Select Application Server and specify the directory where our JBoss AS server is
installed. Then click Ok.

8.	 Verify that the name and location are correct, and click Next. You should then see a
screen which summarizes the status of the installation.

Deploying your Services to the ESB

[58]

9.	 At this point, you have supplied all the information that the installer needs, so click
Next to start the installation.

As the installer works, it will display progress information.

10.	 When it completes, it will give you the option to create shortcuts. These make it
easier for you to start JBDS. It's very helpful to have a shortcut on your desktop and
Start menu, so check both of them and click Next.

Chapter 2

[59]

11.	 When you see the following screen, you'll know that you're done!

Deploying your Services to the ESB

[60]

12.	 Select Done to close the installer. You should see the following shortcut on
your desktop:

13.	 Double-click on the shortcut and we'll finish setting up JBDS.

What just happened?
OK, let's recap before moving on. At this point, we have JBDS fully configured with the JBoss
AS server and JBoss ESB. Additionally, we can control these without having to exit JBDS.
What's next? Let's run that quickstart from inside JBDS.

Running JBDS
When you open JBDS, the first thing that you see is a dialog to select the workspace (the
directory tree) that you want to use. If the workspace that you select does not exist, JBDS
will create it for you.

It's a good idea to keep your workspace separate from the directory in which you installed
JBDS so that there is no chance of updates to JBDS affecting your workspace or vice versa.
For our work in this book, we'll use /opt/workspace.

Chapter 2

[61]

At this point, JBDS displays its welcome screen. You can select any of the icons displayed
here for general tutorial/introductory information on JBDS. Note that the welcome screen is
only displayed by default the first time that you run JBDS. However, it doesn't go away. It's
always available under the JBDS help menu. For now, close the welcome screen by selecting
the x icon next to the screen's Welcome title.

JBDS is organized into eclipse "perspectives". Each perspective consists of a set of tools and
visual layouts to assist you in specific tasks. The default perspective when you open JBDS is
the SEAM (http://seamframework.org/) perspective.

Deploying your Services to the ESB

[62]

For our work with JBDS, we want to use the Java perspective. Select Window | Open
Perspective | Java:

Here's what the the Java perspective looks like:

Now it's time to set up the JBoss ESB runtime in JBDS. This is a one-time task.

Chapter 2

[63]

Time for action – setting up the ESB runtime in JBDS
In order to be able to create and run JBoss ESB applications, JBDS must be configured to
access a JBoss ESB runtime. We've already installed JBoss ESB on the JBoss AS server, so all
we have to do now is to set the configuration in JBDS. Follow these steps:

1.	 To set the runtime, select Window | Preferences | JBoss ESB Runtime and you'll see
the following dialog:

2.	 Click Add to define the ESB runtime and the following dialog is displayed. For
Home Folder be sure to enter the directory of the JBoss AS server into which you
previously deployed JBoss ESB. Also, remember to select the "all" server profile.

Deploying your Services to the ESB

[64]

Note that as of this writing, JBDS supported the configuration of JBoss
ESB releases up to release 4.9. You can safely configure the 4.10 runtime
to have a version of 4.9 in this dialog. By the time that this book is
published, this dialog will support setting the version to 4.10.

3.	 After you press Finish, you should see that the runtime you just defined is marked
with a checkmark. This indicates that the runtime is active.

Chapter 2

[65]

OK. After you have the runtime defined, it's time to start up the JBoss AS server. Note that
if you still have a server running, such as the server that we started earlier in the book, you
should stop it now.

Ordinarily, we would have to leave JBDS and open up a shell window to start a server.
Remember how we said that the "I" in IDE stands for integrated? We'll run the server
from inside JBDS. Follow these steps:

1.	 Select Window | Show View | Other | Servers and you'll see the following
dialog displayed:

2.	 After you select OK, you'll see the following dialog. Where did the
jboss-5.1.0.GA server come from? Remember how we defined this
when we installed JBDS? That's where it came from.

Deploying your Services to the ESB

[66]

3.	 Now that we have a server defined, let's start it. Right-click on the server and you'll
see the following dialog:

4.	 Click Start, and you'll see the Console view open automatically. This view displays
the server.log file for the server. JBDS knows which server profile to start
because we selected the all profile when we defined the ESB run-time.

Chapter 2

[67]

The server appears to be running, but let's make sure by going to its web console at
http://localhost:8080. We'll use JBDS' internal browser:

1.	 Select Window | Show View | General and you'll see the following dialog. Select
Internal Web Browser.

2.	 Enter http://localhost:8080 and you'll see the following window:

Deploying your Services to the ESB

[68]

What just happened?
At this point, we have JBDS fully configured with the JBoss AS server and JBoss ESB. Also, we
can control these without having to exit JBDS.

What's next? Let's run that quickstart from inside JBDS.

Time for action – using JBDS to run the quickstart
Follow these steps to install and run the quickstart:

1.	 Our first step is to install the quickstart into our JBDS workspace. Go to
Help | Project Examples as shown in the following screenshot:

Chapter 2

[69]

2.	 Then select ESB for SOA-P 5.0 from the list of possible examples. "SOA-P 5.0" stands
for the JBoss SOA Platform (http://www.jboss.com/products/platforms/
soa/). This is a commercial product sold by JBoss that incorporates JBoss ESB. The
same ESB-based examples can be run with JBoss ESB or the SOA Platform.

Deploying your Services to the ESB

[70]

3.	 Next, the quickstart is downloaded and installed into the workspace:

Deploying the quickstart in JBDS
When the download is completed, the quickstart is ready to be deployed. Note that unlike
the previous quickstart configured to run with ant from a terminal window, the quickstart
in JBDS includes a second "testclient" binary. We'll use this client to actually invoke the
quickstart after it is deployed to the server.

Chapter 2

[71]

Time for action – deploying the quickstart
It's easy to deploy the quickstart to the server in JBDS. Follow these steps:

1.	 Right-click on the server and select Add and Remove to add (in other words, deploy)
the quickstart to the server:

2.	 Select the quickstart from the list of available applications:

Deploying your Services to the ESB

[72]

3.	 Click Finish:

4.	 At this point, you'll see deployment messages in the Console (see the following
screenshot). To run the quickstart, select either the SendEsbMessage.java client
code (to send a message directly to the ESB listener) or the SendJMSMessage.
java client code to send a message to the ESB listener through the JMS gateway
listener. It's a good idea to make a mental note of these programs as they are also
used in many other quickstarts. For this example, we'll select SendJMSMessage.
java as our client.

Chapter 2

[73]

5.	 The mode in which SendJMSMessage.java will run will be as a Java application, so
we'll choose that:

Finally, here's the output from the quickstart!

Deploying your Services to the ESB

[74]

What just happened
Before we move on, let's think about what we just accomplished. We created and started a
JBoss AS server, deployed a JBoss ESB quickstart to it, and then invoked a client to run the
quickstart. We did all this without having to switch between windows and GUIs and we were
able to do all of this from inside JBDS.

Have a go hero - there are other quickstarts to explore
Hang on there. The same approach that we followed for the smallest of the quickstarts can
be used for the other, more elaborate quickstarts. Try downloading and running them in
JBDS. Remember to look in the server console for the server log, as this is where you'll see
most of the output from the quickstarts.

Pop quiz
Before we move on, it's time to see what you've learned. Pencils ready? Let's begin!

1.	 How do we set quickstart-specific properties, like the server home, FTP login
information, or jBPM user information?

a.	 In a very expensive database

b.	 Through shell environment variables

c.	 In the quickstarts.properties file

2.	 What file determines the order in which queues are deployed?

a.	 deployment.xml

b.	 jboss-esb.xml

c.	 It's a trick question, the order is random

3.	 What's the easiest way to deploy and undeploy an ESB archive?

a.	 To deploy, just copy the file to the server's deploy directory, to undeploy,
just delete it

b.	 E-mail it to yourself

c.	 The Add and Remove feature in JBDS

4.	 How do I find the directions for a specific quickstart?

a.	 In the readme.txt files

b.	 In the HELP_ME.txt files

c.	 Through a Google search

Chapter 2

[75]

5.	 How can I deploy an archive if I don't have command-line access to a remote
machine?

a.	 Sorry, you're out of luck

b.	 Buy the sysadmin lobster for lunch

c.	 By using the JBoss AS admin console

Summary
You've now been introduced to the wonderful world of quickstarts! You should now know
how to run the quickstarts from either a command line or through an IDE, and you can
choose whichever is more comfortable for you. Go ahead and find one that interests you and
try to run it—check the readme for any specific run instructions related to that quickstart.
We'll be using the quickstarts later on in the book to demonstrate specific functionality
around other JBoss ESB features.

In this chapter, we learned about the:

�� JBoss ESB "quickstart" example programs

�� Configuration elements of a service

�� Deployment of services

�� How to download and install JBDS

�� How to run servers, deploy and run quickstarts, all from inside of JBDS

We saw a single service in action when we ran the quickstart in this chapter. In the next
chapter, we'll examine designing and building JBoss ESB services, how to invoke services,
how to have services inter-communicate with each other and with legacy applications.

3
Understanding Services

The core of any Enterprise Service Bus (ESB) revolves around the definition of
services and the way in which these services communicate with each other.
How you choose to break up your application into services, whether dealing
with the integration of legacy components or designing new functionality, and
how they communicate can have a large effect on the performance, flexibility
and resilience of your application.

It is important to spend time thinking about these issues. Get it right and you
will end up with a loosely coupled system that reuses functionality rather than
reimplements it. In order to make effective architectural decisions it is first
necessary to understand the concepts behind the JBoss ESB Service, including
their communication "on the bus", so that these can best be applied to
your application.

In this chapter we will cover JBoss ESB Services, explaining the structure of the ESB
message, the mechanics behind the Action Pipeline and the choices you have for
implementing actions.

You will learn about:

�� The structure of ESB messages and how to validate them

�� The configuration mechanism within JBoss ESB

�� The service pipeline and service actions

�� Service chaining and continuations

�� Transactional behavior and its effect on the pipeline

�� Security context and its propagation

So let's get on with it...

Understanding Services

[78]

Preparing JBoss Developer Studio
The examples in this chapter are based on a standard ESB application template that can be
found under the Chapter3 directory within the sample downloads. We will modify this
template application as we proceed through this chapter.

Before we start, please make sure that you have set up JBoss Developer Studio and the JBoss
5.1 Runtime as described in Chapter 2.

Time for action – opening the Chapter3 app
Follow these steps:

1.	 Click on the File menu and select Import.

2.	 Now choose Existing Projects into workspace and select the folder where the book
samples have been extracted:

Chapter 3

[79]

3.	 Then click on Finish. Now have a look at the jboss-esb.xml file. You can see that
it has a single service and action as defined in the following snippet:

<jbossesb parameterReloadSecs="5"
 xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
 product/etc/schemas/xml/jbossesb-1.3.0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://anonsvn.labs.jboss.com/labs/
 jbossesb/trunk/product/etc/schemas/xml/
 jbossesb-1.3.0.xsd
 http://anonsvn.jboss.org/repos/labs/
 labs/jbossesb/trunk/product/etc/
 schemas/xml/jbossesb-1.3.0.xsd">
 <providers>
 <jms-provider connection-factory="ConnectionFactory"
 name="JBossMQ">
 <jms-bus busid="chapter3GwChannel">
 <jms-message-filter dest-name="queue/chapter3_Request_gw"
 dest-type="QUEUE"/>
 </jms-bus>
 <jms-bus busid="chapter3EsbChannel">
 <jms-message-filter dest-name="queue/chapter3_Request_esb"
 dest-type="QUEUE"/>
 </jms-bus>
 </jms-provider>
 </providers>
 <services>
 <service category="Chapter3Sample"
 description="A template for Chapter3"
 name="Chapter3Service">
 <listeners>
 <jms-listener busidref="chapter3GwChannel"
 is-gateway="true"
 name="Chapter3GwListener"/>
 <jms-listener busidref="chapter3EsbChannel"
 name="Chapter3Listener"/>
 </listeners>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="PrintBefore">
 <property name="message"/>
 <property name="printfull" value="true"/>
 </action>
 </actions>
 </service>
 </services>
</jbossesb>

Understanding Services

[80]

Examining the structure of ESB messages
A service is an implementation of a piece of business logic which exposes a well
defined service contract to consumers. The service will provide an abstract service
contract which describes the functionality exposed by the service and will exhibit the
following characteristics:

�� Self contained: The implementation of the service is independent from the context
of the consumers; any implementation changes will have no impact.

�� Loosely coupled: The consumer invokes the service indirectly, passing messages
through the bus to the service endpoint. There is no direct connection between the
service and its consumers.

�� Reusable: The service can be invoked by any consumer requiring the functionality
exposed by the service. The provider is tied to neither a particular application
nor process.

Services which adhere to these criteria will be capable of evolving and scaling
without affecting any consumers of that service. The consumer no longer cares which
implementation of the service is being invoked, nor where it is located, provided that the
exposed service contract remains compatible.

Examining the message
The structure of the message, and how it can be manipulated, plays an important part in
any ESB application as a result of the message driven nature of the communication between
service providers and consumers. The message is the envelope which contains all of the
information relevant to a specific invocation of a service.

All messages within JBoss ESB are implementations of the org.jboss.soa.esb.message.
Message interface, the major aspects of which are:

�� Header: Information concerning the identity, routing addresses, and correlation of
the message

�� Context: Contextual information pertaining to the delivery of each message, such as
the security context

�� Body: The payload and additional details as required by the service contract

�� Attachment: Additional information that may be referenced from within the payload

�� Properties: Information relating to the specific delivery of a message, usually
transport specific (for example the original JMS queue name)

Chapter 3

[81]

Time for action – printing the message structure
Let us execute the Chapter3 sample application that was opened up at the beginning of this
chapter. Follow these steps:

1.	 In JBoss Developer Studio, click Run and select Run As and Run on Server.
Alternatively you can press Alt + Shift + X, followed by R.

2.	 You can see the server runtime has been pre-selected. Choosing the Always use this
server when running this project check box will always use this runtime and this
dialog will not appear again.

Understanding Services

[82]

3.	 Click Next. A window with the project pre-configured to run on this server is shown.
Ensure that we have only our project Chapter3 selected to the right hand side.

4.	 Click Finish.

5.	 The server runtime will be started up (if not already started) and the ESB file will be
deployed to the server runtime.

6.	 Select the src folder, expand it till the SendJMSMessage.java file is displayed in
the tree. Now click Run, select Run As and Java Application.

Chapter 3

[83]

The entire ESB message contents will be printed in the console as follows:

INFO [STDOUT] Message structure:

INFO [STDOUT] [message: [JBOSS_XML]

header: [To: JMSEpr [PortReference < <wsa:Address
jms:localhost:1099#queue/chapter3_Request_esb/>,
<wsa:ReferenceProperties jbossesb:java.naming.factory.
initial : org.jnp.interfaces.NamingContextFactory/>,
<wsa:ReferenceProperties jbossesb:java.naming.provider.url :
localhost:1099/>, <wsa:ReferenceProperties jbossesb:java.naming.
factory.url.pkgs : org.jnp.interfaces/>, <wsa:ReferenceProperties
jbossesb:destination-type : queue/>, <wsa:ReferenceProperties
jbossesb:destination-name : queue/chapter3_Request_esb/>,
<wsa:ReferenceProperties jbossesb:specification-version :
1.1/>, <wsa:ReferenceProperties jbossesb:connection-factory :
ConnectionFactory/>, <wsa:ReferenceProperties jbossesb:persistent :
true/>, <wsa:ReferenceProperties jbossesb:acknowledge-mode : AUTO_
ACKNOWLEDGE/>, <wsa:ReferenceProperties jbossesb:transacted : false/>,
<wsa:ReferenceProperties jbossesb:type : urn:jboss/esb/epr/type/
jms/> >] MessageID: e694a6a5-6a30-45bf-8f6d-f48363219ccf RelatesTo:
jms:correlationID#e694a6a5-6a30-45bf-8f6d-f48363219ccf]

context: {}

body: [objects: {org.jboss.soa.esb.message.defaultEntry=Chapter 3
says Hello!}]

fault: []

attachments: [Named:{}, Unnamed:[]]

properties: [{org.jboss.soa.esb.message.transport.type=Deferred
serialized value: 12d16a5, org.jboss.soa.esb.message.byte.size=2757,
javax.jms.message.redelivered=false, org.jboss.soa.esb.gateway.
original.queue.name=Deferred serialized value: 129bebb, org.jboss.soa.
esb.message.source=Deferred serialized value: 1a8e795}]]

What just happened?
You have just created a Chapter3.esb file and deployed it to the ESB Runtime on the
JBoss Application Server 5.1. You executed a gateway client that posted a string to the Bus.
The server converted this message to an ESB message and the complete structure was
printed out. Take a moment to examine the output and understand the various parts of
the ESB message.

Understanding Services

[84]

Have a go hero – deploying applications
Step 1 through step 4 describe how to start the server and deploy our application from
within JBoss Developer Studio. For the rest of this chapter, and throughout this book, you
will be repeating these steps and will just be asked to deploy the application.

Message implementations
JBoss ESB provides two different implementations of the message interface, one which
marshalls data into an XML format and a second which uses Java serialization to create a
binary representation of the message. Both of these implementations will only handle Java
serializable objects by default, however it is possible to extend the XML implementation to
support additional object types.

Message implementations are created indirectly through the org.jboss.soa.esb.
message.format.MessageFactory class.

In general any use of serializable objects can lead to a brittle application, one that is
more tightly coupled between the message producer and consumer. The message
implementations within JBoss ESB mitigate this by supporting a 'Just In Time' approach
when accessing the data. Care must still be taken with what data is placed within the
message, however serialization/marshalling of these objects will only occur as and
when required.

Extending the ESB to provide alternative message implementations, and extending the
current XML implementation to support additional types, is outside the scope of this book.

The body
This is the section of the message which contains the main payload information for the
message, adhering to the contract exposed by the service. The payload should only consist of
the data required by the service contract and should not rely on any service implementation
details as this will prevent the evolution or replacement of the service implementation at a
future date.

The types of data contained within the body are restricted only by the requirements
imposed by the message implementation, in other words the implementation must
be able to serialize or marshall the contents as part of service invocation.

Chapter 3

[85]

The body consists of

�� Main payload: accessed using the following methods:

public Object get() ;
public void add(final Object value) ;

�� Named objects: accessed using the following methods:

public Object get(final String name) ;
public void add(final String name, final Object value) ;

Time for action – examining the main payload
Let us create another action class that simply prints the message body. We will add this
action to the sample application that was opened up at the beginning of this chapter.

1.	 Right click on the src folder and choose New and select Class:

Understanding Services

[86]

2.	 Enter the Name as "MyAction", enter the Package as "org.jboss.soa.
samples.chapter3", and select the Superclass as "org.jboss.soa.esb.
actions.AbstractActionLifecycle":

3.	 Click Finish.

4.	 Add the following imports and the following body contents to the code:

import org.jboss.soa.esb.helpers.ConfigTree;
import org.jboss.soa.esb.message.Message;

protected ConfigTree _config;
public MyAction(ConfigTree config) {
 _config = config;
}

public Message displayMessage(Message message) throws Exception {
 System.out.println(
 "&&");

Chapter 3

[87]

 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 System.out.println("Body: " + message.getBody().get());
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 return message;
}

5.	 Click Save.

6.	 Open the jboss-esb.xml file in Tree mode, expand till Actions is displayed in the
tree. Select Actions, click Add | Custom Action:

7.	 Enter the Name as "BodyPrinter" and choose the "MyAction" class and
"displayMessage" process method:

Understanding Services

[88]

8.	 Click Save and the application will be deployed. If the server was stopped then
deploy it using the Run menu and select Run As | Run on Server:

9.	 Once the application is deployed on the server, run SendJMSMessage.java by
clicking Run | Run As | Java Application.

The following can be seen displayed in the console output:

12:19:32,562 INFO [STDOUT] &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

12:19:32,562 INFO [STDOUT] Body: Chapter 3 says Hello!

12:19:32,562 INFO [STDOUT] &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

What just happened?
You have just created your own action class that used the Message API to get the main
payload of the message and printed it to the console.

Have a go hero – additional body contents
Now add another miscellaneous SystemPrintln action after our BodyPrinter. Name it
PrintAfter and make sure printfull is set to true. Modify the MyAction class and
add additional named content using the getBody().add(name, object) method and
see what gets printed on the console.

Here is the actions section of the config file

<actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="PrintBefore">
 <property name="message"/>
 <property name="printfull" value="true"/>
 </action>
 <action class="org.jboss.soa.esb.samples.chapter3.MyAction"
 name="BodyPrinter" process="displayMessage"/>
 <action class="org.jboss.soa.esb.actions.SystemPrintln"

 name="PrintAfter">

 <property name="message"/>

 <property name="printfull" value="true"/>

 </action>

</actions>

Chapter 3

[89]

The following is the listing of the MyAction class's modified displayMessage method

public Message displayMessage(Message message) throws Exception {
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 System.out.println("Body: " + message.getBody().get());
 message.getBody().add("Something", "Unknown");

 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 return message;
}

The header
The message header contains the information relating to the identity, routing, and the
correlation of messages. This information is based on, and shares much in common with,
the concepts defined in the W3C WS-Addressing specification.

It is important to point out that many of these aspects are normally initialized
automatically by other parts of the codebase; a solid understanding of these
concepts will allow the developer to create composite services using more
advanced topologies.

Routing information
Every time a message is sent within the ESB it contains information which describes who sent
the message, which service it should be routed to, and where any replies/faults should be
sent once processing is complete. The creation of this information is the responsibility of the
invoker and, once delivered, any changes made to this information, from within the target
service, will be ignored by that service.

The information in the header takes the form of Endpoint References (EPRs) containing
a representation of the service address, often transport specific, and extensions which
can contain relevant contextual information for that endpoint. This information should be
treated as opaque by all parties except the party which was responsible for creating it.

Understanding Services

[90]

There are four EPRs included in the header, they are as follows:

�� To: This is the only mandatory EPR, representing the address of the service to which
the message is being sent. This will be initialized by ServiceInvoker with the
details of the service chosen to receive the message.

�� From: This EPR represents the originator of the message, if present, and may
be used as the address for responses if there is neither an explicit ReplyTo nor
FaultTo set on the message.

�� ReplyTo: This EPR represents the endpoint to which all responses will be sent, if
present, and may be used as the address for faults if there is no explicit FaultTo
set on the message. This will normally be initialized by ServiceInvoker if a
synchronous response is expected by the service consumer.

�� FaultTo: This EPR represents the endpoint to which all faults will be sent,
if present.

When thinking about the routing information it is important to view these details from the
perspective of the service consumer, as the EPRs represent the wishes of the consumer and
must be adhered to. If the service implementation involves more advanced topologies, like
chaining and continuations, which we will discuss later in the chapter, then care must be
taken to preserve these EPRs when messages are propagated to subsequent services.

Message identity and correlation
There are two parts of the header which are related to the identity of the message and its
correlation with a preceding message. These are as follows:

�� MessageID: A unique reference which can be used to identify the message as it
progresses through the ESB. The reference is represented by a Uniform Resource
Name (URN), a specialized Uniform Resource Identifier (URI) which will represent
the identity of the message within a specific namespace. The creator of the message
may choose to associate it with an identity which is specific to the application
context within which it is being used, in which case the URN should refer to a
namespace which is also application context specific. If no MessageID has been
associated with the message then the ESB will assign a unique identifier when it is
first sent to a service.

�� RelatesTo: When sending a reply, this represents the unique reference of the
message representing the request. This may be used to correlate the response
message with the original request.

Chapter 3

[91]

Service action
The action header is an optional, service-specific URN that may be used to further refine the
processing of the message by a service provider or service consumer. The URN should refer
to an application-specific namespace.

There are no restrictions on how this header is to be used by the application including, if
considered appropriate, ignoring its contents.

Time for action – examining the header
Let us go back and modify MyAction to display some of the header information that
we need:

1.	 Open MyAction and edit the displayMessage method as follows:

public Message displayMessage(Message message) throws Exception {
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 System.out.println("From: " +
 message.getHeader().getCall().getFrom());
 System.out.println("To: " +
 message.getHeader().getCall().getTo());
 System.out.println("MessageID: " +
 message.getHeader().getCall().getMessageID());
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 return message;
}

2.	 Remove the PrintBefore and PrintAfter actions if they exist. Make sure that
we have only the BodyPrinter action:

Understanding Services

[92]

3.	 Click on Save.

4.	 If the server was still running (and a small red button appears in the console
window), then you might notice the application gets redeployed by default.

5.	 If this did not happen then deploy the application using the Run menu and select
Run As | Run on Server. The following output will be displayed in the console:

INFO [EsbDeployment] Stopping 'Chapter3.esb'

INFO [EsbDeployment] Destroying 'Chapter3.esb'

WARN [ServiceMessageCounterLifecycleResource] Calling cleanup on
existing service message counters for identity ID-7

INFO [QueueService] Queue[/queue/chapter3_Request_gw] stopped

INFO [QueueService] Queue[/queue/chapter3_Request_esb] stopped

INFO [QueueService] Queue[/queue/chapter3_Request_esb] started,
fullSize=200000, pageSize=2000, downCacheSize=2000

INFO [QueueService] Queue[/queue/chapter3_Request_gw] started,
fullSize=200000, pageSize=2000, downCacheSize=2000

INFO [EsbDeployment] Starting ESB Deployment 'Chapter3.esb'

6.	 Run SendJMSMessage.java by clicking Run | Run As | Java Application. The
following messages will be printed in the console

INFO [STDOUT] &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

INFO [STDOUT] From: null

INFO [STDOUT] To: JMSEpr [PortReference < <wsa:Address
jms:localhost:1099#queue/chapter3_Request_esb/>,
<wsa:ReferenceProperties jbossesb:java.naming.factory.
initial : org.jnp.interfaces.NamingContextFactory/>,
<wsa:ReferenceProperties jbossesb:java.naming.provider.url :
localhost:1099/>, <wsa:ReferenceProperties jbossesb:java.naming.
factory.url.pkgs : org.jnp.interfaces/>, <wsa:ReferenceProperties
jbossesb:destination-type : queue/>, <wsa:ReferenceProperties
jbossesb:destination-name : queue/chapter3_Request_esb/>,
<wsa:ReferenceProperties jbossesb:specification-version :
1.1/>, <wsa:ReferenceProperties jbossesb:connection-factory :
ConnectionFactory/>, <wsa:ReferenceProperties jbossesb:persistent
: true/>, <wsa:ReferenceProperties jbossesb:acknowledge-mode :
AUTO_ACKNOWLEDGE/>, <wsa:ReferenceProperties jbossesb:transacted :
false/>, <wsa:ReferenceProperties jbossesb:type : urn:jboss/esb/
epr/type/jms/> >]

INFO [STDOUT] MessageID: 46e57744-d0ac-4f01-ad78-b1f15a3335d1

INFO [STDOUT] &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Chapter 3

[93]

What just happened?
We examined some of the header contents through the API. We printed the From, To, and
the MessageID from within our MyAction class.

Have a go hero – additional header contents
Now modify the MyAction class to print the Action, ReplyTo, RelatesTo, and FaultTo
contents of the header to the console.

Here is the listing of the modified MyAction class's method:

public Message displayMessage(Message message) throws Exception {
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 System.out.println("From: " +
 message.getHeader().getCall().getFrom());
 System.out.println("To: " +
 message.getHeader().getCall().getTo());
 System.out.println("MessageID: " +
 message.getHeader().getCall().getMessageID());
 System.out.println("Action: " +
 message.getHeader().getCall().getAction());
 System.out.println("FaultTo: " +
 message.getHeader().getCall().getFaultTo());
 System.out.println("RelatesTo: " +
 message.getHeader().getCall().getRelatesTo());
 System.out.println("ReplyTo: " +
 message.getHeader().getCall().getReplyTo());
 System.out.println("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&");
 return message;
}

The context
The message context is used to transport the active contextual information when the
message is sent to the target service. This may include information such as the current
security context, transactional information, or even context specific to the application. This
contextual information is not considered to be part of the service contract and is assumed to
change between successive message deliveries.

Where the message context really becomes important is when a service pipeline is invoked
through an InVM transport, as this can allow the message to be passed by reference. We will
learn more about InVM transport in Chapter 5. When the transport passes the message to
the target service it will create a copy of the message header and message context, allowing
each to be updated in subsequent actions without affecting the invoked service.

Understanding Services

[94]

Have a go hero – printing message context
Modify the MyAction class to print the context of the ESB message; obtain the context
through the getContext() method. You will notice that the context is empty for our
sample application as we currently have no security or transactional context attached
to the message.

Message validation
The message format within JBoss ESB allows the consumer and producer to use any payload
that suits the purpose of the service contract. No constraints are placed on this payload
other than the fact that it must be possible to marshall the payload contents so that the
messages can be transported between the consumer and producer.

While this ability is useful for creating composite services, it can be a disadvantage
when you need to design services that have an abstract contract, hide the details of the
implementation, are loosely coupled, and can easily be reused. In order to encourage the
loose coupling of services it is often advantageous to choose a payload that does not dictate
implementation, for example XML.

JBoss ESB provides support for enforcing the structure of XML payloads for request and
response messages, through the XML schema language as defined through the W3C. An XML
Schema Document (XSD) is an abstract, structural definition which can be used to formally
describe an XML message and guarantee that a specific payload matches that definition
through a process called validation.

Enabling validation on a service is simply a matter of providing the schema associated with
the request and/or response messages and specifying the validate attribute, as follows:

<actions inXsd="/request.xsd" outXsd="/response.xsd" validate="true">
 ...
</actions>

This will force the service pipeline to validate the request and response messages against the
XSD files, if they are specified, with the request validation occurring before the first service
action is executed and the response validation occurring immediately before the response
message is sent to the consumer.

If validation of the request or response message does fail then a
MessageValidationException fault will be raised and sent to the consumer using the
normal fault processing as defined in the MEPs and responses section. This exception can
also be seen by enabling DEBUG logging through the mechanism supported by the server.

Chapter 3

[95]

Have a go hero – enabling validation
Add a request.xsd or a response.xsd or both to your actions in the sample application
provided. Enable validation and test the output.

Configuring through the ConfigTree
JBoss ESB handles the majority of its configuration through a hierarchical structure similar to
the W3C DOM, namely, org.jboss.soa.esb.helpers.ConfigTree. Each node within
the structure contains a name, a reference to the parent node, a set of named attributes,
and references to all child nodes.

This structure is used, directly and indirectly, within the implementation of the service
pipeline and action processors, and will be required if you are intending to create your own
action processors. The only exception to this is when using an annotated action class when
the configuring of the action will be handled by the framework instead of programmatically;
see the section on Annotated actions in Chapter 4 for more details.

Configuring properties in the jboss-esb.xml file
The ConfigTree instance passed to an action processor is a hierarchical representation
of the properties as defined within the action definition of the jboss-esb.xml file.
Each property defined within an action may be interpreted as a name/value pair or as
hierarchical content to be parsed by the action. For example the following:

<action>
 <!-- name/value property -->
 <property name="propertyName" value="propertyValue"/>
 <!-- Hierarchical property -->

Understanding Services

[96]

 <property name="propertyName">
 <hierarchicalProperty attr="value">
 <inner name="myName" random="randomValue"/>
 </hierarchicalProperty>
 </property>
</action>

This will result in the following ConfigTree structure being passed to the action:

Traversing the ConfigTree hierarchy
Traversing the hierarchy is simply a matter of using the following methods to obtain access to
the parent or child nodes:

public ConfigTree getParent() ;
public ConfigTree[] getAllChildren() ;
public ConfigTree[] getChildren(String name) ;
public ConfigTree getFirstChild(String name) ;

Accessing attributes
Attributes are usually accessed by querying the current ConfigTree instance for the value
associated with the required name, using the following methods:

public String getAttribute(String name) ;
public String getAttribute(String name, String defaultValue) ;
public long getLongAttribute(String name, long defaultValue) ;
public float getFloatAttribute(String name, float defaultValue) ;
public boolean getBooleanAttribute(String name, boolean defaultValue)
;
public String getRequiredAttribute(String name) throws
ConfigurationException ;

It is also possible to obtain the number of attributes, names of all the attributes, or the set of
key/value pairs using the following methods:

public int attributeCount() ;
public Set<String> getAttributeNames() ;
public List<KeyValuePair> attributesAsList() ;

Chapter 3

[97]

Time for action – examining configuration properties
Let us add some configuration properties to our MyAction. We will make the & and the
number of times it needs to be printed as configurable properties. Follow these steps:

1.	 Add two members to the MyAction class:

public String SYMBOL = "&";
public int COUNT = 48;

2.	 Modify the constructor as follows:

_config = config;
String symbol = _config.getAttribute("symbol");
if (symbol != null) {
 SYMBOL = symbol;
}
String count = _config.getAttribute("count");
if (count != null) {
 COUNT = Integer.parseInt(count);
}

3.	 Add a printLine() method:

private void printLine() {
 StringBuffer line = new StringBuffer(COUNT);
 for (int i = 0; i < COUNT; i++) {
 line.append(SYMBOL);
 }
 System.out.println(line);
}

4.	 Modify the printMessage() method as shown in the following snippet:

printLine();
System.out.println("Body: " + message.getBody().get());
printLine();
return message;

Understanding Services

[98]

5.	 Edit the jboss-esb.xml file and select the action, BodyPrinter. Add two
properties symbol as * and count as 50:

6.	 Click on Save or press Ctrl + S.

7.	 Deploy the application using the Run menu and select Run As | Run on Server.

8.	 Run SendJMSMessage.java by clicking Run, select Run As and Java Application.

The following message will be printed in the console:

INFO [STDOUT] **

INFO [STDOUT] Body: Chapter 3 says Hello!

INFO [STDOUT] **

What just happened?
You just added two properties to the MyAction class. You also retrieved these properties
from the ConfigTree and used them.

Have a go hero – additional header contents
Experiment with the other API methods. Write hierarchicalProperty and see how that
can be retrieved.

Chapter 3

[99]

Service pipeline and service invocation
In JBoss ESB, the structure of a service consists of a simple action pipeline that is responsible
for processing each request in a sequential manner. There are no restrictions placed on
the content or structure of the requests or on the functionality that can be exposed
through a service.

The service pipeline is the real workhorse of JBoss ESB, responsible for the following:

�� Controlling the lifecycle of each action

�� Validation and delivery of the message through the action processors

�� Generating appropriate responses once the request is complete.

A service can consist of any number of actions, each processing the output from the
preceding action in the pipeline.

The pipeline treats each action as if it was an implementation of the org.jboss.soa.esb.
actions.ActionPipelineProcessor interface, containing the lifecycle and processing
methods supported by the pipeline. If the service action does not directly implement this
interface then the pipeline will create an adapter which is responsible for invoking the
methods using the overriding mechanism (see the Dynamic Methods section later in
this chapter).

One instance of each action will be instantiated on initialization of the action pipeline, and
created in the sequence defined by the configuration of the service pipeline. Each action
must contain a public constructor with a single ConfigTree parameter, used to pass in
the configuration of the action, unless it is an annotated action when annotated fields and
methods can be used to configure the action.

Lifecycle methods
Action lifecycle methods are represented by the org.jboss.soa.esb.actions.
ActionLifecycle interface, consisting of the following methods:

public void initialise() throws ActionLifecycleException ;
public void destroy() throws ActionLifecycleException ;

These are invoked during the initialization and destruction phases of the action pipeline.
Actions should restrict their initialization and cleanup tasks to within the lifecycle methods,
they should not occur within the creation of the action or within the processing methods.

Understanding Services

[100]

The service pipeline will initialize each action in the order defined within the service
definition and, once complete, will be able to process any messages delivered to the
service. The following sequence diagram highlights the successful initialization of a pipeline:

If an exception occurs during the initialization of an action then the pipeline will invoke
the destroy method of each preceding action, in reverse order, before terminating the
pipeline. The following sequence diagram highlights the processing of a failure during the
initialization phase:

Chapter 3

[101]

The service pipeline will continue to process messages until such time as it is asked to stop.
Once current processing is complete the pipeline will invoke the destroy method of each
action, in reverse order, before terminating the pipeline. The following sequence diagram
highlights the termination phase of the pipeline:

Have a go hero – understanding lifecycle methods
You have already seen our MyAction class in action. Override the initialise() and
destroy() methods, from AbstractActionLifecycle, with some printlns and see
how these methods are invoked.

Processing methods
Action processing methods are represented by the org.jboss.soa.esb.actions.
ActionPipelineProcessor interface, which extends the ActionLifecycle interface
to add the following methods:

public Message process(final Message message)
 throws ActionProcessingException ;
public void processException(final Message message,
 final Throwable th) ;
public void processSuccess(final Message message) ;

The implementations of these methods must be thread-safe, as they may be
invoked concurrently.

Understanding Services

[102]

The service pipeline is responsible for obtaining the incoming message and controlling
its progression through the actions in the pipeline. The process method of each action
processor will be invoked, in the same order as the actions are defined within the service,
using the response from the preceding action as the message input parameter. Each action
processor can therefore choose whether to reuse the same message instance or create a
new instance for subsequent processors.

If the message processing is successful then the service pipeline will invoke the
processSuccess method of each action processor, in reverse order. The following
sequence diagram highlights a successful invocation of a service pipeline:

If the message processing causes an exception to be thrown from any of the process method
invocations then the service pipeline will invoke the processException method of each
processor, in reverse order starting from the processor which generated the exception.
The following sequence diagram highlights an exception being thrown by one of the action
processors within the pipeline:

Chapter 3

[103]

Time for action – examining exceptions
Let us now add an exception handler method to our MyAction class:

1.	 Add the following method to the MyAction.java file:

public void processException(final Message message,
 final Throwable th) {
 System.out.println("Something happened: " + th.getMessage());
}

2.	 Let us throw an exception deliberately from one of our process methods. Add a new
method as follows:

public Message causesException(Message message)
 throws ActionProcessingException {
 System.out.println("About to cause an exception");
 throw new ActionProcessingException("BAD STUFF HAPPENED");
 }

Understanding Services

[104]

3.	 Add the following import statement:

import org.jboss.soa.esb.actions.ActionProcessingException;

4.	 Open the jboss-esb.xml file and add another action with Name specified as
"BadAction" to the service Class as "org.jboss.soa.esb.samples.chapter3.MyAction"
and "causesException" as the Process method:

5.	 Add a new property to our BodyPrinter action. Enter Name as
"exceptionMethod" and Value as "processException":

Chapter 3

[105]

6.	 Click Finish and then Save.

7.	 Deploy the application using the Run menu and select Run As | Run on Server.

8.	 Run SendJMSMessage.java by clicking Run, select Run As | Java Application.

The following will be displayed in the console

INFO [STDOUT] **

INFO [STDOUT] Body: Chapter 3 says Hello!

INFO [STDOUT] **

INFO [STDOUT] About to cause an exception

INFO [STDOUT] Something happened: BAD STUFF HAPPENED

WARN [ActionProcessingPipeline] No fault address defined for
fault message!

What just happened?
You just created an exception processing method and threw an exception from another new
action. You can see the exception bubble up to the first action and its processException
method is called.

Have a go hero – extending from AbstractActionPipelineProcessor
Write a new action class that extends AbstractActionPipelineProcessor and see
what methods are provided by default. See how the default methods get executed when
you use this action in our service.

Dynamic methods
JBoss ESB can allow the service definition to request the dynamic invocation of methods
within the action class, allowing the action class to provide alternative processing methods
which can be chosen through the configuration. The signature of the methods being invoked
dynamically must match the signature of the original methods as they are defined in the
ActionPipelineProcessor interface.

The following example shows how the alternative method implementations could be defined
within the action class.

public class DynamicAction extends AbstractActionLifecycle {
 public Message alternativeProcess(final Message message)
 throws ActionProcessingException {
 ...
 }
 public void alternativeProcessSuccess(final Message message) {

Understanding Services

[106]

 ...
 }
 public void alternativeProcessException(final Message message,
 final Throwable th) {
 ...
 }
}

These methods can then be used within the action configuration as follows:

<action class="DynamicAction" name="DynamicAction">
 <property name="process"
 value="alternativeProcess"/>
 <property name="okMethod"
 value="alternativeProcessSuccess"/>
 <property name="exceptionMethod"
 value="alternativeProcessException"/>
</action>

The configuration can specify multiple process methods, for example:

<property name="process"
 value="displayBody, displayHeader, displayContext"/>

This will result in each process method being invoked in sequence.

Have a go hero – multiple process methods
When we created the MyAction class we overrode the default process method with the
displayMessage method. Now go ahead and add some more additional methods to
displayBody, displayHeader, and so on, and see what appears in the console. Notice
the order of execution as you defined in jboss-esb.xml.

MEP (Message Exchange Pattern) and responses
Any decision to send a response from a specific service pipeline is driven by three criteria:

�� The behavior of the actions within the service pipeline: Each action is given an
opportunity to process the message as it progresses through the pipeline. It can
then decide whether the pipeline should continue to process the subsequent
actions (or not) by returning the message to be passed to the next action. If an
action decides to terminate the pipeline early then it must return null as its
response. If the last action returns a message then this will be considered as the
service pipeline response, subject to the following conditions also being met.

Chapter 3

[107]

�� The value specified for the service MEP attribute: The MEP (Message Exchange
Pattern) attribute defines the intention of the current pipeline with regard to
generating responses. The pipeline may represent one part of a composite service,
in which case it does not determine how the composite service handles responses
but rather the expectations of this individual section. The MEP can be defined
as follows:

Service MEP Service response behavior

Undefined If the mep attribute is undefined then the response behavior
is determined by whether the final action returns a message
or not. If the final action returns a message then this will be
considered as the response, otherwise the null response will
terminate the pipeline without generating a response to the
consumer.

OneWay A OneWay MEP instructs the service pipeline to ignore
the result of the final action and never process a response
message, however a null response from an action can still
cause the pipeline to terminate early.

RequestResponse A RequestResponse MEP instructs the service pipeline
to expect a response from the final action in the pipeline.
Early termination of the pipeline, through one of the actions
returning null, is considered exceptional behavior and will
result in a warning message being emitted.

�� The routing information in the incoming message header: If the preceding
conditions have been met, and a response message has reached the end of the
pipeline, then the final decision on whether to send a response will lie with the
consumer of the service. When the consumer invokes the service it can specify its
expectations by including a ReplyTo or From EPR within the header of the original
message. These values will be cached at the beginning of the pipeline and, once
the pipeline has completed, these will be used to determine the target endpoint for
any response. If there is no ReplyTo nor From EPR specified within the header of
the original message then the consumer is explicitly stating that it does not wish to
receive a normal response from the execution of the pipeline.

The decision process for sending a fault message back to the consumer is a much simpler
process, relying solely on the routing information specified by the consumer of the service.
If the routing information includes a FaultTo, ReplyTo, or From EPR then this will identify
the endpoint that must be used as the target endpoint for receiving any fault message. This
endpoint need not be the same as the one which will receive a response message and, in
fact, the consumer may declare that it does not wish to receive a response message but that
it is still interested in receiving fault messages.

Understanding Services

[108]

ServiceInvoker
Each service deployed within the ESB must be associated with one or more ESB Aware
Listeners, physical endpoints through which the service can be invoked. An ESB Aware
Listener is simply one which receives a message by means of a transport mechanism
and will pass it through to a service pipeline for execution.

The current transport mechanisms supported by ESB Aware Listeners are as follows:

Transport Description

Java Message Service
(JMS)

A transactional, Message Oriented Middleware (MOM)
transport which supports delivery and consumption of
messages using point-to-point (Queue) and publish/
subscribe (Topic) models.

InVM A transactional transport which supports delivery and
consumption of messages within the same Java virtual
machine, using a point-to-point (Queue) model. The
transport has no persistent storage, resulting in a loss of
messages should the virtual machine terminate.

SQL A transactional transport which uses a database as the
persistent storage mechanism, supporting delivery and
consumption of messages using a point-to-point (Queue)
model.

File/FTP/FTPS/SFTP A non-transactional transport which uses a local file system
or remote File Transfer Protocol server as the persistent
storage mechanism.

The ESB Aware Listener, as part of its initialization, will create an opaque EPR which
represents the physical endpoint through which a service can be addressed. This EPR will
be associated with the service through registration within the Service Registry and will be
removed from the registry once the physical endpoint is no longer active. Service consumers
can then discover the EPRs associated with every provider of a service by querying the
Service Registry.

Although accessing a service seems complicated, all details associated with querying the
registry and communicating with the physical endpoints are taken care of by the org.
jboss.soa.esb.client.ServiceInvoker utility class. The service consumer only
has to handle the creation of the message and decide whether the invocation should be
synchronous (requiring a response) or asynchronous (deferred or no response).

Chapter 3

[109]

The ServiceInvoker instance is intended to be cached by the
consumer and reused for multiple invocations of the service. Creation of the
ServiceInvoker will result in a query to the Service Registry, a relatively
expensive operation, and this should be avoided when possible.

Synchronous delivery
Synchronous delivery is intended to be used by code requiring a response from a service
before it can continue, such as the following:

final ServiceInvoker invoker = new ServiceInvoker(category, name) ;
final Message response = invoker.deliverSync(request, timeout) ;

The service consumer invokes the deliverSync method, specifying a timeout declaring
how long it is prepared to wait for a response from the service invocation. An invocation may
time out if the physical endpoint is no longer processing requests or if the load on the service
is so great that it cannot process the request within the specified timeout period.

If the invocation does time out then the ServiceInvoker can choose to respond in one of
two ways, depending on the current ESB configuration, they are as follows:

�� Throw a ResponseTimeoutException: No further attempts will be made to deliver
the request to the service, however, the request may still be processed by the
service provider.

�� Obtain an EPR representing a different physical endpoint and attempt delivery:
The consumer will receive a response message if the next endpoint can process
the request within the specified timeout period, however, the request may still be
processed by the original endpoint. The application must be written to handle this
scenario should it arise.

Asynchronous delivery
Asynchronous delivery can be used by code which does not expect a response or which is
written to handle responses in an asynchronous manner, such as the following:

final ServiceInvoker invoker = new ServiceInvoker(category, name) ;
invoker.deliverAsync(request) ;

The service consumer does not wait for a response from the invocation, knowing that the
message will be delivered and processed at some future point.

Using an asynchronous approach to invocations can result in an architecture that is more
robust and performant than using synchronous delivery, after all a consumer which is not
blocking while it waits for a response can be processing the next service request.

Understanding Services

[110]

Time for action – examining exceptions
Let us now create a new way to invoke our service. Let us use the ServiceInvoker. Follow
these steps:

1.	 Remove BadAction from our service list:

2.	 Click OK. Ensure that we have only one action, BodyPrinter.

3.	 Create a new class. Enter Name as "SendEsbMessage", Package as
"org.jboss.soa.esb.samples.chapter3.test", check the box before public
static void main(String[] args):

Chapter 3

[111]

4.	 Click Finish.

5.	 Add the following imports statements:

import org.jboss.soa.esb.message.Message;
import org.jboss.soa.esb.message.format.MessageFactory;
import org.jboss.soa.esb.client.ServiceInvoker;

6.	 Add throws Exception to the static main method:

public static void main(String args[]) throws Exception

7.	 Add the following to the main method:

System.setProperty("javax.xml.registry.ConnectionFactoryClass",
 "org.apache.ws.scout.registry.ConnectionFactoryImpl");
Message esbMessage = MessageFactory.getInstance().getMessage();

esbMessage.getBody().add(
 "Chapter 3 says Hello via ServiceInvoker!");

	 new ServiceInvoker("Chapter3Sample",
 "Chapter3Service").deliverAsync(esbMessage);

8.	 Select the jboss-esb.xml file, click Save.

9.	 Deploy the application using the Run menu and select Run As | Run on Server.

10.	 Select the src folder, expand it till the SendEsbMessage.java file is displayed in
the tree. Now click Run, select Run As | Java Application.

The following message will be printed in the console

INFO [STDOUT] **

INFO [STDOUT] Body: Chapter 3 says Hello via ServiceInvoker!

INFO [STDOUT] **

What just happened?
You created a new file (SendEsbMessage.java) and added a few lines of code and voila,
we were able to send an ESB message to the bus targeting our service. How did this work?
The underlying mechanism is hidden by the ServiceInvoker. The ServiceInvoker
uses the jbossesb-properties.xml file found under the root of our application project.
This file contains all needed configurations for the ServiceInvoker to read and query the
registry. Have a brief look at this file in JBoss Developer Studio before proceeding further.

Understanding Services

[112]

Have a go hero – experimenting with MEPs and sync delivery
Go ahead and modify the MEP for our service as RequestResponse. You will need the
following modifications to SendEsbMessage:

Message response = new ServiceInvoker("Chapter3Sample",
 "Chapter3Service").deliverSync(esbMessage, 5000);
System.out.println(response.getBody().get());

You will also need to add a reply queue to the jbm-queue-service.xml file:

<mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.esb.book.samples.destination:
 service=Queue,name=chapter3_Request_esb_reply"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute- name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
</mbean>

Update the MyAction class to modify the payload on the return message. See how the
application behaves.

Composite services
One of the major advantages of an ESB is the ability to define composite services, in other
words taking existing services and combining them to create new services which can take
advantage of existing functionality. This is possible because of the loose coupling and
reusability encouraged in an SOA environment.

Service Chaining
Service Chaining is a topology whereby a service can be implemented through the execution
of two or more service implementations, in sequence, with each service within the
composite, providing specific, reusable functionality.

Chapter 3

[113]

Each service in the chain, with the possible exception of the last in the sequence, will be
declared with a service mep attribute value of OneWay. This will tell the framework that
these service implementations will not provide a direct response to the service consumer,
but rather this should be handled by the last service in the chain.

An example configuration for these services could be as follows:

<service category="composite" name="ChainedService"
 description="Chained Service Service A">
 ...
 <actions mep="OneWay">
 ...
 <action name="routeToNext"
 class="org.jboss.soa.esb.actions.StaticRouter">
 <property name="destinations">
 <route-to service-category="composite"
 service-name="ChainedServiceB"/>
 </property>
 </action>
 </actions>
</service>

<service category="composite" name="ChainedServiceB"
 description="Chained Service Service B">
 ...
 <actions mep="OneWay">
 ...
 <action name="routeToNext"
 class="org.jboss.soa.esb.actions.StaticRouter">
 <property name="destinations">
 <route-to service-category="composite"
 service-name="ChainedServiceC"/>
 </property>
 </action>
 </actions>
</service>

<service category="composite" name="ChainedServiceC"
 description="Chained Service Service C">
 ...
 <actions mep="RequestResponse">
 ...
 </actions>
</service>

Understanding Services

[114]

The example uses a StaticRouter action to forward the message from one service within
the chain to the next service in the sequence. The application may choose to route the
message using other actions, for example ContentBasedRouter, in order to support
topology defining multiple chains which react to the contents of the message.

Have a go hero – adding more services
Based on what you learned in this section, add more services to our Chapter3 application.
Experiment with some more additional action classes. Try using ServiceInvoker in your
custom action instead of StaticRouter.

Service Continuations
Service Continuations is a topology whereby a service implementation can be split into
multiple parts in order to allow the synchronous invocations of services to occur in an
asynchronous manner. The main benefits of executing a synchronous invocation in this
manner are:

�� Increased performance: Service consumers are no longer waiting to receive a
response from the service provider, allowing the consuming pipeline to process the
next message in its queue.

�� Increased reliability: Each part can be encompassed in a transactional unit of work,
allowing the processing of the service to move from one consistent state to the next.

A typical example of a synchronous invocation may look as follows:

The disadvantages of this implementation are:

�� The processing of Service A will be blocked while it awaits the response from
Service B, preventing any resources it may hold from being reused.

�� The processing of Service A cannot occur within a transactional context as the
delivery of the request message to Service B will not occur until the transaction
commits.

The processing involved in Service A can be split into two services, the first containing the
functionality being executed up until the point where the synchronous invocation of Service
B would be made, the second service (the continuation) containing the functionality which
would be executed after the response is received.

Chapter 3

[115]

Service A would now send an asynchronous request to Service B, specifying the
Continuation service as the ReplyTo endpoint within the request header. This will allow
the execution of Service A to be encompassed by a transactional context, providing atomic
and consistent execution, and will then allow it to release any resources being held in order
to process any subsequent requests in its queue.

Service B would process the request as before, completely oblivious to the changes that
have been made within Service A. Once complete, the pipeline for Service B would send
the response to the continuation service, which can then resume processing of the original
request within a second transactional context.

While it is important to be aware of Service Continuations and
their benefit to the architecture of an application, the specifics of
implementing this topology is an advanced topic that goes beyond
the scope of this book.

Transactions
One of the most important functional aspects supported by the service pipeline is that of the
transactional execution of the pipeline, in other words the ability to execute all of the actions
and message deliveries within a single, consistent context.

Transactional behavior is usually defined using the acronym ACID:

�� Atomicity: A transactional context is atomic, which means that every transactional
resource within the context will be updated if the transaction is successful. If the
transaction is unsuccessful then the transactional resources will remain unchanged.

�� Consistency: If the transaction is successful then each transactional resource will
move from one consistent state to another.

Understanding Services

[116]

�� Isolation: Each transactional context is isolated from any other transactional
context. Any modifications to a transactional resource will not be visible to other
contexts until the transaction has successfully committed.

�� Durability: A successful transaction will result in the transactional resources
persisting their state in such a way that they can be recovered, should anything
go wrong.

JBoss ESB supports three transactional transports, JMS, SQL, and InVM, with both the JMS
and SQL transports supporting full ACID properties. The InVM transport relaxes the ACID
properties and does not support durability, its message queue is maintained in volatile
memory and will be lost should the ESB server terminate.

When a message is delivered to the service pipeline, using one of the transports that
supports transactional delivery, it is possible to execute all of the actions in the pipeline
within a transactional context. Each transactional resource accessed within the actions
will be enlisted as part of the transaction, allowing the transaction manager to control the
consistent outcome of the pipeline execution.

When using a transactional transport to deliver messages it is important
to understand when the messages will be sent. Each message sent using
a transactional transport will be associated with the encompassing
transaction and will only be sent once the transaction commits. The
consequence of this is that sending a message to a service, then waiting
for the response within the same transaction, will not work.

If the framework detects an attempt to execute a synchronous
invocation, while in a transactional context, then it will raise an
IncompatibleTransactionScopeException exception.

One way to handle this requirement is to split the processing of the
pipeline into two sections, each with their own transactional context.
See Continuations for more information on this topology.

Have a go hero – transactional quickstart
Have a look at the jms_transacted quickstart. This demonstrates the usage of transacted
JMS queues. Modify the quickstart and add MyAction to it so that the context information is
printed. Do you see anything in the context?

Chapter 3

[117]

Security context
The service pipeline supports security through the standard Java Authentication and
Authorization Service (JAAS). Using this mechanism a service can require that a consumer
of the service must provide valid authentication credentials within the message context, and
may also require that the authenticated principal be associated with specific roles.

The service security requirements are configured by including the security element within
the service definition, as in the following:

<service category="SecuredCategory" name="SecuredService"
 description="Secured Service">
 <security moduleName="securedModule" rolesAllowed="worker">
 <property name="alias" value="certtest"/>
 </security>
 ...
</service>

Where moduleName specifies the name of the module within the JAAS configuration
and rolesAllowed specifies any roles that are required to be associated with the
authenticated principal.

When a message is sent to another service, using ServiceInvoker, the security context
from the consumer will be automatically attached to the outgoing message as part of the
message context and propagated to the service provider. This security context consists of
two parts:

�� An encrypted, pre-authenticated, principal: If this principal exists within the context
of the message then it will be trusted as long as the service provider exists within
the same ESB server (virtual machine) as the original signer, the principal has been
authenticated by the same JAAS module and that the encrypted object has not yet
expired. If any of these conditions are not satisfied then re-authentication will occur.

�� An encrypted authentication request: The authentication request contains the
information necessary to authenticate the consumer, by default this will be the
name associated with a security principal and its password credential.

The authentication request will usually be created automatically, as the request comes
onto the bus, however, it is also possible to create an authentication request through the
following programmatic mechanism:

final AuthenticationRequest authRequest =
 new AuthenticationRequestImpl.Builder()
 .username(name)
 .password(password.toCharArray())
 .build();

message.getContext().setContext(SecurityService.AUTH_REQUEST,
PublicCryptoUtil.INSTANCE.encrypt((Serializable) authRequest));

Understanding Services

[118]

The security mechanisms supported by JBoss ESB can be extended
in a number of ways, supporting authentication using certificates,
single sign-on, and so on.

Have a go hero – security quickstart
Have a look at the security_basic quickstart. Modify the quickstart action
MyListenerAction.java so that the context information is printed. Do you
see anything in the context?

Summary
In this chapter we have spent a significant amount of time covering the main aspects of the
Action Pipeline and how these aspects can affect the design decisions which are made when
implementing services.

You should now have a good understanding of:

�� The structure of an ESB message, including the header and message context

�� Enforcing payload contracts through XML and XSD

�� How the configuration is represented within the service and associated actions,
including how it can be traversed

�� The lifecycle and processing behavior for the actions within the pipeline

�� How processing methods can be overridden through configuration

�� How response behavior is controlled through the pipeline actions, MEP service
attributes, and consumer requirements

�� More advanced service topologies such as Service Chaining and Service
Continuations

�� The transactional behavior of the pipeline

�� The principles behind the security context and its propagation

In some of these areas we have only touched the surface, providing enough information
to allow you to begin exploring what is possible within a service. There are many external
resources which can provide a deeper understanding of the more advanced sections.

Now that we've learned about Services, we're ready to look deep into action classes and
some built-in actions, which is the topic of the next chapter.

4
JBoss ESB Service Actions

Actions are the basic building blocks of ESB services. In the previous chapter,
we discussed ESB services and their behavior, how to combine services, and
touched on the use of actions within a service. In this chapter we'll go into a
deeper discussion of actions, how and when to write your own action, and what
actions are provided to you within JBoss ESB.

You'll learn about:

�� What actions are and how you can combine actions into an "action chain" to have
your services perform complex, multi-step tasks.

�� How you can make use of JBoss ESB's extensive set of out-of-the-box (OOTB) actions
to perform tasks without your having to write custom code.

�� And finally, how you can write custom actions to perform tasks that are not already
supported by OOTB actions.

Understanding actions
For JBoss ESB services, actions are literally where the action is. Sorry, pardon the pun, please!

But, seriously, actions are the means by which services perform their tasks. Actions are
how you route messages between services, convert (or "transform") data from one form
to another, execute scripts or exercise integrations between JBoss ESB and other packages.

JBoss ESB Service Actions

[120]

There are two types of actions:

�� Out-of-the-box actions: A wide array of out-of-the-box (OOTB) actions ship
with JBoss ESB. When you are designing your services, the place to start is the
out-of-the-box actions. These have all been tested with JBoss ESB and they've
also been documented and used as examples by the quickstarts.

�� Custom actions: These are actions that you design and build yourself. We'll discuss
both types of actions, how you use them, and, for custom actions, how you build
them, in this chapter.

What is an action class?
An action class is simply a class which processes a message.

An action can be as simple as a class which prints some of the contents of the message or
as complex as one that triggers process flows based upon the message. An action class is
activated by the service receiving a message.

As part of a service, actions are generally combined in an action chain, where a single
message will be processed by multiple actions. Actions classes usually perform a single
atomic action upon a message, but the combination of action classes within an action
chain allows services to perform complex tasks and processing of messages.

Action classes are externally configured by properties and settings within the
jboss-esb.xml configuration file. The configuration appears within the action
class as a ConfigTree object.

Chapter 4

[121]

An action class usually has initialize and destroy methods, which set up and clean up
resources. Additionally there is a process method that performs some sort of stateless
action upon the message.

The action chain
In the course of explaining actions in this chapter, and illustrating actions in many of the
quickstarts, we'll mostly concentrate on one action at a time. While this is a useful approach
for learning how to use actions, it doesn't make use of the full power of what JBoss ESB can
achieve with the "action chain". By chaining actions together, where the message that is the
output from one action serves as the input (message) to another action, JBoss ESB enables
your services to be constructed of building blocks of loosely coupled, reusable code.

The following code is a sample action chain, defined in the jboss-esb.xml configuration
file. This action chain has three actions—a custom action (action1), an OOTB action
which prints the message to the console (action2), and an OOTB action which stores
the message's contents in a JMX MBean for integration testing (action3).

<actions mep="OneWay">
 <action name="action1"
 class="org.jboss.soa.esb.samples.quickstart.
 helloworld.MySampleAction"
 process="displayMessage" />
 <action name="action2"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 </action>
 <!-- The next action is for Continuous Integration testing -->
 <action name="testStore"
 class="org.jboss.soa.esb.actions.TestMessageStore"/>
</actions>

Each action has a name, a class, and an optional process attribute, which specifies the
method in the class which will be executed when it receives a message. If no process
attribute is specified, it assumes that there is a method within your class

Within the action chain, the service name must be unique—you cannot have two services
with the same name or you will receive an error upon deploying your ESB archive.

JBoss ESB Service Actions

[122]

Notice in the example that there is an mep property on the actions element. MEP stands
for Message Exchange Pattern and the supported values of MEP for an action chain are:

�� OneWay: A OneWay MEP means that pipeline will not send a response, that is, at the
end of the action chain, it does not send a response.

�� RequestResponse: This MEP means that the pipeline will send a message to the
ReplyTo EPR or the From EPR if that isn't specified. We'll talk about what an EPR is
in Chapter 7, but for now know that you'll want to use RequestResponse in certain
instances, such as when you are using the HttpGateway, or if you are using the
ServiceInvoker in synchronous mode.

Let's look at an example:

<actions mep="OneWay">
 <action name="action0"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 </action>
 <action name="action1"
 class="org.jboss.soa.esb.samples.quickstart.
 helloworld.SimpleAdditionAction"
 process="addMessageContent"/>
 <action name="action2"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 </action>
 <action name="action3"
 class="org.jboss.soa.esb.samples.quickstart.
 helloworld.SimpleAdditionAction"
 process="addMessageContent"/>
 <action name="action4"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 </action>
</actions>

For example, if we send a message containing the number "1" to the chain, the custom
action SimpleAdditionAction assumes that the message content is an integer, and
adds 1 to it. In this case, we would see output like the following:

15:56:22,407 INFO [STDOUT] Message structure:

15:56:22,407 INFO [STDOUT] [1].

15:56:25,408 INFO [STDOUT] Message structure:

15:56:25,409 INFO [STDOUT] [2].

15:56:28,409 INFO [STDOUT] Message structure:

15:56:28,409 INFO [STDOUT] [3].

Chapter 4

[123]

The message is printed three times (by action0, action2, and action4). As you notice,
you can use the same action class multiple times in the same actionChain in order to
repeat functionality. In this case, we print the initial message (1), then add 1 to it, print it (2),
add 1 to it again, and then print it a final time (3).

Custom actions
We'll start with custom actions to give you an understanding of the structure of an action
class. There are three different approaches you can take to have your code function as a
custom action:

�� Lifecycle actions

�� JavaBean actions

�� Custom actions using annotations

Lifecycle actions
The first approach is to create lifecycle actions.

These are used by many of the OOTB JBoss ESB actions. These actions implement the org.
jboss.soa.esb.actions.ActionLifecycle interface, or its sub-interface org.jboss.
soa.esb.actions.ActionPipelineProcessor.

You can see the list of these actions here:

http://docs.jboss.org/jbossesb/docs/4.10/javadoc/esb/org/jboss/soa/
esb/actions/ActionLifecycle.html

The actions are listed in the javadoc as the classes implementing the interface. These actions
implement the life-cycle model for an action through these methods:

�� initialize

�� destroy

�� process (ActionPipelineProcessor only)

�� processSuccess (ActionPipelineProcessor only)

�� processException (ActionPipelineProcessor only)

In this context, "lifecycle" refers to the lifecycle of a stateless action pipeline.

The initialize and destroy methods can be overridden to enable you to create
resources that will be used throughout the execution of the action pipeline.

JBoss ESB Service Actions

[124]

Any methods that you implement in your custom actions beyond these methods are located
and executed by Java reflection.

To make things easier, abstract base classes (org.jboss.soa.esb.actions.
AbstractActionPipelineProcessor and org.jboss.soa.esb.actions.
AbstractActionLifecycle) that implement these interfaces are included with JBoss ESB.
You can simply extend either of these abstract classes in your custom actions. These classes
include sub methods for everything except the process methods.

The lifecycle actions have to include a constructor which uses an org.jboss.soa.
esb.helpers.ConfigTree instance as a parameter. The ConfigTree refers to the
configuration of the action.

Now let's look at some examples of lifecycle actions.

The simplest lifecycle action that you're likely to ever see is included in the "helloworld"
quickstart. The lifecycle action is referenced in the jboss-esb.xml file as shown:

<action name="action1"
 class="org.jboss.soa.esb.samples.quickstart.
 helloworld.MyJMSListenerAction"
 process="displayMessage" />

What are the properties defined for this action? They are as follows:

�� name: A unique (again, unique within the given service) name for the action

�� class: The full class name for the custom action. We'll look at the source code for
this action in a moment.

�� process: Remember how we talked about overriding the process method? This is
an example.

Here's the source for the action (the file is under the quickstart helloworld directory: src/
org/jboss/soa/esb/samples/quickstart/helloworld/
MyJMSListenerAction.java):

package org.jboss.soa.esb.samples.quickstart.helloworld;
import org.jboss.soa.esb.actions.AbstractActionLifecycle;
import org.jboss.soa.esb.helpers.ConfigTree;
import org.jboss.soa.esb.message.Message;
public class MyJMSListenerAction extends AbstractActionLifecycle {
 protected ConfigTree _config;
 public MyJMSListenerAction(ConfigTree config) {
 _config = config; }
 public Message displayMessage(Message message) throws Exception{
 System.out.println(
 "&&");

Chapter 4

[125]

 System.out.println("Body: " + message.getBody().get()) ;
 System.out.println(
 "&&");
 return message;
 }
}

Let's take a closer look at this code:

�� The import statements bring in the AbstractActionLifecycle and ESB's
message. The ConfigTree is needed by ESB to access the action's set of attributes,
parse its XML configuration, and so on. The action's constructor must initialize the
ConfigTree.

�� The class definition shows how the action class extends the
AbstractActionLifecycle interface.

�� The displayMessage method definition corresponds to the overridden process
method defined in the listener's definition in jboss-esb.xml.

The custom_action quickstart demonstrates these other types of lifecycle actions:

�� In the following lifecycle action, JBoss ESB looks for a method named process
when the action fires:

<action class="org.jboss.soa.esb.samples.quickstart.
 customaction.MyBasicAction"
 exceptionMethod="exceptionHandler" />

�� In the following lifecycle action, the three methods defined by the process
property are executed in sequence, when the action fires:

<action class="org.jboss.soa.esb.samples.quickstart.
 customaction.StatefulAction"
 process="methodOne,methodTwo,displayCount"
 exceptionMethod="exceptionHandler" />

�� The following lifecycle action shows you can create your own custom attributes
for the action tag and even have child elements for that action. As the quickstart's
documentation points out, this approach can be used to make the action more
easily configurable, as follows:

<action class="org.jboss.soa.esb.samples.quickstart.
 customaction.CustomConfigAction"
 process="displayConfig" myStuff="rocks"
 moreStuff="rocks harder">
 <subElement1>Value of 1</subElement1>
 <subElement2>Value of 2</subElement2>
 <subElement3>Value of 3</subElement3>
</action>

JBoss ESB Service Actions

[126]

JavaBean actions
The second approach for building custom actions is to create JavaBean actions. These actions
implement the org.jboss.soa.esb.actions.BeanConfiguredAction interface.
These actions are differentiated from the lifecycle actions in several ways, as follows:

�� They set properties with "setter" methods. These methods map to the actions'
property names.

�� They do not support the lifecycle methods (initialize, destroy, process,
processSuccess, and processException). Instead, these actions are
instantiated when a message is processed by the action pipeline.

�� Unlike lifecycle actions, JavaBean actions' process methods are always executed
through Java reflection.

An example of this type of action is also illustrated in the custom_action quickstart:

<action name="seventh"
 class="org.jboss.soa.esb.samples.quickstart.
 customaction.CustomBeanConfigAction">
 <property name="information" value="Hola Mundo" />
 <property name="repeatCount" value="5"/>
</action>

In this action definition, the bean's setter methods will be invoked with the properties
defined in the jboss-esb.xml file.

And here's a fragment from the org.jboss.soa.esb.samples.quickstart.
customaction.CustomBeanConfigAction class. Note that the setter methods
correspond to the property names:

public void setInformation(String information) {
 this.information = information;
}
public void setRepeatCount(Integer repeatCount) {
 this.repeatCount = repeatCount;
}
 public Message process(Message message) throws
 ActionProcessingException {
 System.out.println("[" + serviceCategory + ":" +
 serviceName + "] Repeat message: " + information +
 " " + repeatCount + " times:");
 for (int i=0; i < repeatCount; i++) {
 System.out.println(information);
 }
 return message;
}

Chapter 4

[127]

Custom actions using annotations
One common trend in Java programing is that of simplifying complex structures and
technologies with annotations. For example, EJB3 removed several of the complex and
annoying requirements of EJB2 through the use of annotations. The third approach to
creating custom actions that JBoss ESB provides is an annotation mechanism through which
an action class can be created and configured. In order for the class to be identified as an
annotated action, one or more of its public methods must be annotated with the org.
jboss.soa.esb.actions.annotation.Process annotation.

When using an annotated action class it is no longer necessary to handle the ConfigTree,
the configuration being handled through annotating fields or setter methods from within
the class. There are some restrictions in the configuration types which can be used through
this mechanism.

Fields and setter methods should be annotated with the org.jboss.soa.esb.
configure.ConfigProperty annotation, for example:

@ConfigProperty
private int intConfig;

@ConfigProperty(use=Use.OPTIONAL)
private String stringConfig;

@ConfigProperty(name="AlternativeName")
public void setEnumConfig(final MyEnum value) {
 ...
}

The ConfigProperty annotation can be configured through the following
annotation elements:

�� name: An optional element which defines the ConfigTree attribute name. If this
element is not specified then the attribute name will match the name of the field or
will be derived from the setter method using the JavaBean conventions.

�� use: An optional element which defines whether the property is REQUIRED or
OPTIONAL, defaulting to REQUIRED. It is an error if a REQUIRED property cannot
be assigned a value.

�� DefaultVal: An optional element which defines the default value to use for the
property if a value has not been specified within the action configuration.

�� Choice: An optional element which restricts the property values to a specified set.
It is an error if a property is configured to a value not present within the choice set.

JBoss ESB Service Actions

[128]

Note that annotations using the ConfigTree annotation can only be
configured using simple name/value properties, it is not possible to use
hierarchical configurations nor to traverse the ConfigTree hierarchy. The
property types must be primitive or must define a constructor taking a single
String parameter.

Lifecycle annotations
An annotated action can define any number of public initialization methods, each of
which must be annotated with the org.jboss.soa.esb.lifecycle.annotation.
Initialize annotation. For example:

@Initialize
public void firstInit() {
 ...
}

@Initialize
public void secondInit(final ConfigTree configTree)
 throws ActionLifecycleException {
 ...
}

The Initialize methods may take an optional ConfigTree parameter and may throw an
ActionLifecycleException.

An annotated action can also define any number of public destroy methods, each being
annotated with the org.jboss.soa.esb.lifecycle.annotation.Destroy
annotation. For example:

@Destroy
public void firstDestroy() {
 ...
}

@Destroy
public void secondDestroy(final ConfigTree configTree)
 throws ActionLifecycleException {
 ...
}

The Destroy methods may take an optional ConfigTree parameter and may throw an
ActionLifecycleException.

Chapter 4

[129]

Processing annotations
An annotated action can define any number of public process methods, each being
annotated with the org.jboss.soa.esb.actions.annotation.Process annotation,
however only one method may be executed and this must be chosen through the
action configuration.

@Process
public Message process(final Message message)
 throws ActionProcessingException {
 ...
}

Process methods may be defined with any number of parameters and may choose not to
return a value, for example:

// method expecting the default message payload to be of type MyType,
// returning a String value for the response payload.
@Process
public String processMyType(final MyType payload) {
 ...
}

// method accessing the full message without updating
// the response payload
@Process
public void processMessage(final Message message) {
 ...
}

// method ignoring message contents and updating response payload
@Process
public MyType process() {
 ...
}

The parameter values passed to a process method may be configured using a number of
annotations; if none are present then the values are resolved as follows:

�� Message type: Pass the current message as the parameter.

�� Type matches default payload type: Pass the default payload as the parameter.

�� Other type: Locate an entry in the message body, property, or attachment which can
be assigned to the parameter type.

JBoss ESB Service Actions

[130]

�� org.jboss.soa.esb.actions.annotation.BodyParam: This annotation takes an optional
value which identifies which part of the message body to pass to the method. If
not specified then the parameter is resolved by searching through all entries in the
message body for the first value which can be assigned to the parameter type.

�� org.jboss.soa.esb.actions.annotation.PropertyParam: This annotation takes an
optional value which identifies which part of the message properties to pass to the
method. If not specified then the parameter is resolved by searching through all
entries in the message properties for the first value which can be assigned to the
parameter type.

�� org.jboss.soa.esb.actions.annotation.AttachmentParam: This annotation takes an
optional value which identifies which part of the message attachments to pass to
the method. If not specified then the parameter is resolved by searching through all
entries in the message attachments for the first value which can be assigned to the
parameter type.

Examples of these annotations are as follows:

public String processAnnotations(
 @BodyParam("MyBody") MyBodyType body,
 @PropertyParam("MyProperty") Integer property,
 @AttachmentParam("MyAttachment") byte[] attachment) {
 ...
}

Note that relying on any of the cascading searches through body, property,
and attachments sections of the message could result in a non-deterministic
resolution of the parameter if more than one entry may be assigned to the
property type.

An annotated action can define any number of public processSuccess methods, each
of which must be annotated using the org.jboss.soa.esb.actions.annotation.
OnSuccess annotation. Each processSuccess method will be invoked when a successful
invocation of the pipeline has occurred and may be defined with no parameters or with a
single Message parameter, for example:

@OnSuccess
public void firstSuccess() {
 ...
}

@OnSuccess
public void secondSuccess(final Message message) {
 ...
}

Chapter 4

[131]

An annotated action may also define any number of public processException
methods, each of which must be annotated using the org.jboss.soa.esb.actions.
annotation.OnException annotation. Each processException method will be invoked
when an exception is raised during an invocation of the pipeline and may be defined with
no parameters, a single Message parameter or a Message and Throwable parameters,
for example:

@OnException
public void firstException() {
 ...
}

@OnException
public void secondException(final Message message) {
 ...
}

@OnException
public void thirdException(final Message message, final Throwable th)
{
 ...
}

Out-of-the-box (OOTB) actions—how and when to
use them
The out-of-the-box actions implemented in JBoss ESB are divided into the following
functional groups:

�� Scripting: Automating tasks in scripting languages

�� EJBs: Invoking EJBs

�� Web services/SOAP: Support for web services

�� Transformers/Converters: How your services can change data from one form
to another

�� Smooks message fragment processing: How your services can split, enrich, or
validate data with Smooks

�� Routers: How your services can move messages between services

�� Notifiers: How your services can send messages to destinations outside ESB

�� Business Process Management: Integrating with JBoss jBPM

�� Rules Services: Integrating with Drools

JBoss ESB Service Actions

[132]

�� BPEL Processes: Integrating with Riftsaw

�� Miscellaneous: There's also a miscellaneous group that includes only one very
simple action—org.jboss.soa.esb.actions.SystemPrintln. This action
prints off a message.

We'll examine each of these groups of out-of-the-box actions in the sections that follow.

Scripting
Scripting actions make it possible for you to actually create custom actions, from within an
OOTB action, by writing the custom code using a scripting language. This approach mirrors
the way in which scripting languages are being used instead of compiled code to greater and
greater degrees every year. As of release 4.10 of JBoss ESB, the following scripting actions
are supported:

�� GroovyActionProcessor:
org.jboss.soa.esb.actions.scripting.GroovyActionProcessor
The name is a dead give-away; as this action enables you to use Groovy scripts.
Here's an example of an action that invokes the OOTB GroovyActionProcessor
action:

<action name="groovyHelloWorld"
 class="org.jboss.soa.esb.actions.scripting.
 GroovyActionProcessor">
 <property name="script" value="/scripts/helloWorld.groovy" />
</action>

�� ScriptingAction:
org.jboss.soa.esb.actions.scripting.ScriptingAction
This action enables you to use the Bean Scripting Framework (BSF—http://
jakarta.apache.org/bsf/). This framework supports BeanShell, Jython, and
JRuby scripts. Here's an example of an action that invokes the OOTB ScriptingAction
action:

<action name="add_beanshell_link" class="org.jboss.soa.esb.
actions.scripting.ScriptingAction">
 <!-- use a .beanshell extension vs. bsh or the
BeanShellDeployer will pick it up inadvertently -->
 <property name="script" value="/scripts/link.beanshell" />
</action>

Chapter 4

[133]

Pay attention to the comment. If you use a .bsh file extension, the BeanShellDeployer
(this is a tool that enables you to deploy scripts or services for one-time use—see
http://community.jboss.org/wiki/BSHDeployer) will deploy the script.

Services—invoking EJBs
As we've mentioned more than once already, one of the great strengths of JBoss ESB is how
it makes it possible for you to integrate different types of services and systems together, and
have them communicate through a loosely coupled architecture, by sending messages over
the ESB. One way in which JBoss ESB makes this integration possible is by enabling you to
interact with EJBs.

The EJBProcessor (org.jboss.soa.esb.actions.EJBProcessor) action accepts a
message and uses it to locate and invoke an EJB. You can send parameters to an EJB and
retrieve values from EJBs. Let's look at an example of an action that invokes an EJB, and
sends it parameters.

<action name="EJBTestVoid"
 class="org.jboss.soa.esb.actions.EJBProcessor">
 <property name="ejb3" value="true" />
 <property name="method" value="printMessage" />
 <property name="jndi-name" value="SimpleSLSB/remote" />
 <property name="initial-context-factory"
 value="org.jnp.interfaces.NamingContextFactory" />
 <property name="provider-url" value="localhost:1099" />
 <property name="ejb-params">
 <arg0 type="java.lang.String">
 org.jboss.soa.esb.message.defaultEntry
 </arg0>
 </property>
</action>

What's interesting to note here is that in order for the EJBProcessor action to be able
to locate the EJB and find the right method to invoke, the parameter list includes as
message properties the EJB's jndi-name, its initial-context-factory and the
other parameters needed by the EJB.

Note that JBoss ESB supports both EJB2 and EJB3 through this action.

JBoss ESB Service Actions

[134]

Web services/SOAP
There are three web service-related out-of-the-box actions in JBoss ESB. Each serves a
different function and they are detailed in the following:

�� SOAPProcessor: This action is used to expose web service endpoints. Write a
service wrapper web service (JSR181) that calls your target web service and exposes
it through JBoss ESB listeners. These three types of JBoss WS web service endpoints
can be exposed through JBoss ESB listeners using this action:

�� Web service bundled into a JBoss ESB .esb archive: When the web service
.war is bundled into a deployed .esb archive

�� Web service bundled into a .ear: When the .war is bundled into a
deployed .ear

�� Standalone web service: When the web service .war is deployed

�� WISE SOAPClient: This action uses the WISE client service to create a JAX-WS
client class and then call the target service. The message is then routed to that
service.

�� SOAPClient: This action uses the soapUI client service to create a SOAP message
and then route that message to the target service.

Time for action – running the quickstart
We will see the web services quickstart in the following steps:

1.	 Change your current directory to the quickstart's directory samples/
quickstarts/webservice_consumer1. Deploy the quickstart using
the ant deploy command.

2.	 Before running the quickstart, review the jboss-esb.xml file and see how the
message is directed towards a SOAP endpoint which this quickstart also installs.

3.	 Run the quickstart using the ant runtest command.

4.	 Review the quickstart's output in the server.log file.

What just happened?
In this quickstart, the ESB deploys both a WAR and an ESB archive. The WAR archive contains
a web service, HelloWorldWS. When we invoked the runtest target, we sent a JMS
message to the service, which then invoked HelloWorldWS using the request we provided
from the JMS message. The SOAP response is then displayed on the console by the custom
MyResponseAction action.

Chapter 4

[135]

Transformers/converters
These OOTB actions are used by services that expect data in different forms to
communicate with each other, without you having to create glue code to convert that data
from one form to another. The specific data that transformers and converters process is
a message's "payload" (the message body and the message's attachments and defined
properties). The default way for an action to get/set a message's payload is through the
MessagePayloadProxy class.

The specific actions in the transformers and converters actions group are:

�� ByteArrayToString:
org.jboss.soa.esb.actions.converters.ByteArrayToString
This action converts a byte[] message payload into a Java String.

�� LongToDateConverter:
org.jboss.soa.esb.actions.converters.LongToDateConverter
This action converts a Java Long type in the message payload into a
java.util.Date.

�� ObjectInvoke:
org.jboss.soa.esb.actions.converters.ObjectInvoke
This action takes a serialized object, which consists of full message payload, and
passes it to a configured processor class. The processed results then become the
new message payload.

�� ObjectToCSVString:
org.jboss.soa.esb.actions.converters.ObjectToCSVString
This action converts a message into a comma separated string based on a list
of property names that you supply.

�� ObjectToXStream:
org.jboss.soa.esb.actions.converters.ObjectToXStream
This action is similar to the ObjectInvoke action, except that it converts
the object to XML using Xstream.

�� XStreamGToObject:
org.jboss.soa.esb.actions.converters.ObjectToXStream
This action converts XML to an object using XStream.

�� PersistAction:
org.jboss.soa.esb.actions.MessagePersister
This action doesn't really transform or convert a message, it writes it to the
persistent message store. The most common use of the action is that it is how JBoss
ESB itself writes messages to the dead letter queue (DLQ), but it can be used in any
situation when you want to store a message.

JBoss ESB Service Actions

[136]

�� SmooksAction:
org.jboss.soa.esb.smooks.SmooksAction
This action enables you to use a powerful set of Smooks operations with JBoss ESB.
We'll examine this action in detail in the next section.

Smooks message fragment processing
Let's look at transformations and the SmooksAction OOTB action.

But first, let's take a minute to introduce JBoss Smooks (http://www.smooks.org).

Smooks is best known as a transformation engine, that is, a utility to perform data
transformations from one form to another (for example from XML to POJO's). However,
that's a misconception (not to mention a disservice to Smooks) as Smooks has many more
capabilities. A more accurate way to view Smooks is as a framework to enable you to
perform different types of processing on message fragments, where a message fragment is a
selected subset of the information in a message.

Smooks is able to handle different types of message fragments, and is able to perform
different types of processing due to its modular design. Smooks' design is based on "visitor
logic". A Smooks "visitor" is Java code that is designed to perform a specific type of operation
on a specific type of message fragment. The message transformation types that Smooks
performs include:

�� Templating: Smooks enables you to define templates with XSLT or FreeMarker
(http://freemarker.sourceforge.net/) to govern the message
transformation.

�� Java Binding: A very common, and very annoying task, is binding data to Java
objects. Smooks provides dedicated visitor logic to perform this binding so you
don't have to design the logic yourself.

�� Message Splitting: We reviewed different types of message routing OOTB actions
earlier in this chapter. One characteristic that all these have in common is that they
treat the messages being routed as atomic units. In contrast, Smooks supports
splitting messages into fragments and then routing the fragments to different
destinations. In addition, you can even route these message fragments over
different transports.

�� Enrichment: Another common message processing task is to use information in
a message as a "seed" to be used to add additional information to the message.
Smooks enables you to "enrich" a message fragment with data extracted from
a database.

�� Persistence: As a counter point to enrichment, Smooks supports persisting message
fragments into databases.

Chapter 4

[137]

�� Validation: Smooks provides visitor logic to perform validation, of data in
message fragments.

However, when should you use Smooks for content-based routing? The types of situations in
which you should consider using Smooks for content-based routing include:

�� When you have to split messages: As we described earlier, one of Smooks' most
powerful features is the ability to perform message splitting. If you use Smooks for
content-based routing, you can split messages into fragments, route the fragments
to different destinations in different formats (for example, routing XML to one
service, Java to another, CSV data to another, and so on), and enrich or otherwise
process the message fragments as they are routed. In addition, you can process the
fragments into data in different formats.

�� When performance and scalability are required: Another advantage of using
Smooks for message splitting and routing is Smooks' high throughput rate and
ability to handle very large messages (over 50 MB in size) efficiently.

Let's take a look an example of transformations and the SmooksAction out-of-the-box action.

The example is the aptly named transform_XML2XML_simple quickstart. This quickstart
performs a message transformation by applying an XSLT (EXtensible Stylesheet Language
Transformations) to an XML message. The message is then transformed into XML in a
different form. The interesting parts of the quickstart's jboss-esb.xml file are:

�� The following is an example of a mep that we described earlier in this chapter. The
pattern used by this quickstart is OneWay in that the requester invokes a service
(by sending it a message) and then does not wait for a response:

<actions mep="OneWay">

�� The following action results in the message being written to the server log
before it undergoes XSLT transformation. A similar action is also invoked after
the transformation.

<action name="print-before"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message"
 value="[transform_XML2XML_simple]
 Message before transformation"/>
</action>

�� And here is the SmooksAction:

<action name="simple-transform"
 class="org.jboss.soa.esb.smooks.SmooksAction">
 <propertyname="smooksConfig" value="/smooks-res.xml"/>
</action>

JBoss ESB Service Actions

[138]

�� The set of Smooks commands to be executed is defined in the smooks-res.xml
file. This file contains:

<?xmlversion='1.0'encoding='UTF-8'?>
 <smooks-resource-listxmlns=http://www.milyn.org/xsd/
 smooks-1.0.xsd>

 <resource-configselector="OrderLine">
 <resourcetype="xsl">
 <![CDATA[<line-item>
 <product>
 <xsl:value-of select="./Product/@productId"/>
 </product>
 <price>
 <xsl:value-of select="./Product/@price"/>
 </price>
 <quantity>
 <xsl:value-of select="@quantity"/>
 </quantity>
 </line-item>]]>
 </resource>
 <paramname="is-xslt-templatelet">true</param>
 </resource-config>
</smooks-resource-list>

If this file looks a bit confusing, don't worry. The XPath commands that will be used
by the SmooksAction and XSLT to transform the message into a different form are
highlighted.

Time for action – running the quickstart
Follow these steps to run the transform_XML2XML_simple quickstart:

1.	 Change your current directory to the quickstart's directory samples/
quickstarts/transform_XML2XML_simple.

2.	 Deploy the quickstart using the ant deploy command.

3.	 Before running the quickstart, review the original message that is used by the
quickstart. Note the ProductID, price, and quantity elements. These are the
elements that were defined in the smooks-res.xml file:

<Order orderId="1" orderDate="Wed Nov 15 13:45:28 EST 2006"
 statusCode="0" netAmount="59.97" totalAmount="64.92"
 tax="4.95">
 <Customer userName="user1" firstName="Harry"

Chapter 4

[139]

 lastName="Fletcher" state="SD"/>
 <OrderLines>
 <OrderLine position="1" quantity="1">
 <Product productId="364"
 title="The 40-Year-Old Virgin "
 price="29.98"/>
 </OrderLine>
 <OrderLine position="2" quantity="1">
 <Product productId="299" title="Pulp Fiction"
 price="29.99"/>
 </OrderLine>
 </OrderLines>
</Order>

4.	 Run the quickstart using the ant runtest command.

5.	 Review the quickstart's output in the server.log file. Make note of how the data
from the message has been transformed into a new format:

2011-07-17 18:16:59,258 INFO [STDOUT] (pool-33-thread-1)
[transform_XML2XML_simple] Message after transformation:
2011-07-17 18:16:59,258 INFO [STDOUT] (pool-33-thread-1)
[<Order netAmount="59.97" orderDate="Wed Nov 15 13:45:28 EST 2006"
orderId="1" statusCode="0" tax="4.95" totalAmount="64.92">
 <Customer firstName="Harry" lastName="Fletcher" state="SD"
 userName="user1"></Customer>
 <OrderLines>
 <line-item>
 <product>364</product>
 <price>29.98</price>
 <quantity>1</quantity>
 </line-item>
 <line-item>
 <product>299</product>
 <price>29.99</price>
 <quantity>1</quantity>
 </line-item>
 </OrderLines>
</Order>].

What just happened?
As you can see from the server output, the original message is printed out, the message is
transformed and then it is printed out again. The smooks resource file specifies a transform
which changes <OrderLine/> elements into <line-item/> elements and a number of
subsequent attributes into child elements.

JBoss ESB Service Actions

[140]

Routers
JBoss ESB supports static routing of messages to services, where messages are always routed
to the same service based on the configuration. However, JBoss ESB also supports multiple
approaches for content-based routing, where a message's route is determined dynamically
at run-time, based on the content of the message.

You've probably noticed by now that in our examining the features provided by JBoss ESB,
one recurring theme is that, on the ESB, "everything is either a service or a message". In
order to make sure that our services can communicate via messages, JBoss ESB has to have
a way to get messages to the right service. The ESB does this through message routing.

JBoss ESB supports multiple routing-related actions, these are as follows:

�� Aggregator:
org.jboss.soa.esb.actions.Aggregator
This action aggregates information from multiple messages. For example, if you want
to collect information from a message that contains a customer's mailing address with
information about that customer's country's import/export laws. The Aggregator
action is an implementation of the Aggregator Enterprise Integration Pattern
(http://www.enterpriseintegrationpatterns.com/Aggregator.html)

�� EchoRouter:
org.jboss.soa.esb.actions.routing.EchoRouter
This router is much simpler. As its name implies, it simply echos the incoming
message to the server log and then returns the message.

�� HttpRouter:
org.jboss.soa.esb.actions.routing.HttpRouter
This router sends the incoming message to an HTTP URL that you define in the
action.

�� JMSRouter:
org.jboss.soa.esb.actions.routing.JMSRouter
One of the ways in which you can achieve the loose coupling that we want in a
service-oriented architecture is by using asynchronous messaging. In this approach,
the sending service inserts messages into a JMS queue or topic for a receiving
service to retrieve. What makes this asynchronous is that the sending service does
not have to wait for the receiving service to "pick up" the message. The sending
service is able to continue to perform tasks without blocking or waiting for the
receiving service.

Chapter 4

[141]

�� StaticRouter:
org.jboss.soa.esb.actions.StaticRouter
In some cases, messages will always follow the same route. For example, messages
from the sales service will always be directed to the credit check service. For static
routes such as these, StaticRouter can be used.

�� StaticWiretap:
org.jboss.soa.esb.actions.StaticWiretap
This action implements the Enterprise Integration Pattern for a wiretap
(http://www.enterpriseintegrationpatterns.com/WireTap.html).

The action enables you to inspect each processed message, without otherwise
changing the actions performed. It lets you "listen in" on the messages, without
actually changing them.

�� ContentBasedRouter:
org.jboss.soa.esb.actions.ContentBasedRouter
The most interesting set of OOTB router actions deals with content-based routing.
For these actions, the content in the messages determines the route that a message
will follow.

JBoss ESB supports multiple ways to perform content-based routing. You can define
XPath semantics or regular expression pattern matching in the action definition.
For example:

<action class="org.jboss.soa.esb.actions.ContentBasedRouter"
 name="ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="destinations">
 <namespace prefix="ord"
 uri="http://org.jboss.soa.esb/Order" />
 <route-to service-category="BlueTeam"
 service-name="GoBlue"
 expression="/ord:Order[@statusCode='0']" />
 <route-to service-category="RedTeam"
 service-name="GoRed"
 expression="/ord:Order[@statusCode='1']" />
 <route-to service-category="GreenTeam"
 service-name="GoGreen"
 expression="/ord:Order[@statusCode='2']" />
 </property>
</action>

The expression defines the XPath pattern that must be matched to route
messages to the desired service.

JBoss ESB Service Actions

[142]

JBoss ESB also supports using JBoss Drools to define the content-based routing. We'll look
at the JBoss ESB-Drools integration later in this chapter. Drools provides a declarative, "rules
based" programming model for routing patterns too complicated to be easily handled by
XPath semantics or a regular expression pattern. Finally, JBoss ESB also supports using JBoss
Smooks for content-based routing. Smooks is the best choice if you also want to perform
tasks such as message splitting as part of the content-based routing. We will also look at
the JBoss ESB-Smooks integration later in this chapter.

Let's look at an example.

Time for action – implementing content-based routing
The fun_cbr quickstart performs content based routing, where the contents of a message
dynamically "fire" procedural rules defined in JBoss Drools to determine the message's route.
The quickstart action chain, including message routing, is initiated when a JMS message is
inserted into a queue on which a JMS gateway listener is monitoring. When the gateway
detects the message, it passes it to an ESB-aware listener, which in turn passes the message
to the routing action. Based on the contents of the message, the message is delivered to one
of three destination JMS queues.

Follow these steps to run the quickstart:

1.	 Like most of the other quickstarts, fun_cbr is deployed using the
ant deploy command.

2.	 Running this quickstart, however, is a little different. As we mentioned earlier,
messages, based on their content, are routed to one of three output queues. Each
of these queues is monitored by a client. Each client represents one of three teams
of order processors named for colors; red, blue, and green. When a client detects
that a message has been received, it displays the message. So, before you run the
quickstart, you have to open up three terminal windows, and start a client in each
of them with one of these commands:

	 ant receiveBlue

	 ant receiveRed

	 ant receiveGreen

3.	 The clients have been started, now let's run the quickstart:

	 ant runtest

Chapter 4

[143]

What just happened
In its out of the box configuration, the quickstart sends a message to the blue team. The
message routing depends on the statusCode attribute in the SampleOrder.xml file from
which the input message is generated. The message starts in the form of a SOAP request as
is seen in SampleOrder.xml. The output shown by the receiveBlue client looks like this:

receiveBlue: [echo] Runs Test JMS Receiver

[java] Receiving on: queue/quickstart_Fun_CBR_Blue_Alert

[java] 11:18:09,506 DEBUG [main][TimedSocketFactory] createSocket,
hostAddr:

 localhost/127.0.0.1, port: 1099, localAddr: null,
localPort: 0, timeout: 0

[java] Initialised

[java] ***

[java] <Order xmlns="http://org.jboss.soa.esb/Order" orderId="1"
orderDate="Wed

 Nov 15 13:45:28 EST 2006" statusCode="0"

[java] netAmount="59.97" totalAmount="64.92" tax="4.95">

[java] <Customer userName="user1" firstName="Harry" lastName="Fletcher"

 state="SD"/>

[java] <OrderLines>

[java] <OrderLine position="1" quantity="1">

[java] <Product productId="364" title="The 40-Year-Old Virgin "
price="29.98"/>

[java] </OrderLine>

[java] <OrderLine position="2" quantity="1">

[java] <Product productId="299" title="Pulp Fiction" price="29.99"/>

[java] </OrderLine>

[java] </OrderLines>

[java] </Order>

Have a go hero
To get a better idea of how content-based routing works, change the status code in the
quickstart's SampleOrder.xml to a value of 1 or 2 and watch the message be routed to the
green and red clients. But, don't stop there! Try your hand at modifying the rules that govern
the quickstart's message routing.

JBoss ESB Service Actions

[144]

Notifiers
How do you move an ESB message out of your service into ESB-unaware services like a JMS
queue, a file, or a SQL table? Notifiers convert ESB-aware messages into data in a format
these services can understand.

Notifiers are specified within a NotificationList, which allows you to specify more than
one notifier at the same time. This allows you to notify multiple targets, like a JMS queue
and the console.

Note that notifiers are to be used only to communicate with ESB-unaware services. Do not
try to notify JMS queues that contain ESB-aware messages.

Another thing to note is that while the action pipeline generally works sequentially, it
has two stages—normal processing and outcome processing. Notifiers do not perform
any processing of messages during that first stage of "normal processing". They send
notifications during the second stage. The notification occurs after the processing of the
action pipeline, in the outcome processing phase. This means that you should be careful
when designing your action chain that you understand that if you place actions in a chain
subsequent to a notifier, those actions might be performed before the notifier.

The following notification targets (the names are very self-explanatory) are supported by
the JBoss ESB:

�� NotifyConsole: Prints the contents of the ESB message to the server log

�� NotifyFiles: Prints the message contents to a file or files

�� NotifySQLTable: Inserts the message contents into an existing database table

�� NotifyFTP: Prints the message contents to a file and then sends the file to a server
via FTP

�� NotifyQueues and NotifyTopics: Writes the message contents into a JMS message
and adds the JMS message to a specified JMS queue or topic

�� NotifyEmail: Sends the message contents in a mail message

Time for action – let's see how notifiers work
Let's see how notifiers work. Follow these steps:

1.	 Change your current directory to the quickstart's directory samples/
quickstarts/helloworld_file_notifier.

2.	 Deploy the quickstart using the ant deploy command.

Chapter 4

[145]

3.	 Before you run the quickstart, review the jboss-esb.xml file and see how the
message is routed to two different services—one which displays the message and
the other which notifies the console and a file.

4.	 You might notice that this quickstart has a jboss-esb-unfiltered.xml file. This
is because it contains a bit of ant build formatting to allow the ant script to insert
the absolute location of the quickstart directory in the jboss-esb.xml.

5.	 Run the quickstart using the ant runtest command.

6.	 Review the quickstart's output in the server.log file. Check the results.log file
for the contents of the message.

What just happened?
In this quickstart, the runtest target sends a message to a service which routes the
message to two different services. One of the services displays the message to System.out,
and the other one calls a notifier—which writes the message to the console and a results.
log file.

Business Process Management
This action group contains only one out-of-the-box action (org.jboss.soa.esb.
services.jbpm.actions.BpmProcessor), but that one action supports the JBoss
ESB-jBPM integration within JBoss ESB. This integration enables your services to make calls
to a jBPM process through the jBPM Command API. Of the commands in the command API,
the following (three) are available for use from ESB:

�� NewProcessInstanceCommand: This creates a new ProcessInstance using a
process definition that has already been deployed to jBPM. The process instance is
left in the start state so that tasks referenced by start node are executed.

�� StartProcessInstanceCommand: This is the same as
NewProcessInstanceCommand, except that the process instance that is created is
moved from the start position to the first node in the process graph.

�� CancelProcessInstanceCommand: As its name implies, this cancels a process instance.

However, this is only part of the JBoss ESB-jBPM integration. The integration also supports
the orchestration of services from jBPM processes. The appendix to this book includes
more details on JBoss ESB-jBPM integration, including the orchestration of services from
jBPM processes.

JBoss ESB Service Actions

[146]

Drools
JBoss ESB can use Drools as its rules processing engine through the
BusinessRulesProcessor action. The following is an example of the use of the
BusinessRulesProcessor in the business_rules_processor quickstart:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="BRP">
 <property name="ruleSet" value="MyBusinessRules.drl"/>
 <property name="ruleReload" value="true"/>
 <property name="object-paths">
 <object-path esb="body.orderHeader"/>
 <object-path esb="body.customer"/>
 </property>
</action>

The rules are contained in a .drl file, in this instance, MyBusinessRules.drl. The
object-paths listed here are MVEL (http://mvel.codehaus.org) expressions that
are used to extract objects from those locations in the message, in this instance, the
OrderHeader object from the body, and the Customer object from the body. Those
objects then can be used within your rules file.

The appendix to this book includes more details on JBoss ESB-Drools integration.

BPEL processes
JBoss ESB also supports integration with JBoss Riftsaw (http://www.jboss.org/
riftsaw). Riftsaw is an open source WS-BPEL 2.0 engine that is based on Apache ODE
(http://ode.apache.org/). With its Riftsaw integration, JBoss ESB services can directly
invoke a RiftSaw BPEL process by using the OOTB BPELInvoke action (org.jboss.soa.
esb.actions.bpel.BPELInvoke).

The JBoss ESB-Riftsaw integration uses web services to support a two-way integration:

�� Riftsaw works by exposing BPEL processes as web services. JBoss ESB actions can
invoke those Riftsaw BPEL processes by invoking the web service that Riftsaw
exposes, through its WSDL interface, and in the other direction.

�� A BPEL process can invoke a JBoss ESB service that is accessible as a web service. For
example, a service that is exposed by a proxied web service. In this case, the BPEL
process invokes the JBoss ESB service just as if it was any other web service.

Chapter 4

[147]

Note that Riftsaw and its JBoss ESB quickstarts and user documentation is
not installed by default with JBoss ESB. To make use of the JBoss ESB-Riftsaw
integration, you have to download and install Riftsaw from http://www.
jboss.org/riftsaw/downloads and install it into a JBoss AS installation.

The appendix to this book includes more details on the JBossESB - Riftsaw integration.

Pop quiz
1.	 When writing a custom action, what method handles a message?

a.	 That's really up to you. Hey, it's a "custom" action, isn't it?

b.	 The process method.

c.	 It's a trick question; custom actions can't handle messages.

2.	 How can you have messages routed to the correct services based on the information
in the messages?

a.	 You have to write custom actions to "break open" the messages.

b.	 The routes are all based on unique message ID properties.

c.	 With content-based routing.

3.	 What would you use to send an ESB-aware message outside the ESB?

a.	 Why would you want to do that? It's scary outside there!

b.	 With a notifier OOTB action.

c.	 This is the type of task that requires a custom action.

4.	 How do you convert content in a message from one form to another?

a.	 Dust off your old Perl books.

b.	 With a converter/transformer OOTB action.

c.	 With a notifier OOTB action.

5.	 Which OOTB action allows you to expose a web service?

a.	 The SOAPProcessor action—you write a web service that calls your web
service and exposes it through JBoss ESB listeners.

b.	 The WebserviceExpose-Amatic—it's an OOTB action and a kitchen
appliance.

c.	 You're on your own—you have to create a custom action for this task.

JBoss ESB Service Actions

[148]

Chapter bibliography
Also refer to JBoss in Action by Jamae, Javid, and Johnson, Peter (Manning, 2009).

http://docs.jboss.org/jbossesb/docs/4.9/javadoc

http://docs.jboss.org/jbossesb/docs/4.10/manuals/html/Programmers_
Guide/

http://www.enterpriseintegrationpatterns.com

http://www.dzone.com/links/outofthebox_soa_without_the_twinturbine_
engine.html

Summary
You've now been introduced to the JBoss ESB actions, the building blocks of services. You
should now know how to create your own custom actions, and how to make use of the
extensive set of OOTB actions that JBoss provides. When you start designing your services
and need to perform a specific action, the place to start is with the OOTB actions. You can
save yourself a lot of time, and a lot of trouble too, as the OOTB actions have been tested
and are fully documented.

http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
http://www.dzone.com/links/outofthebox_soa_without_the_twinturbine_engine.html
http://www.dzone.com/links/outofthebox_soa_without_the_twinturbine_engine.html

5
Message Delivery on the Service Bus

In previous chapters we introduced you to the important aspects of JBoss ESB
Services, such as:

�� The structure of ESB messages

�� How the configuration mechanism works

�� An explanation of the service pipeline

�� Service composition

�� Writing actions

In this chapter we will introduce the final part of the service puzzle, how services connect
into the ESB and consume messages. We will cover the following topics:

�� InVM transport and its interactions with transactional contexts

�� The difference between pass-by-value and pass-by-reference semantics and
its pitfalls

�� Lock-step delivery with InVM transports

�� JMS transports

�� SQL transports

�� Remote file system transports

�� Local file system transport

So let's get on with it...

Message Delivery on the Service Bus

[150]

The bus
At the core of JBoss ESB is the concept of a bus, an abstract representation of the transports
through which request messages will be delivered to the target services and their response
messages, if appropriate, returned to the service invoker. Each service 'plugs into the bus' by
defining the configuration for its associated transports within the jboss-esb.xml file, the
details of which will then be used to create and register Endpoint References (EPRs) within
the Service Registry.

The ServiceInvoker, used by clients to invoke ESB services, will query the service registry
to locate the EPRs associated with the service, choose one based on the current policy in
force, and send the message through the transport associated with the chosen EPR.

The Endpoint References are opaque structures which contain the
information necessary for the transport to identify a service endpoint
and, potentially, a specific conversation handled by that endpoint. No
assumptions should be made about these contents as they relate to the
specific transport and may change with different releases of JBoss ESB.

A graphical representation of the bus is as follows:

In the diagram we can see three services deployed into the bus, each of which is registering
two distinct endpoints. Each service endpoint represents a specific transport configuration
through which the services can be contacted.

The diagram also highlights three service invocations from two distinct clients. Each client is
isolated from the specifics of the transport configuration, through the registry and endpoint
references, allowing the invocations to be made using various transports and targeted at
multiple service destinations.

In keeping the client isolated from the details of the service and its invocation, the ESB is
encouraging a loosely coupled architecture through which the service and client can evolve
without having a direct impact on the other end of the invocation. Clients and services may
be located on disparate systems with these invocations occurring over multiple transport
types in a synchronous or asynchronous manner.

Chapter 5

[151]

With all this in mind, let's now take a look at how this appears in practice. We will walk you
through the configuration of JBoss Developer Studio and follow up with some examples
covering the service invocations.

Preparing JBoss Developer Studio
The examples in this chapter are based on a standard ESB application template that can be
found under the Chapter5 directory within the sample downloads. We will modify this
template application as we proceed through this chapter. Before we start, please make
sure that you have set up JBoss Developer Studio and the JBoss 5.1 Runtime as described
in Chapter 2.

Time for action – creating File Filters
In this section we will demonstrate the necessary steps for creating a File Filter within the
Server Runtime environment. This File Filter will allow us to discover those temporary files
which are created as part of the execution of the following examples, matching on the
pattern used for their naming. Follow these steps to create a File Filter:

1.	 Expand the JBoss 5.1 Runtime Servers and locate Filesets, right click on it and select
Create File Filter:

2.	 In the New File Filter dialog, enter Name as "FileProvider", Root Directory as
"server/${jboss_config}/tmp" and Includes as "*.sentToEsb":

Message Delivery on the Service Bus

[152]

3.	 Click OK and there should be an entry for FileProvider, as follows:

4.	 Right click on the FileProvider filter and click Edit File Filter:

5.	 This should open up the New File Filter dialog again. Click OK and the files should
get refreshed.

What just happened?
We have now created a File Filter that will allow us to discover the temporary files which
are created during execution of the examples. By repeating step 4 and step 5, after having
executed the examples, we will be able to refresh the list of files that are detected.

Time for action – opening the Chapter5 app
We will now take a look at the Chapter5 application and examine the configuration as it
currently stands:

1.	 Click on File menu and select Import.

2.	 Choose Existing Projects into workspace and select the folder where the book
samples have been extracted.

3.	 Choose the Chapter5 project and click on Finish.

4.	 Examine the jboss-esb.xml file and you will notice that the application defines
two services but only one provider configuration. The second service makes use of
the InVM transport, referenced through the use of the invmScope attribute on the
service. The file will have the following content:

Chapter 5

[153]

<providers>
 <fs-provider name="Chapter5FSprovider">

 <fs-bus busid="Chapter5FileChannel">
 <fs-message-filter directory="${jboss.server.temp.dir}"
 error-delete="false"
 error-directory="${jboss.server.temp.dir}"
 error-suffix=".IN_ERROR"
 input-suffix=".dat" post-delete="false"
 post-directory="${jboss.server.temp.dir}"
 post-suffix=".sentToEsb"
 work-suffix=".esbWorking"/>
 </fs-bus>
 </fs-provider>
</providers>

The list of services is as follows:

<services>
 <service category="Chapter5Sample"
 description="A template for Chapter5"
 name="Chapter5Service">
 <listeners>
 <fs-listener busidref="Chapter5FileChannel"
 name="Chapter5FSprovider"/>
 </listeners>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming"/>
 </action>
 <action class="org.jboss.soa.esb.actions.StaticRouter"
 name="RouteToB">
 <property name="destinations">
 <route-to service-category="Chapter5Sample"
 service-name="Chapter5BService"/>
 </property>
 </action>
 </actions>
 </service>
 <service category="Chapter5Sample"
 description="Chapter5 B Service"
 name="Chapter5BService"
 invmScope="GLOBAL">
 <actions mep="OneWay">

Message Delivery on the Service Bus

[154]

 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming to B"/>
 </action>
 </actions>
 </service>
</services>

The following is a screenshot of this configuration loaded in the JBoss ESB editor:

Transport providers
JBoss ESB provides a set of transport providers which can be used to communicate with ESB
services, otherwise known as ESB-aware endpoints. We have already seen some of these
transports in action, while working through the examples in Chapter 3; it is now time to
examine them in more detail.

Some of the ESB-aware transport providers can handle execution within a transactional
context, which means that any messages sent or received over these transports will be
managed by the encompassing transaction. These are the JMS, InVM, and SQL transports.
An additional transactional provider is the schedule provider, useful for triggering periodic
execution of a pipeline.

Chapter 5

[155]

It is important to be aware that sending a message over a transactional provider, if done
within the context of a transaction, has an effect on the delivery of messages; the message
will only be delivered on the transport once the transaction commits.

The File, FTP, FTPS, and SFTP transports are not transactionally aware, any message sent on
these transports will be sent immediately.

Let us now include a File and InVM transport in the Chapter5 application.

Time for action – using a File provider
First, let's execute the Chapter5 sample application that was opened at the beginning of
this chapter:

1.	 In JBoss Developer Studio, select the Chapter5 project and click Run | Run As | Run
on Server.

Message Delivery on the Service Bus

[156]

2.	 Click Next. A window with the project pre-configured to run on this server is shown.
Ensure that we have only our project Chapter5 selected on the right-hand side.

3.	 Click Finish.

4.	 Select the src folder, expand it till the SendEsbMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

A log will be printed in the server console showing the following output:

INFO [STDOUT] Incoming:
INFO [STDOUT] [Chapter 5 says Hello!].
INFO [STDOUT] Incoming to B:
INFO [STDOUT] [Chapter 5 says Hello!].

5.	 Now refresh the FileProvider Filter created at the beginning of this chapter by
selecting Edit File Filter and then clicking OK. You should now see the temporary file
which was created, as shown. The name of the file will be different but it will have
the extension .dat.sentToEsb.

Chapter 5

[157]

What just happened?
You created a File based bus provider that was used by ServiceInvoker to invoke the
Chapter5Service and also an InVM bus that was used by this service to invoke a second
Chapter5BService service. The temporary file was the result of the message being
serialized into the file system.

Have a go hero – examine the contents of a temp file
Go ahead and open the temporary file in a standard text editor to see the message contents.
Experiment with more messages and see how the temp files are created when you edit the
FileProvider filter.

InVM transport
The InVM transport allows messages to be sent within the same JVM instance but without
any I/O overhead, such as networking or writing to the disk, and can either be enabled for
every service deployed into the ESB or specified explicitly as part of the service declaration.
An example configuration would be:

<service category="Chapter5Sample" name="Chapter5Service"
 invmScope="GLOBAL">
 <actions mep="OneWay">
 <action name="action"
 class="org.jboss.soa.esb.actions.SystemPrintln"/>
 </actions>
</service>

The specification of the InVM transport can be in addition to the configuration of other
listeners, allowing communication with the service to occur over the InVM transport, if
within the same JVM, or over a remote transport.

Explicit declaration of the InVM transport for a service is handled through the invmScope
attribute on the <service> element. The attribute currently supports two scopes:

�� NONE: The service is not invokable over the InVM transport

�� GLOBAL: The service is invokable over the InVM transport from within the
same JVM.

The default InVM scope for any JBoss ESB service can also be set in the jbossesb-
properties.xml file through the core:jboss.esb.invm.scope.default config
property. If not defined, the default scope is NONE.

Message Delivery on the Service Bus

[158]

A service can choose to explicitly exclude the use of the InVM transport through the
invmScope attribute on the <service> element of their services configuration,
such as in the following example:

<service category="Chapter5Sample" name="Chapter5Service"
 invmScope="NONE">
</service>

The decision to enable the InVM transport for every service is specific to
the context of those services being deployed. It is usually recommended
to have the default scope set to NONE and explicitly declare support for
the InVM transport, when necessary, in the service level configuration
as this is more likely to avoid any confusion when the services are not
intended to be invoked over the InVM transport.

Transactions with InVM transport
The InVM transport can participate in transactions in a similar way to the other transactional
transports. The decision whether to enable the use of transactions can be an explicit
configuration or, if not specified, can be derived implicitly using the information in the
other configured listeners.

The transactional behavior will be implicitly enabled if there are any other transactional
transports configured on the service, either JMS, SQL, or scheduled, and one of those
transports has support for transactions.

Explicit configuration of the transactional behavior is handled by specifying the
invmTransacted attribute on the <service> element. This configuration will
always take precedence, irrespective of the existence of any other transactional
listener configured for the service.

One caveat to be aware of is that, although transactional, the InVM transport
does not support full ACID semantics, specifically due to the lack of a durable
store. Any message sent using an InVM transport would be lost, should the JVM
crash or halt through normal operation, and may lead to inconsistency should
the transaction involve multiple transactional resources such as accessing
databases.

If full ACID semantics are desired then it is recommended to use an alternative
transport such as JMS (Java Message Service) or SQL transports.

Chapter 5

[159]

Time for action – testing InVM transactions
Let us now see the real effect of the invmTransacted attribute on a service. Follow
these steps:

1.	 In JBoss Developer Studio, select Chapter5 and expand the esbcontent folder. You
will see there is another file called jboss-esb-transacted.xml:

2.	 Before we rename it, we need to remove the deployed application from the server.
Click on the Servers tab, right click on the Chapter5 application and click Remove.

3.	 Rename jboss-esb.xml to jboss-esb-first.xml.

4.	 Open jboss-esb-transacted.xml.

Message Delivery on the Service Bus

[160]

5.	 Select File | Save As, choose Chapter5/esbcontent/META-INF and enter the
File name as "jboss-esb.xml".

6.	 Click OK.

7.	 Now the esbcontent folder should look like this:

8.	 Select the Chapter5 project and click Run | Run As | Run on Server.

Chapter 5

[161]

9.	 Select the src folder, expand it till the SendEsbMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

You will notice that the following message is printed six times on the server console:

	 INFO [STDOUT] Body: Chapter 5 says Hello!

	 INFO [STDOUT] About to cause an exception

What just happened?
You created a transacted InVM listener and, when a runtime exception was thrown, the
transaction was rolled back resulting in the message being placed back in the InVM message
queue. This happened five times before the rollback discarded the message, sending it to
the DLQ.

Here is the configuration. Examine the highlighted section very carefully:

<providers>
 <jms-provider connection-factory="ConnectionFactory"
 name="JBossMQ">
 <jms-bus busid="Chapter5EsbChannel1">
 <jms-message-filter dest-name="queue/chapter5_Request_esb1"
 dest-type="QUEUE" transacted="false"/>
 </jms-bus>
 <jms-bus busid="Chapter5EsbChannel2">
 <jms-message-filter dest-name="queue/chapter5_Request_esb2"
 dest-type="QUEUE" transacted="true"/>
 </jms-bus>
 </jms-provider>
</providers>
<services>
 <service category="Chapter5Sample"
 description="A template for Chapter5"
 name="Chapter5Service">
 <listeners>
 <jms-listener busidref="Chapter5EsbChannel1"
 name="Chapter5provider"/>
 </listeners>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming"/>
 </action>
 <action class="org.jboss.soa.esb.actions.StaticRouter"
 name="RouteToB">
 <property name="destinations">

Message Delivery on the Service Bus

[162]

 <route-to service-category="Chapter5Sample"
 service-name="Chapter5BService"/>
 </property>
 </action>
 </actions>
 </service>
 <service category="Chapter5Sample" description="Chapter5 B Service"

 invmScope="GLOBAL" name="Chapter5BService"

 invmTransacted="true">

 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"
 name="processTransaction"/>
 <!-- Will throw an Exception. This should trigger the
 transaction to be rolledback and the message placed
 back onto the InVM queue. -->

 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"

 name="throwException" process="causesException"/>

 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Outgoing"/>
 </action>
 </actions>
 </service>
</services>

Have a go hero – non transacted InVM listener
Go ahead and remove the invmTransacted attribute and see how the application behaves.

InVM message optimization
One additional optimization available to the InVM transport is the ability to pass messages
using pass-by-reference semantics. This removes the necessity to serialize the message in
one service scope and deserialize it in the target service scope.

While this does increase the performance of communication over the InVM transport there
are caveats which must be understood:

The message parts accessed in the target service must share a ClassLoader scope with the
invoking context

�� Care must be taken not to modify the message within multiple services at the
same time

Chapter 5

[163]

The first issue usually arises when a message part is defined using different definitions of
a common class or interface, leading to ClassCastExceptions being raised when the
message part is accessed. This will normally occur when the two service scopes are each
deployed with a JAR containing the common class or interface. If this cannot be rectified
then the pass-by-reference semantics can be explicitly disabled, forcing the message to be
serialized in the originating context and deserialized in the target context.

The second issue occurs when the message reference has been passed by reference to
the target service yet the originating context continues to modify the contents of the
message. These modifications will be visible to the target service although, as a result of the
concurrent nature of the execution, it will always be uncertain as to when this will occur.
This leads to undesirable race conditions within the application, often hard to track down. If
it is not possible to modify the behavior of the services then disabling the pass-by-reference
semantics will cause a separate instance of the message to be delivered to the target service
as a consequence of the serialization/deserialization.

The pass-by-reference semantics are disabled by explicitly enabling pass-by-value on the
service, done by setting the inVMPassByValue property on the <service> element to
true. An example configuration would look like this:

<service category="Chapter5Sample" name="Chapter5Service"
 invmScope="GLOBAL">
 <property name="inVMPassByValue" value="true"/>
</service>

Have a go hero – examine the body address
Modify the custom action to print the body object's address using Integer.
toHexString(System.identityHashCode(message.getBody())) and see what gets
printed when it is printed both from Chapter5Service and Chapter5BService. You will
have to add MyAction to your service like this:

<service category="Chapter5Sample"
 description="A template for Chapter5"
 name="Chapter5Service">
 <listeners>
 <jms-listener busidref="Chapter5EsbChannel1"
 name="Chapter5provider"/>
 </listeners>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming"/>
 </action>

Message Delivery on the Service Bus

[164]

 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"

 name="printAddress"/>

 <action class="org.jboss.soa.esb.actions.StaticRouter"
 name="RouteToB">
 <property name="destinations">
 <route-to service-category="Chapter5Sample"
 service-name="Chapter5BService"/>
 </property>
 </action>
 </actions>
</service>
<service category="Chapter5Sample" description="Chapter5 B Service"
 invmScope="GLOBAL" name="Chapter5BService">
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"

 name="printAddress"/>

 </actions>
</service>

Your MyAction.java file would look like this:

public Message process(Message message) throws Exception {
 System.out.println("Body: " + Integer.toHexString(
 System.identityHashCode(message.getBody())));
 return message;
}

Does it change when inVMPassByValue is set to true?

Controlling InVM message delivery
One of the problems which may surface when using the InVM transport is that the target
service may become swamped by the incoming messages, with the message originators
being able to send messages to the service faster than the service can process them.

JBoss ESB includes a mechanism which enables the automatic throttling of the message
originator in order to prevent this scenario, known as lock-step delivery.

The "lock-step" delivery mechanism blocks the originator until the service is in a position to
consume the message or until a specified timeout has occurred, preventing the originator
from producing messages at a significantly faster rate than the consumer can process.

It should be noted that this is not a synchronous delivery mechanism, it is the delivery of the
message which releases the originator and not a response from the service.

Chapter 5

[165]

Lock-step delivery is disabled by default but can be explicitly enabled on a service using the
inVMLockStep and inVMLockStepTimeout properties.

�� inVMLockStep: Set this to true to enable lock-step delivery.

�� inVMLockStepTimeout: The maximum number of milliseconds that the originator
will be blocked while awaiting the consumption of the message by the target
service. If not specified then it will default to 10 seconds.

An example configuration with lock-step delivery enabled would look like this:

<service category="Chapter5Sample" name="Chapter5Service"
 invmScope="GLOBAL">
 <property name="inVMLockStep" value="true"/>
 <property name="inVMLockStepTimeout" value="4000"/>

</service>

When using InVM within the scope of a transaction, lock-step
delivery will be disabled. The reason for this is that the transactional
delivery of the message will not occur until the enclosing transaction
successfully commits.

Time for action – using lock-step delivery
Let us see the real effect of the invmLockStep attribute on a service. The following steps
will demonstrate how to use lock-step delivery:

1.	 In JBoss Developer Studio, select Chapter5 and expand the esbcontent folder. You
will see there is one more file called jboss-esb-lock-step.xml.

2.	 Have a look at this file. The relevant section for lock-step delivery has been
highlighted here:

<service category="Chapter5Sample"
 description="Chapter5 B Service"
 invmScope="GLOBAL" name="Chapter5BService">
 <property name="inVMLockStep" value="true"/>
 <property name="inVMLockStepTimeout" value="4000"/>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"
 name="lockStepAction" process="lockStepAction"/>
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming to B"/>
 </action>
 </actions>
</service>

Message Delivery on the Service Bus

[166]

3.	 Before we rename the file, we need to remove the deployed application from the
server. Click on the Servers tab and right click on the Chapter5 application and
click Remove.

4.	 Now right click on the file jboss-esb.xml and click Delete.

5.	 Click OK on the Confirm Delete dialog.

6.	 Open jboss-esb-lock-step.xml. Select File | Save As, choose Chapter5/
esbcontent/META-INF and enter the File name as "jboss-esb.xml".

7.	 Click OK.

8.	 Select the Chapter5 project and click Run | Run As | Run on Server.

9.	 Select the src folder, expand it till the SendLockStepMessage.java file is
displayed in the tree.

10.	 Examine the SendLockStepMessage.java file. You can see that it invokes the
Chapter5Service ten times:

public static void main(String[] args) throws Exception {
 System.setProperty(
 "javax.xml.registry.ConnectionFactoryClass",
 "org.apache.ws.scout.registry.ConnectionFactoryImpl");
 Message esbMessage =
 MessageFactory.getInstance().getMessage();
 esbMessage.getBody().add("Chapter 5 says Hello!");
 ServiceInvoker invoker = new ServiceInvoker(
 "Chapter5Sample", "Chapter5Service");
 for (int i = 0; i < 10; i++) {
 invoker.deliverAsync(esbMessage);
 }
}

Here is the listing of MyAction.java that highlights the code where the message
processing is delayed:

public class MyAction extends AbstractActionLifecycle {

 protected ConfigTree _config;

 public MyAction(ConfigTree config) {
 _config = config;
 }

 public Message process(Message message) throws Exception {
 System.out.println("Body: " + message.getBody().get());

Chapter 5

[167]

 return message;
 }

 public Message lockStepAction(Message message)
 throws Exception {
 Thread.sleep(2000);
 return message;
 }

 public Message printMessage(Message message)
 throws Exception {
 System.out.println("Routing to B");
 return message;
 }
}

11.	 With the SendLockStepMessage.java file selected, click Run | Run As |
Java Application.

The following is a sample output from the server console:

	 15:15:20,078 INFO [STDOUT] Routing to B

	 15:15:20,093 INFO [STDOUT] Routing to B

	 15:15:22,093 INFO [STDOUT] Incoming to B:

	 15:15:22,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:22,093 INFO [STDOUT] Routing to B

	 15:15:24,093 INFO [STDOUT] Incoming to B:

	 15:15:24,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:24,093 INFO [STDOUT] Routing to B

	 15:15:26,093 INFO [STDOUT] Incoming to B:

	 15:15:26,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:26,093 INFO [STDOUT] Routing to B

	 15:15:28,093 INFO [STDOUT] Incoming to B:

	 15:15:28,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:28,109 INFO [STDOUT] Routing to B

	 15:15:30,093 INFO [STDOUT] Incoming to B:

	 15:15:30,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:30,109 INFO [STDOUT] Routing to B

	 15:15:32,093 INFO [STDOUT] Incoming to B:

	 15:15:32,093 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:32,109 INFO [STDOUT] Routing to B

Message Delivery on the Service Bus

[168]

	 15:15:34,109 INFO [STDOUT] Incoming to B:

	 15:15:34,109 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:34,109 INFO [STDOUT] Routing to B

	 15:15:36,109 INFO [STDOUT] Incoming to B:

	 15:15:36,109 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:36,109 INFO [STDOUT] Routing to B

	 15:15:38,109 INFO [STDOUT] Incoming to B:

	 15:15:38,109 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:15:40,109 INFO [STDOUT] Incoming to B:

	 15:15:40,109 INFO [STDOUT] [Chapter 5 says Hello!].

What just happened?
You executed an application that uses the InVM lock-step delivery mechanism in its
configuration. Notice that the Routing to B message is displayed almost every two seconds,
the time our MyAction lockStepAction method sleeps. The delivery of the message from
Chapter5Service to Chapter5Bservice has been blocked until ChapterBService
is able to retrieve it.

InVM threads
In the previous section you noticed that the message was printed after every two seconds.
That is because the number of InVM threads that were available for processing was just one.
The number of listener threads associated with the InVM transport can be controlled by the
maxThreads property.

Time for action – increasing listener threads
Now let us add the maxThreads property to our InVM service and see how that affects
our output:

1.	 Modify the jboss-esb.xml file and add the maxThreads property with a
value of 5:

<service category="Chapter5Sample"
 description="Chapter5 B Service"
 invmScope="GLOBAL" name="Chapter5BService">
 <property name="maxThreads" value="5"/>
 <property name="inVMLockStep" value="true"/>
 <property name="inVMLockStepTimeout" value="4000"/>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.samples.chapter5.MyAction"

Chapter 5

[169]

 name="lockStepAction" process="lockStepAction"/>
 <action class="org.jboss.soa.esb.actions.SystemPrintln"
 name="printMessage">
 <property name="message" value="Incoming to B"/>
 </action>
 </actions>
</service>

2.	 Click on Save or press Ctrl + S.

3.	 If the server was still running then you might notice the application gets redeployed
once again by default. If this did not happen then deploy the application using
Run | Run As | Run on Server.

4.	 Select the src folder and expand it till the SendLockStepMessage.java file is
displayed in the tree. Now click Run | Run As | Java Application.

The following is the server console output from a sample run:

	 15:30:49,687 INFO [STDOUT] Routing to B

	 15:30:49,718 INFO [STDOUT] Routing to B

	 15:30:49,718 INFO [STDOUT] Routing to B

	 15:30:49,718 INFO [STDOUT] Routing to B

	 15:30:49,718 INFO [STDOUT] Routing to B

	 15:30:49,718 INFO [STDOUT] Routing to B

	 15:30:51,703 INFO [STDOUT] Incoming to B:

	 15:30:51,703 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:51,718 INFO [STDOUT] Incoming to B:

	 15:30:51,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:51,718 INFO [STDOUT] Routing to B

	 15:30:51,718 INFO [STDOUT] Incoming to B:

	 15:30:51,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:51,718 INFO [STDOUT] Routing to B

	 15:30:51,718 INFO [STDOUT] Incoming to B:

	 15:30:51,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:51,718 INFO [STDOUT] Routing to B

	 15:30:51,718 INFO [STDOUT] Incoming to B:

	 15:30:51,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:51,718 INFO [STDOUT] Routing to B

	 15:30:53,718 INFO [STDOUT] Incoming to B:

	 15:30:53,718 INFO [STDOUT] [Chapter 5 says Hello!].

Message Delivery on the Service Bus

[170]

	 15:30:53,718 INFO [STDOUT] Incoming to B:

	 15:30:53,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:53,718 INFO [STDOUT] Incoming to B:

	 15:30:53,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:53,718 INFO [STDOUT] Incoming to B:

	 15:30:53,718 INFO [STDOUT] [Chapter 5 says Hello!].

	 15:30:53,718 INFO [STDOUT] Incoming to B:

	 15:30:53,718 INFO [STDOUT] [Chapter 5 says Hello!].

What just happened?
You increased the InVM listener threads for our Chapter5Bservice from 1 to 5. Notice
that the Routing to B message is displayed five times initially and the sixth is blocked until
another listener thread becomes available. Although Chapter5Service picked up its sixth
message to route it to Chapter5Bservice it has been blocked and hence the seventh
message is picked up only after two seconds.

Have a go hero – threads and lock-step
Play around with different numbers of messages and maxThreads values and
examine how the output behaves. Go ahead and remove the invmLockStep and
inVMLockStepTimeout attributes and see what difference it produces in the output
of the server console.

Provider configurations
We have concentrated on the InVM transport in this chapter, the most interesting and
challenging provider to use, however JBoss ESB supports other transports for delivery of
messages to a service.

Each of the following sub-sections will briefly cover the specialized tags of some of those
providers, used when configuring the provider within the jboss-esb.xml file, and show
snippets of the relevant quickstarts to provide an idea of their configuration and use.

You are encouraged to try out each provider, using the JBoss ESB Editor from Eclipse, and
compare their behavior and capabilities with those of the InVM transport.

Chapter 5

[171]

JMS provider
A JMS provider can be used to define providers that are based on JMS queues and
topics. The transport-specific implementations are <jms-provider>, <jms-bus>,
<jms-listener>, and <jms-message-filter> with the specification of the
<jms-message-filter> being supported by both the <jms-bus> or <jms-listener>
elements. The <jms-provider> and <jms-bus> elements are used to specify the JMS
connection properties whereas the <jms-message-filter> element is used to specify
the JMS queue or topic and also the details of any JMS selector which is necessary to filter
the incoming messages.

A typical JMS provider configuration would look like this:

<jms-provider name="JBossMQ" connection-factory="ConnectionFactory">
 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_action_Request"/>
 </jms-bus>
 <jms-bus busid="quickstartEsbChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_action_esb"/>
 </jms-bus>
</jms-provider>

For more information on the Java Message Service API you can check out the
specification available at http://jcp.org/en/jsr/detail?id=914.

Have a go hero – JMS action quickstart
Have a look at the helloworld_action quickstart. This demonstrates the usage of the JMS
provider and QUEUE selection from HornetQ, JBoss Messaging, and JBoss MQ.

FTP provider
An FTP provider can be used to define providers that are based on remote file system
locations using a secure or unsecure connection. These transport specific implementations
are <ftp-provider>, <ftp-bus>, <ftp-listener>, and <ftp-message-filter>.
The <ftp-message-filter> can be added to either the <ftp-bus> or <ftp-listener>
elements. Where <ftp-provider> and <ftp-bus> specify the FTP access properties,
<ftp-message-filter> specifies the message/file selection and processing properties.

Message Delivery on the Service Bus

[172]

A typical FTP provider configuration would look like this:

<ftp-provider name="FTPprovider" hostname="@FTP_HOSTNAME@" >
 <ftp-bus busid="helloFTPChannel" >
 <ftp-message-filter username="@FTP_USERNAME@"
 password="@FTP_PASSWORD@"
 passive="false"
 directory="@FTP_DIRECTORY@"
 input-suffix=".dat"
 work-suffix=".esbWorking"
 post-delete="false"
 post-rename="true"
 post-suffix=".COMPLETE"
 error-delete="false"
 error-suffix=".HAS_ERROR"/>
 </ftp-bus>
</ftp-provider>

Have a go hero – the FTP action quickstart
Have a look at the helloworld_ftp_action quickstart. This demonstrates the usage of
FTP provider and FTP message queues.

JBoss ESB also supports the FTPS and SFTP protocols, however,
discussion of these configurations is beyond the scope of this book.

SQL provider
A SQL provider can be used to define providers that are based on database systems
using a secure or unsecure connection. These transport-specific implementations are
<sql-provider>, <sql-bus>, <sql-listener>, and <sql-message-filter>. The
<sql-message-filter> can be added to either the <sql-bus> or <sql-listener>
elements. Where the <sql-provider> and <sql-bus> specify the JDBC connection
properties, the <sql-message-filter> specifies the message/row selection and
processing properties.

A typical SQL provider configuration would look like this:

<sql-provider name="SQLprovider"
 url="jdbc:hsqldb:hsql://localhost:1704"
 driver="org.hsqldb.jdbcDriver"
 username="sa" password="">
 <sql-bus busid="helloSQLChannel" >
 <sql-message-filter tablename="GATEWAY_TABLE"

Chapter 5

[173]

 status-column="STATUS_COL"
 order-by="DATA_COLUMN"
 where-condition="DATA_COLUMN like 'data%'"
 message-column="message"
 message-id-column="UNIQUE_ID"
 insert-timestamp-column="TIMESTAMP_COL"/>
 </sql-bus>
</sql-provider>

Have a go hero – the SQL action quickstart
Have a look at the helloworld_sql_action quickstart. This demonstrates the usage of
the SQL provider and row selection from hsqldb tables.

File provider
A file provider can be used to define providers that are based on file systems. These
transport-specific implementations are <fs-provider>, <fs-bus>, <fs-listener>,
and <fs-message-filter>. The <fs-message-filter> can be added to either the
<fs-bus> or <fs-listener> elements. Where the <fs-provider> and <fs-bus>
specify the file system properties, the <fs-message-filter> specifies the message/file
selection and processing properties.

A typical file system provider configuration would look like this:

<fs-provider name="FSprovider1">
 <fs-bus busid="helloFileChannel" >
 <fs-message-filter directory="@INPUTDIR@"
 input-suffix=".dat"
 work-suffix=".esbWorking"
 post-delete="false"
 post-directory="@OUTPUTDIR@"
 post-suffix=".sentToEsb"
 error-delete="false"
 error-directory="@ERRORDIR@"
 error-suffix=".IN_ERROR"/>
 </fs-bus>
</fs-provider>

Have a go hero – file providers
Modify the sample at the beginning of this chapter to include file prefixes as needed for
processing. Examine how those files are processed and experiment with the various
settings depicted here.

Message Delivery on the Service Bus

[174]

Summary
In this chapter we have looked at most of the bus providers available for delivering ESB
messages to target services, focusing primarily on the InVM transport and its capabilities.

Having followed through this chapter you should now have a good understanding of:

�� How to use a file system provider

�� The InVM provider

�� The difference between pass-by-value and pass-by-reference

�� When to use the lock-step delivery mechanism

�� How threading affects the InVM transport

�� How the InVM transport works within a transactional context

�� Which provider to choose based on transactional needs

We also revisited the JMS provider, used in many examples throughout this book, and
introduced the configuration for the SQL and FTP providers.

Now that we've learned how to deliver messages to ESB services, let us look at how external
systems and transports can be integrated with JBoss ESB through the use of gateways—the
topic of the next chapter.

6
Gateways and Integrating with

External Clients

In previous chapters we have discussed the main concepts of the JBoss Enterprise
Service Bus, showing how services can be developed to expose functionality in a
loosely coupled manner.

We began the journey by defining the desirable characteristics of a service and
explaining why they are advantageous, covered the structure of the messages that
pass between the service consumers and service providers, explained how services
are addressed through the opaque endpoint references and how service actions,
combined with the action pipeline, its lifecycle and its events, are used to construct
these services.

By combining these services we are then able to create composite ESB applications
that can perform a multitude of tasks and solve many of our problems. Even with
these capabilities there still remains one area that we are yet to cover, an area
which can be argued is more important than the rest. This is the ability to support
the invocation of services from external clients.

Recall from our description of services at the beginning of Chapter 3 that one of their
key benefits is the ability to reuse functionality that is exposed by those services. This
capability is desirable for both internal clients (those which are aware of the ESB and
how to invoke services) and external clients (those which communicate with service
endpoints using different, often standards-based, protocols).

By supporting the invocation of ESB services from an external client we are also
enabling another silo of applications, namely those that involve the integration
of services which may already exist within the organization. This capability will
allow the ESB to act as a mediator between external services, augmenting their
invocations as and when necessary, with everything driven by the specific business
requirements which have been implemented within the ESB services.

Gateways and Integrating with External Clients

[176]

This chapter will cover the facilities within JBoss ESB which enable the support and
integration of external clients and will cover the following topics:

�� The purpose of a gateway and a notifier

�� The difference between synchronous and asynchronous invocations

�� How message composition works

�� The JMS gateway

�� The File gateway

�� The HTTP gateway

�� The Camel gateway

�� The FTP gateway

�� The UDP gateway

�� The JBoss Remoting gateway

�� The Groovy gateway

�� The SQL gateway

�� The JCA gateway

So let's get on with it...

What is a gateway and a notifier?
A gateway is a service endpoint through which an external client can talk to an ESB-aware
service using a protocol that is supported by the external client. It may be that this protocol
is based on a standard format, for example web service invocations over HTTP, or that
the format is specific to existing applications within an organization, perhaps sent over a
transport such as JMS. The gateway acts as a proxy between the two participants, adapting
requests from the external client into a message that can be sent over the ESB to the
target service.

Some of the gateways provided by JBoss ESB are based on a synchronous protocol, such as
HTTP, and are required to handle processing of both requests and responses using the same
connection. Other gateways support asynchronous protocols, such as sending messages over
JMS or through a file system, and are only required to adapt the incoming request.

In order to handle the responses for the asynchronous gateway it is necessary to make use of
another facility offered by JBoss ESB, the notifier. A notifier enables the sending of messages
from an ESB-aware service to an external service endpoint and can be considered the inverse
of the asynchronous gateway. A notifier not only handles responses, it can also be used to
send asynchronous notifications to any external service which can receive them.

Chapter 6

[177]

The behavior of the gateways and notifiers can be visualized as follows:

In the above diagram we are showing two different types of external invocations, a
synchronous invocation using the HTTP transport, and an asynchronous invocation using the
JMS transport. In both instances it is the gateways which are responsible for processing the
incoming request, constructing an ESB message and passing it into the ESB to be handled by
the target service(s). Where they differ is in the handling of the responses.

The JMS transport, by its nature, allows invocations to be made asynchronously. This allows
the gateway to complete its part in the processing of the current request and move on to the
next one arriving at the gateway. Any response to the client will come through a notifier, at a
later point in time.

The HTTP transport, being a synchronous transport by default, requires any response to be
sent back to the client using the same connection through which the request was received.
The HTTP gateway must block in these circumstances, waiting for the reply from the ESB
service before responding to the external client.

There is no requirement to use the same transport for receiving and
responding to asynchronous requests, it is possible to mix the transports
should it make sense to the application being developed.

How do we compose messages?
Every gateway must take an incoming request, in the native format, and convert it into a
message that can be sent over the ESB to the target service, but how is this done?

Gateways and Integrating with External Clients

[178]

Each gateway has a message composer associated with it, responsible for performing the
conversion from a native request to an ESB message and, if necessary, vice-versa. By default
it will use a composer appropriate for the supported transport, each composer implementing
the org.jboss.soa.esb.listeners.message.MessageComposer interface.

The important methods within the interface are:

public Message compose(T messagePayload)
 throws MessageDeliverException;

public Object decompose(Message message,
 T originalInputMessagePayload)
 throws MessageDeliverException;

The compose method is responsible for taking the incoming request and creating an ESB
message representing the payload, returning this to the gateway so that it can be sent to
the target ESB service.

The decompose method is responsible for taking the response, if it is necessary, and
returning a payload that can then be sent to the external client as a native response. The
decompose method also has access to the original request in case it contains information
that may be relevant when creating the response.

Simple composer example
The following code snippet shows a simplistic composer for the File gateway:

public class ExampleMessageComposer<T extends File>
 implements MessageComposer<T> {

 public void setConfiguration(final ConfigTree config)
 throws ConfigurationException {
 }

 public Message compose(final T inputFile)
 throws MessageDeliverException {
 final Message message =
 MessageFactory.getInstance().getMessage();
 final byte[] contents ;
 try {
 contents = FileUtil.readFile(inputFile) ;
 } catch (final IOException ioe) {
 throw new MessageDeliverException(
 "Failed to obtain contents", ioe) ;
 }
 message.getBody().add(contents) ;

Chapter 6

[179]

 return message;
 }

 public Object decompose(Message message, T inputFile)
 throws MessageDeliverException {
 return message.getBody().get() ;
 }
}

The gateway will invoke the compose method, passing in the File instance which identifies
the incoming request. The MessageComposer is then responsible for retrieving the contents
of this File and creating the message, initializing the content and properties of the message
as required.

When the gateway receives a response from the ESB service it will invoke the decompose
method in order to obtain the externalized response, passing in the response message
from the ESB service, and the File instance which identifies the original request. The
MessageComposer is then responsible for retrieving the necessary content from the ESB
response message and returning this to the gateway.

This MessageComposer can be applied to the gateway by specifying the composer-class
property on the listener, along with any other properties that may be required by the
composer. An example configuration for the MessageComposer could be:

<listeners>
 <fs-listener name="example" busidref="examplebus" is-gateway="true"
 schedule-frequency="2">
 <property name="composer-class" value="ExampleMessageComposer"/>
 ...
 </fs-listener>
</listeners>

It is beyond the scope of this book to cover message composition in any further detail, as the
default composers are sufficient for most needs, however it is important that their existence
is understood.

Now that we have an understanding of the gateway functionalities, let's get started with the
fun stuff.

Preparing JBoss Developer Studio
We will be using a standard ESB application template that can be found under the Chapter6
directory within the sample downloads. This consists of the bare-bone files necessary for
us to work through this chapter. Fire up JBoss Developer Studio and make sure JBoss 5.1
Runtime is setup. Refer to Chapter 2 on how to install JBoss Developer Studio.

Gateways and Integrating with External Clients

[180]

The JMS gateway
In many of the examples in previous chapters we have used the JMS gateway without
calling attention to it. This gateway, as the name suggests, handles the processing of
messages which are carried over implementations of the Java Messaging Service,
and is an asynchronous gateway.

Since the configuration of the JMS provider and listeners have been covered in the previous
chapter, let us get into the action straight away.

Time for action – using the JMS gateway
We will now run the Chapter6 sample application that demonstrates the usage of the JMS
gateway. Follow these steps:

1.	 In JBoss Developer Studio, select the Chapter6 project and click Run | Run As | Run
on Server.

2.	 Click Next. A window with the project pre-configured to run on this server is shown.
Ensure that we have only our project Chapter6 selected on the right-hand side:

Chapter 6

[181]

3.	 Click Finish.

4.	 Select the src folder, expand it till the SendJMSMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

The console will display the output as shown:

	 JMS Gateway says Hello!

What just happened?
We sent a message via the JMS gateway listener and our response was received,
asynchronously, through a separate JMS queue. Configuring the gateway was as
simple as declaring the type of the listener to be a gateway:

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
</listeners>

Since we intended to send a response to the external client, we have also included a notifier
action, responsible for sending the asynchronous response to a separate JMS queue:

<action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyQueues" >
 <queue jndiName="queue/chapter6_Request_gw_reply"/>
 </target>
 </NotificationList>
 </property>
</action>

Also notice how the client code reads the reply queue as shown:

...
replyQueue = (Queue) iniCtx.lookup("queue/chapter6_Request_gw_reply");
...
public void readReply() throws JMSException {
 QueueReceiver receiver = session.createReceiver(replyQueue);
 Message msg = receiver.receive();
 if (msg instanceof TextMessage) {
 System.out.println(((TextMessage) msg).getText());
 }
}

Gateways and Integrating with External Clients

[182]

The File gateway
The File gateway uses a provider that we have used in previous chapters, although we have
never seen it being used as a gateway. The processing of the requests is asynchronous with
any response being sent through the notifiers.

Most of the configuration parameters have already been set up for you in the sample, so let
us jump in and show you how it works.

Time for action – using the File gateway
We will now run the Chapter6 sample application that demonstrates the usage of the
File gateway:

1.	 In JBoss Developer Studio, open the jboss-esb.xml file in Source mode.

2.	 Append the following listener definition to the <listeners> tag:

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
 <fs-listener busidref="chapter6FileChannel" is-gateway="true"
 name="Chapter6FileGwListener"/>
</listeners>

3.	 Replace the following action:

<action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyQueues" >
 <queue jndiName="queue/chapter6_Request_gw_reply"/>
 </target>
 </NotificationList>
 </property>
</action>

Chapter 6

[183]

With this action:

<action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyFiles">
 <file append="false" URI="${java.io.tmpdir}/results.log"/>
 </target>
 </NotificationList>
 </property>
</action>

4.	 Click the Save button and the modified application should now be deployed in
the server.

5.	 Select the src folder and expand it till the SendFileMessage.java file is
displayed in the tree. Now click Run | Run As | Java Application.

The console will display the output as follows:

	 File Gateway says Hello!

What just happened?
The File gateway picked up an incoming message through a file on the filesystem, sent it
through the ESB and created a response in a separate file with the help of a notifier.

Let's now take a look at the client code, concentrating on the sections which are responsible
for creating the original request:

public static void main(String[] args) throws Exception {
 String tmpDir = System.getProperty("java.io.tmpdir");
 File file = new File(tmpDir, "file.msg");
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(
 new FileOutputStream(file)));
 writer.write("Hello File Gateway!");
 writer.close();
 Thread.sleep(300);
 File result = new File(tmpDir, "results.log");
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(result)));
 String line = null;
 while((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 reader.close();
}

Gateways and Integrating with External Clients

[184]

The HTTP gateway
The HTTP gateway is an example of a gateway that processes both the request and response
in a synchronous manner, waiting for a reply from the target ESB service before sending
back the response, to the external client, using the same connection as the incoming
request. The MessageComposer is responsible for handling the transformation of the
messages in both directions.

A minimal configuration is as follows:

<service category="Chapter6Sample"
 description="A template for Chapter6"
 name="Chapter6Service">
 <listeners>
 <http-gateway name="Http"/>
 </listeners>

This code will expose an HTTP endpoint at http://<host>:<port>/<deployment.
esb>/http/Chapter6Sample/Chapter6Service where host and port are the
default values of the web server, typically localhost and 8080.

Here is a complete list of configuration options that can be used with this listener:

<http-gateway name="Http" urlPattern="/*">
 <property name="allowedPorts" value="8080,8081"/>
 <property name="payloadAs" value="STRING"/>
 <property name="synchronousTimeout" value="30000"/>
</http-gateway>

The urlPattern attribute will override the default URL value used by the ESB, for example
the previous attribute will result in the gateway being mapped to http://<host>:<port>/
<deployment.esb>/http/*, in other words, any location which starts with the above URL
('*' not included).

If the web server has been configured to expose web deployments on multiple ports then
the allowedPorts attribute can be used to specify which ports are allowed to expose
the gateway. For example with the previous urlPattern and allowedPorts our HTTP
endpoint will now be exposed through the following endpoints, assuming that the web
server is configured to handle requests on each:

http://<host>:8080/<.esbname>/http
http://<host>:8081/<.esbname>/http

The behavior of the gateway is synchronous by default, causing the client to block until a
response is received. The gateway will wait for a response from the target ESB service, until
one has been received or until a specified timeout has been exceeded. This timeout value
can be configured through the synchronousTimeout property, which by default is 30,000
milliseconds or 30 seconds.

Chapter 6

[185]

If asynchronous behavior is required then it can be configured as follows:

<http-gateway name="Http">
 <asyncResponse statusCode="202">

 <payload classpathResource="/202-static-response.xml"
 content-type="text/xml"
 characterEncoding="UTF-8" />
 </asyncResponse>
</http-gateway>

The statusCode attribute and payload configuration are optional, by default the gateway
will respond to an asynchronous request with a status code of 200 (OK) and a zero length
payload, in which case all that is required is to specify an empty asyncResponse element
as follows.

<http-gateway name="Http">
 <asyncResponse/>

</http-gateway>

Time for action – using the HTTP gateway
We will now run the Chapter6 sample application that demonstrates the use of the
HTTP gateway:

1.	 In JBoss Developer Studio, open the jboss-esb.xml file in Source mode.

2.	 Append the following listener definition to the <listeners> tag.

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
 <http-gateway busidref="chapter6HttpGateway"
 name="Chapter6HttpGwListener"/>
</listeners>

3.	 Remove the following action:

<action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyFiles">
 <file append="false" URI="${java.io.tmpdir}/results.log"/>

Gateways and Integrating with External Clients

[186]

 </target>
 </NotificationList>
 </property>
</action>

4.	 Click the Save button and the modified application should now be deployed in
the server.

5.	 Select the src folder and expand it till the SendHttpMessage.java file is
displayed in the tree. Now click Run | Run As | Java Application.

The console will display the following:

	 Http Gateway says Hello!

What just happened?
We sent a message via the HTTP gateway listener and received a synchronous response, on
the same connection which transferred the request.

Here is the listing of the client code for reference:

public static void main(String[] args) throws Exception {
 String serverURL = "http://localhost:8080/Chapter6/http/
 Chapter6Sample/Chapter6Service";

 HttpURLConnection connection =
 (HttpURLConnection)new URL(serverURL).openConnection();
 connection.setRequestMethod("POST");
 connection.setDoOutput(true);
 connection.setDoInput(true);
 connection.connect();
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 connection.getOutputStream()));
 out.println("Hello Http Gateway!");

 out.close();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);

 }
 in.close();
}

Chapter 6

[187]

Have a go hero – using asynchronous behavior
Go ahead and modify the listener to add asynchronous behavior. Are you able to send a GET
request now? What status code does it return by default?

The HTTP bus and HTTP provider
Aspects of the HTTP configuration can be shared between multiple gateways, specified
through the <http-provider> or <http-bus> elements.

The <http-provider> element exposes the shared configuration of the HTTP exception
mappings. Using the <exception> element specifies the translations from exceptions into
the appropriate HTTP response.

The <http-bus> element exposes the shared configuration of the HTTP methods that are
supported using the <protected-methods> element, the security roles required to access
the endpoint using the <allowed-roles> element, and any requirement to secure the
HTTP transport using the transportGuarantee attribute.

A typical HTTP provider configuration would look like this:

<http-provider name="http">
 <http-bus busid="chapter6HttpGateway"
 transportGuarantee="CONFIDENTIAL">
 <allowed-roles>
 <role name="friend">
 </allowed-roles>
 <protected-methods>
 <method name="GET">
 <method name="PUT">
 <method name="POST">
 <method name="DELETE">
 </protected-methods>
 </http-bus>
 <exception mappingsFile="/http-exception-mappings.properties"/>
</http-provider>

Note that the configuration stipulates a requirement to use a CONFIDENTIAL transport, in
other words SSL, and requires the user to authenticate using credentials that include the
friend role.

The exception element can also be configured directly as shown in the following:

<exception>
 <mapping class="com.acme.AcmeException" status="503"/>
</exception>

Gateways and Integrating with External Clients

[188]

Details from the original request are stored within the ESB message, represented
by the HttpRequest class, and can be retrieved using the convenience
method org.jboss.soa.esb.http.HttpRequest.getRequest().
This class provides access to the properties which describe the incoming HTTP
request.

Have a go hero – configuring the HTTP provider
Go ahead and secure the http-provider in our sample. Try using exception mapping with
HTTP status codes both globally in the http-provider and also in http-gateway.

The Camel gateway
The Camel gateway is, by default, a synchronous gateway which allows the ESB to take
advantage of the transports provided by the Apache Camel project (http://camel.
apache.org/). This transport exposes its configuration by using the <camel-provider>,
<camel-bus>, and <camel-gateway> elements.

The gateway allows one or more transports to be defined using the Camel URI notification,
either as a from-uri attribute or a set of nested <from> elements. It is also possible to
override the timeout for synchronous invocations, using the timeout attribute, or declare
the gateway to be asynchronous by specifying the async attribute.

These configurations can be specified on both the <camel-bus> and <camel-gateway>
elements, allowing a deployment to share a configuration where appropriate.

A typical Camel provider configuration would look like this:

<camel-provider name="CamelProvider">
 <camel-bus busid="chapter6CamelChannel">
 <from uri="file://@INPUTDIR1@?delete=true"/>
 <from uri="http://localhost:9889"/>
 <from uri="jms://MyQueue?connectionFactory=ConnectionFactory"/>
 </camel-bus>
</camel-provider>

With the Camel gateway the configuration looks as follows:

<camel-gateway busidref="chapter6CamelChannel"
 name="Chapter6CamelGwListener"/>

Chapter 6

[189]

It is also possible to configure the gateway without a reference to the bus, specifying the
attributes or elements directly on the <camel-gateway> element as shown:

<camel-gateway name="Chapter6CamelGwListener"
 from-uri="file://@INPUTDIR1@?delete=true"/>

Have a go hero – run the Camel gateway quickstart
Have a look at the camel_helloworld quickstart. This demonstrates how to use the Camel
gateway using the file:// protocol.

The FTP gateway
The FTP gateway is an asynchronous provider that has been covered in a number of the
previous exercises, albeit as an ESB-aware listener rather than as a gateway. In order to use
this provider as a gateway it is simply a matter of setting the is-gateway attribute on the
listener tag to true, as shown:

<ftp-listener busidref="ftpChannel" name="ftpGateway"
 is-gateway="true"/>

In addition to supporting the FTP protocol, this gateway can also target FTPS, the FTP
protocol over a connection secured using SSL, and SFTP, a secure file transfer protocol which
runs over SSH.

Due to the requirement for running against an external server, whether FTP, FTPS, or SFTP,
and the multitude of configuration options available to each protocol, we are leaving the
exploration of this gateway as an exercise for the reader.

The ESB Programmers Guide goes into detail about the options available for each protocol
supported by this gateway.

Have a go hero – running the FTP gateway quickstart
Have a look at the helloworld_ftp_action quickstart. This demonstrates the usage
of the FTP gateway. You will have to change the configuration so that it refers to an FTP
server which is present within your organization. Please see the readme.txt file under
this quickstart folder for more information.

The UDP gateway
The UDP gateway is an asynchronous gateway which can process messages received over
the UDP protocol, a connectionless protocol based on top of IP, and is based on the Apache
MINA project.

Gateways and Integrating with External Clients

[190]

The gateway is configured through the <udp-listener> element and supports the
following attributes:

�� Host: for specifying the name of the local network interface

�� Port: the port number through which the communication will occur

�� handlerClass: the name of an optional handler class used to adapt the incoming
MINA events onto the bus

The default behavior of the gateway is to consume the incoming UDP packet and create an
ESB message with its payload being a byte array containing the bytes which represent the
incoming packet.

A typical configuration for this gateway is shown:

<udp-listener name="Chapter6UDPListener" host="localhost"
 port="9999"/>

Time for action – using the UDP gateway
Let us now run the sample application that demonstrates the usage of the UDP gateway:

1.	 In JBoss Developer Studio, open the jboss-esb.xml file in Source mode.

2.	 Add the following listener to the listeners list:

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
 <udp-listener name="Chapter6UDPListener" host="localhost"
 port="9999" is-gateway="true"/>
</listeners>

3.	 Append the highlighted action definition to the <actions> tag:

<actions mep="RequestResponse">
 <action class="org.jboss.soa.esb.samples.chapter6.MyAction"
 name="MyAction"/>
 <action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyTcp" >
 <destination URI="tcp://localhost:8899" />

Chapter 6

[191]

 </target>
 </NotificationList>
 </property>
 </action>
</actions>

4.	 Click the Save button and the modified application should now be deployed in
the server.

5.	 Select the src folder and expand it till the SendUDPMessage.java file is displayed
in the tree. Now click Run | Run As | Java Application.

The console will display the output as:

	 UDP Gateway says Hello!

What just happened?
We sent a message via the UDP gateway listener and we received the response via a TCP
socket. Here is the listing of the client code for reference:

public static void main(String[] args) throws Exception {
 ResponseReceiver receiver = new ResponseReceiver();
 new Thread(receiver).start();

 DatagramSocket socket = new DatagramSocket();
 socket.setSoTimeout(3000);
 String msg = "Hello UDP Gateway!";
 DatagramPacket packet = new DatagramPacket(msg.getBytes(),
 msg.getBytes().length);
 InetAddress address = InetAddress.getByName("localhost");
 packet.setAddress(address);
 packet.setPort(9999);
 socket.send(packet);
 socket.close();
}

private static class ResponseReceiver implements Runnable {

 public void run() {
 try {
 ServerSocket receiveSocket = new ServerSocket(8899);
 Socket clientSocket = receiveSocket.accept();
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));
 System.out.println(reader.readLine());
 reader.close();
 clientSocket.close();
 receiveSocket.close();

Gateways and Integrating with External Clients

[192]

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The JBoss Remoting gateway
The JBoss Remoting gateway is, by default, a synchronous gateway based on the JBoss
Remoting project (http://www.jboss.org/jbossremoting). The gateway processes
messages which are delivered over a number of the JBoss Remoting protocols, specifically
HTTP, HTTPS, socket, and socketssl. This transport exposes its configuration using the
<jbr-provider>, <jbr-bus>, and <jbr-listener> elements.

The <jbr-provider> element supports the configuration of two attributes, the host
attribute specifying the name of the local network interface through which the messages will
arrive and the protocol attribute which declares the remoting protocol for the endpoint.

The <jbr-bus> element supports the configuration of the port attribute, declaring the
port number associated with the endpoint.

In addition to the standard configuration options it is possible to include other properties
on any of the previous jbr elements, by specifying nested property elements. These
properties include:

�� serviceInvokerTimeout: used to specify the maximum time before which a
response is expected

�� synchronous: used to define the endpoint as asynchronous when false

�� asyncResponse: used to define a resource containing the contents used as the
asynchronous response

�� composer-class: used to override the default composer

Sometimes JBoss Remoting requires an additional configuration which is not covered by
these properties, something specific to the connector. If additional properties are required
then they can be added into the service configuration by declaring the property using a
name prefixed by jbr-.

A typical JBR provider configuration would look like this:

<jbr-provider name="JBRprovider"
 protocol="socket" host="localhost">
 <property name="serviceInvokerTimeout" value="20000"/>
 <jbr-bus busid="chapter6JBRChannel" port="8081"/>
</jbr-provider>

Chapter 6

[193]

Time for action – using the JBR gateway
Let us now run the Chapter6 sample application that demonstrates the usage of the
JBR gateway:

1.	 In JBoss Developer Studio, open the jboss-esb.xml file in Source mode.

2.	 Add the following provider to the providers list:

<jbr-provider name="JBRprovider"
 protocol="htp" host="localhost">
 <property name="serviceInvokerTimeout" value="20000"/>
 <jbr-bus busid="chapter6JBRChannel" port="9888"/>
</jbr-provider>

3.	 Append the following listener definition to the <listeners> tag.

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
 <jbr-listener busidref="chapter6JBRChannel"
 name="Chapter6JBRGwListener" is-gateway="true"/>
</listeners>

4.	 Click the Save button and the modified application should now be deployed in
the server.

5.	 Select the src folder and expand it till the SendJBRMessage.java file is displayed
in the tree. Now click Run | Run As | Java Application.

6.	 The console will display the output as shown:

	 JBoss Remoting Gateway says Hello!

What just happened?
We sent a message via the JBR gateway listener and we received the response
synchronously. Here is the listing of the client code for reference:

public static void main(String[] args) throws Exception {
 String serverURL = "http://localhost:9888";

 HttpURLConnection connection =
 (HttpURLConnection)new URL(serverURL).openConnection();
 connection.setRequestMethod("POST");
 connection.setDoOutput(true);

Gateways and Integrating with External Clients

[194]

 connection.setDoInput(true);
 connection.connect();
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 connection.getOutputStream()));
 out.println("Hello JBoss Remoting Gateway!");

 out.close();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);

 }
 in.close();
}

Have a go hero – using asynchronous JBR
Go ahead and modify the listener to add asynchronous behavior. Are you able to send a GET
request now? What status code and response does it return by default?

The Groovy gateway
This gateway allows JBoss ESB services to integrate a Groovy script (http://groovy.
codehaus.org/) and use it to drive messages into the bus. This powerful dynamic nature
of the script allows you to integrate any supported type of external client.

The only configuration supported by this gateway is through the <groovy-listener>
element which has a single attribute, script, containing the location of the script
to execute.

The gateway creates three variables which can be accessed from within the script. The
variables are:

�� config: references the configuration passed to the gateway

�� gateway and listener: both reference the gateway instance

A typical configuration for this gateway is shown below:

<groovy-listener name="Chapter6GroovyListener" script="mygroovyscript"
is-gateway="true"/>

Chapter 6

[195]

Have a go hero – using Groovy scripts
The groovy_gateway quickstart demonstrates the usage of a Groovy script where a Swing
form is displayed to collect the message that is passed on to the ESB. Have a look at the
usage of ServiceInvoker inside MessageInjectionConsole.groovy.

The SQL gateway
This is another example of an asynchronous gateway that has been covered in previous
chapters. Here we will see it being used as a gateway.

Time for action – using the SQL gateway
We will now run the Chapter6 sample application that demonstrates the usage of the
SQL gateway:

1.	 In JBoss Developer Studio, stop the runtime if it is already running.

2.	 Open the deployment.xml file and uncomment the following highlighted section:

<jbossesb-deployment>
 <depends>
 jboss.esb.book.samples.destination:service=Queue,
 name=chapter6_Request_esb
 </depends>
 <depends>
 jboss.esb.book.samples.destination:service=Queue,
 name=chapter6_Request_esb_reply
 </depends>
 <depends>
 jboss.esb.book.samples.destination:service=Queue,
 name=chapter6_Request_gw
 </depends>
 <depends>
 jboss.esb.book.samples.destination:service=Queue,
 name=chapter6_Request_gw_reply
 </depends>
 <depends>
 jboss.esb.book.samples.database:
 service=Chapter6SqlDatabaseInitializer
 </depends>
</jbossesb-deployment>

Gateways and Integrating with External Clients

[196]

3.	 Rename the chapter6-ds.xml.bak file to chapter6-ds.xml. Also, rename the
jbossesb-service.xml.bak file to jbossesb-service.xml.

4.	 Start the server runtime.

5.	 Open the jboss-esb.xml file in Source mode.

6.	 Append the following listener definition to the <listeners> tag:

<listeners>
 <jms-listener busidref="chapter6ESBChannel"
 name="Chapter6ESBListener"/>
 <jms-listener busidref="chapter6GwChannel" is-gateway="true"
 name="Chapter6GwListener"/>
 <sql-listener busidref="chapter6SQLChannel" is-gateway="true"
 name="Chapter6SQLGwListener"/>
</listeners>

7.	 Add the following provider to the providers list:

<sql-provider name="SQLprovider"
 url="jdbc:hsqldb:hsql://localhost:1704"
 driver="org.hsqldb.jdbcDriver"
 username="sa" password="">
 <sql-bus busid="chapter6SQLChannel">
 <sql-message-filter tablename="GATEWAY_TABLE"
 order-by="GWDATA"
 message-column="message"
 message-id-column="UNIQUE_ID"
 status-column="GWSTATUS"/>
 </sql-bus>
</sql-provider>

8.	 Add the following notifier action:

<action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK"/>
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifySqlTable"
 driver-class="org.hsqldb.jdbcDriver"
 connection-url="jdbc:hsqldb:hsql://localhost:1704"
 user-name="sa"
 password=""
 table="gateway_table"
 dataColumn="gwdata">

Chapter 6

[197]

 <column name="gwstatus" value="R"/>
 </target>
 </NotificationList>
 </property>
</action>

9.	 Click the Save button and the modified application should now be deployed in
the server.

10.	 Select the src folder and expand it till the SendSQLMessage.java file is displayed
in the tree. Now click Run | Run As | Java Application.

11.	 The console will display the output as shown:

	 SQL Gateway says Hello!

What just happened?
We sent a message via a database table using the SQL gateway listener and our response was
received to the same table with the help of a notifier. Have a look at the client code. Here is
part of the listing for your understanding:

public static void main(String[] args) throws Exception {
 Class.forName("org.hsqldb.jdbcDriver");
 Connection connection = DriverManager.getConnection(
 "jdbc:hsqldb:hsql://localhost:1704",
 "sa", "");
 Statement stmt = connection.createStatement();
 stmt.executeUpdate(
 "insert into gateway_table(gwdata, gwstatus) values(
 'Hello SQL Gateway!','P')");
 stmt.close();
 connection.commit();
 connection.close();
 Thread.sleep(3000);
 connection = DriverManager.getConnection(
 "jdbc:hsqldb:hsql://localhost:1704", "sa", "");
 stmt = connection.createStatement();
 ResultSet results = stmt.executeQuery(
 "select gwdata from gateway_table where gwstatus like 'R%'");
 while (results.next()) {
 System.out.println(results.getString("gwdata"));
 }
 stmt.executeUpdate(
 "delete from gateway_table where gwstatus like 'R%'");
 connection.commit();
 connection.close();
}

Gateways and Integrating with External Clients

[198]

There are a few more files that were used in this example, such as jbossesb-service.
xml, create.sql, and chapter6-ds.xml. The service in jbossesb-service.xml
creates the SQL table during deployment while the chapter6-ds.xml creates
the datasource used to reference the database where the table will reside.

The JCA gateway
J2EE application servers incorporate a standard framework for integrating Enterprise
Information Servers with applications, called the J2EE Connection Architecture (JCA). JBoss
ESB provides two gateways which integrate with this technology, the JMS/JCA gateway, and
the generic JCA gateway.

The JCA framework supports a mechanism which allows a resource adapter to push
messages concurrently to a registered listener, a process called message inflow in JCA
terminology, with the type of message being specific to the Resource Adapter and
its purpose.

The most common message type is JMS and, for that reason, JBoss ESB provides a specialized
gateway to handle this use case. This gateway supports the configuration of the standard
JMS gateway while allowing the JCA resource adapter specific configuration to be included.

Enabling the JMS/JCA gateway is simply a matter of modifying the configuration of the
JMS gateway and changing the provider name from <jms-provider> to <jms-jca-
provider>. The JMS/JCA gateway will then, by default, create an activation specification for
the jms-ra JCA provider, although alternative JCA providers can also be used by specifying
the name of their Resource Adapter deployment in the adapter attribute.

Have a go hero – using the JMS/JCA gateway
The jms_transacted quickstart demonstrates how to use the JMS/JCA provider as
both a gateway and a listener for an ESB service. Run through the example and compare
the configuration with that of the JMS provider, paying particular attention to the
<activation-config> element which allows the ESB to specify properties to be
applied directly to the activation specification of the JCA provider.

JBoss ESB also provides a gateway for processing message inflow from generic JCA resource
adapters, allowing the ESB to handle any message types supported by the associated
adapter. One example of this capability would be the processing of e-mails, where an Email
Resource Adapter would push the message contents into the ESB through the JCA gateway.

Any discussion of this adapter is beyond the scope of this book as its configuration is
tied very closely to the JCA Resource Adapter being used to inflow the messages. It is,
however, important that its existence be known so that it can be explored should such a
requirement arise.

Chapter 6

[199]

Summary
In this chapter we have spent a lot of time covering gateways and their role in integrating
external clients with the ESB. Specifically, we covered:

�� Gateways and notifiers and their purpose in integrating external clients

�� The difference between synchronous and asynchronous gateways

�� The mechanism used to support composition when handling external messages

�� Configuration and use of the JMS gateway

�� Reintroducing the File gateway

�� Briefly covered the FTP gateway and its associated protocols, FTPS and SFTP

�� Configuration and use of the HTTP gateway

�� Configuration and use of the UDP gateway

�� Configuration and use of the JBoss Remoting gateway

�� Configuration and use of the Camel gateway

�� Configuration and use of the Groovy gateway

�� Configuration and use of the SQL gateway

In many of these sections we have only touched the surface of what is possible, giving a
flavor of the gateway capabilities with the hope that this will encourage further exploration.

Gateways play an important part in extending the reach of the Enterprise Service Bus, allowing
the ESB to provide services which are reachable from external clients and, as a consequence,
allowing it to intercept and augment communication between existing services.

Now that we've given a broad introduction to gateways we are ready to move on to our
next topic and learn what part the registry plays within the JBoss ESB—the topic of the
next chapter.

7
How ESB Uses the Registry to

Keep Track of Services

When you work in software engineering, you spend a lot of your time looking
for new ways to solve problems. It's often the case, however, that we use
similar approaches to solve different problems. One type of problem that you
frequently face is locating "stuff".

When the scale of human population reached the level where it was impossible
to keep track of where individuals lived, the notion of an "address" was
invented. When computer networking was invented, a similar problem was
solved through IP (Internet Protocol) addresses. But, since human beings have
a hard time remembering numeric addresses, DNS was invented to give us
a way to "map" these numeric addresses to a hierarchical system of
mnemonic names.

OK. That's all very interesting, but what does all this have to do with JBoss ESB?

Remember how we described services as being "plugged into" the ESB at the service
endpoints? In order for the ESB to be able to deploy, undeploy, manage, and route messages
to services over the ESB, the ESB needs a way to find the services' endpoints at runtime. How
does JBoss ESB do this? By keeping track of service communication channels, or "Endpoint
References" (EPRs) in a registry.

How ESB Uses the Registry to Keep Track of Services

[202]

In this chapter, you'll learn about how:

�� JBoss ESB makes use of a registry to keep track of services

�� Services can be published to and queried in the registry

�� Your client code can search for services in the registry

�� You can design a federated registry usage model to give you more control over who
can access your services

�� To maintain and troubleshoot your registry

Let's begin by looking at just what a service registry is, how it works, and why it's a
good thing.

The registry—what, how, and why?
The classic method of illustrating the operation of a registry is with a triangle-shaped
diagram of a client (or "service requester"), a server (or a "service provider"), and a service
registry. If you Google this set of words: "uddi register discovery" you'll find many variations
of this simple diagram:

In this triangle, there are three players and three actions. The actions are:

1.	 The server registers (publishes) its services in the registry.

2.	 The client looks for (inquires) the service in the registry.

3.	 The client, once it has retrieved the service location from the registry, invokes
the service.

Chapter 7

[203]

Another classic way of describing a registry is to compare it to a telephone directory.
However, instead of enabling people to find each other over the telephone network, a
registry enables services to find each other.

UDDI—the registry's specification
In order to understand how the registry works, and how you can better exploit its capabilities,
it's important to understand the underlying specification on which the registry is built. That
specification is UDDI. For JBoss ESB, UDDI defines an XML-based registry within the bus.

In a nutshell, the UDDI specification is a standard that defines an XML-based registry, that
supports means to define (register) and find (discover) services.

UDDI (Universal Description, Discovery, and Integration) was developed under the
sponsorship of OASIS (the Organization for the Advancement of Structured Information
Standards, more information can be found at http://www.oasis-open.org) with the
goal of providing universal public web service registries that anyone in the world could
access to locate specific businesses and services. This goal was never really reached, and in
2008, the UDDI public registry was taken down (http://www.webservicessummit.com/
News/UDDI2006.htm).

But still, UDDI registries are widely used privately or at an organizational level.

The UDDI specification (you can find it at http://www.oasis-open.org/
standards#uddiv3.0.2) provides for the definition (http://www.uddi.org/pubs/
uddi-tech-wp.pdf) of the three building blocks of a UDDI registry, they are:

�� Services

�� Servers

�� APIs

Note that these are abstract definitions. The actual implementations
are provided by the specific UDDI providers and APIs that we'll review
later in this chapter.

Services are based on the following:

�� Business entities: These are the groups, companies, or organizations that publish
the services. Each business entity can include one or more business services.

�� Business services: These are the services. Each service definition includes the
service name and a description. Each business service can include one or more
binding templates.

How ESB Uses the Registry to Keep Track of Services

[204]

�� Binding templates: A binding template defines the service's access points (typically
URLs) and includes references to the service's technical data.

�� Technical data models: Called as tModels, these define the specific interfaces
to the service, and include information such as the transports through which the
service can be invoked.

Servers are based on the following:

�� Nodes: This is a single UDDI server. What qualifies a "server" to be a "UDDI server"?
It has to be running at least a subset of the features defined in the UDDI standard.

�� Registries: A registry is a grouping of one or more than one node that supports the
full set of features defined in the UDDI standard. A registry can function on its own
or it can also operate in a hierarchical group of "affiliated" registries.

�� Affiliated registries: One type of grouping of registries is the "federation". In this
context the federation refers to the division of service definition and access. For
example, services can be divided into registries such that all groups in a company
can access the company's employee benefits services, while a subset of those
groups can access a company's payroll services.

Additionally, there are definitions of sets of APIs that enable the use and administration of
the registry. There are Node API sets, as follows:

�� Inquiry API set: The name says it all. This API supports performing inquiries of a
registry, in order to find a service.

�� Publication API set: A service cannot be found until it's first published. This API
supports the publication of services.

�� Replication API set: This API enables the copying of information about services
between UDDI nodes.

�� Security Policy API set: This API governs the use of authentication tokens for
accessing services.

�� Custody and Ownership Transfer API set: This API supports transferring custody of
businessEntities or tModels between registry nodes.

�� Subscription API set: This API enables subscribers (in other words, clients) to
"subscribe" to a UDDI registry, so that they will receive information on changes
made to the registry.

�� Value Set Validation API set: This API enables the validation of a tModel service's
keyedReference which is the relationship between two publishers. The validation
ensures that both publishers actually have the authorization to publish the service.

Chapter 7

[205]

And Client API sets:

�� UDDI Subscription Listener API set: This is the counterpart to the Subscription API
set. It enables the sending of the changes in a UDDI registry to subscribers.

�� UDDI Value Set Caching API set: This API supports caching a set of values to be
returned to clients performing a keyedReference validation.

That was a quick, and somewhat abstract view of UDDI. Next, we'll switch to a more concrete
mode and look at a real implementation. We'll review how JBoss ESB operates with the registry
that it is configured with, by default, Apache jUDDI (http://juddi.apache.org/).

jUDDI—JBoss ESB's default registry
jUDDI is the Apache open source reference implementation (written in Java) for the UDDI
specification. Some of the defining characteristics of jUDDI are:

�� Standards based: jUDDI supports the UDDI version 3.0 specification. Scout
implements the Java API for XML Registries (JAXR). We'll review using Scout to
inquire and publish services later on in this chapter.

�� Platform independent: jUDDI is written in Java, so any place that you can run a JVM,
you can run jUDDI.

�� Support for multiple databases for persistence: The service definitions that you use
are stored in a persistent database by jUDDI. jUDDI supports most major databases
such as MySQL, PostgreSQL, Oracle, and others.

�� Configurable: jUDDI can be configured in clusters for added reliability and
performance, and can be integrated with authentication systems such as LDAP,
or JAAS compliant systems. jUDDI also supports multiple transport protocols.

Configuring jUDDI for different protocols
As packaged with JBoss ESB, jUDDI is configured to use the "local" transport. Briefly, this
configuration assumes (well, requires, actually) that the jUDDI server and JBoss ESB server
share the same virtual machine. jUDDI also supports the RMI and SOAP protocols for
configuring a server. To change the configuration, use esb.juddi.client.xml
found at jboss-as/server/default/deploy/jbossesb.sar/.

The relevant configuration lines look something like this:

<proxyTransport>
 org.jboss.internal.soa.esb.registry.client.JuddiInVMTransport
</proxyTransport>
<custodyTransferUrl>
 org.apache.juddi.api.impl.UDDICustodyTransferImpl

How ESB Uses the Registry to Keep Track of Services

[206]

</custodyTransferUrl>
<inquiryUrl>
 org.apache.juddi.api.impl.UDDIInquiryImpl
</inquiryUrl>
<publishUrl>
 org.apache.juddi.api.impl.UDDIPublicationImpl
</publishUrl>
<securityUrl>
 org.apache.juddi.api.impl.UDDISecurityImpl
</securityUrl>
<subscriptionUrl>
 org.apache.juddi.api.impl.UDDISubscriptionImpl
</subscriptionUrl>
<subscriptionListenerUrl>
 org.apache.juddi.api.impl.UDDISubscriptionListenerImpl
</subscriptionListenerUrl>
<juddiApiUrl>
 org.apache.juddi.api.impl.JUDDIApiImpl
</juddiApiUrl>

esb.juddi.client.xml contains commented out settings for RMI and JAX-WS—if you
want to change jUDDI to use one of these transports, you can simply comment out the InVM
section and uncomment the pertinent transport section you wish to use.

Looking at jUDDI's database
Earlier in this chapter we mentioned that jUDDI supports multiple database providers for its
database. Let's take a look at jUDDI's database and how it is created. The first time that you
start up the AS server with JBoss ESB deployed, the database is automatically created. Note
that, by default, the Hypersonic database is used by jUDDI (HSQLDB). This type of database
is fine for learning about jUDDI, but it's not suitable for a production system where you want
higher performance and scalability.

The manner in which the database is created is interesting. If you look in the juddi-ds.xml
file in the server/all/deploy/jbossesb-registry.sar/ directory, you'll see:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <jndi-name>juddiDB</jndi-name>
 <connection-url>

Chapter 7

[207]

 jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic${/}juddiDB
 </connection-url>
 <driver-class>org.hsqldb.jdbcDriver</driver-class>
 <user-name>sa</user-name>
 <password></password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>0</idle-timeout-minutes>
 <prepared-statement-cache-size>32</prepared-statement-cache-size>
 <depends>jboss:service=Hypersonic,database=juddiDB</depends>
 </local-tx-datasource>
 <mbean code="org.jboss.jdbc.HypersonicDatabase"
 name="jboss:service=Hypersonic,database=juddiDB">
 <attribute name="Database">juddiDB</attribute>
 <attribute name="InProcessMode">true</attribute>
 </mbean>
 <mbean code=
 "org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"
 name="jboss.esb:service=JUDDIDatabaseInitializer">
 <attribute name="Datasource">java:/juddiDB</attribute>
 <attribute name="ExistsSql">select count from j3_publisher
 </attribute>
 <attribute name="SqlFiles">juddi-sql/hsqldb/import.sql
 </attribute>
 <depends>jboss.jca:service=DataSourceBinding,name=juddiDB
 </depends>
 </mbean>
</datasources>

The section that includes the DatabaseInitializer MBean is where the script that
creates the database (juddi-sql/hsqldb/import.sql) is run. To use a database other
than Hypersonic, you would edit this file and reference the database connection and driver
properties. jUDDI includes database creation scripts for multiple databases under its
juddi-sql directory.

How ESB Uses the Registry to Keep Track of Services

[208]

Time for action – looking at the jUDDI registry database
Let's take a look at the database, specifically the services that are registered. Luckily, JBoss
AS provides us with an easy tool to view the database through a UI.

1.	 Find the tool by going to http://localhost:8080/jmx-console.

2.	 In the console, select the database=juddiDB,service=Hypersonic service. Remember
that the OOTB database for jUDDI is Hypersonic.

3.	 When the Database MBean properties are displayed, select the
StartDatabaseManager operation and press the Invoke button:

Chapter 7

[209]

4.	 At this point the UI will open. Select File | Connect, and fill in the connection
properties. The database URL should contain the same information as is displayed
in the juddi-ds.xml file that we saw previously:

We'll explore the registry hierarchy after getting just a bit more background on how JBoss
ESB uses the registry.

Other supported UDDI providers
Note that while jUDDI is the default UDDI provider for JBoss ESB, other UDDI providers are
also supported. The following are some:

�� HP SOA Systinet: JBoss ESB has been tested with Systinet 6.64

�� SOA Software Service Manager: SOA Software's UDDI Server has been tested in
conjunction with ESB using SOA Software Policy Server 6.0.1

Custom registry solutions
The ESB allows for custom non-UDDI registry solutions by providing a org.jboss.
soa.esb.services.registry.Registry interface. By implementing that interface,
developers can create any sort of registry implementation they want, and then
specify it within their jboss-esb.properties.xml file in order to use it.

End-point reference
What is an EPR? EPR stands for end-point reference, it is basically an address that the ESB
uses to send messages to. The endpoint reference is linked to a service and is stored within
the registry. In each message sent by JBoss ESB, multiple EPRs are sent in the headers—
where the message came from, where it is going to, where it should default to, and reply to.

How ESB Uses the Registry to Keep Track of Services

[210]

What we've just described is somewhat abstract, but it is important to understand because
this is the meat of what JBoss ESB stores in its registry.

Time for action – looking at EPRs
Now, let's take a look inside the registry to understand what is happening here.

1.	 Start by going to http://localhost:8080/jmx-console.

2.	 In the console, select the database=juddiDB,service=Hypersonic service:

3.	 When the Database MBean properties are displayed, select the
StartDatabaseManager operation and press the Invoke button:

Chapter 7

[211]

4.	 Type the following query into the textbox, and click on Execute SQL:

How ESB Uses the Registry to Keep Track of Services

[212]

5.	 The previous query shows the names of the services that are registered by JBoss
ESB. If we want to see the EPRs related to the services, we can type the following
query into the textbox, and click on Execute SQL:

What you see here are two EPRs that are registered by default by JBoss ESB, one relating to
the CallbackQueue and the other for the DeadMessageQueue.

JAXR—introducing the Java API for XML registries
What is JAXR? JAXR, or the Java API for XML Registries (JSR 93), is a way of interacting
with various kinds of registries. It is meant to be an abstraction so that you can switch out
different registry implementations (UDDI, ebXML, and so on) without having having to
change your query code.

JAXR is notable in terms of JBoss ESB because it is used to query the registry. JBoss ESB uses
Scout, the Apache JAXR implementation, on top of UDDI. For the purposes of this book,
you should just know that this is an added layer of abstraction.

Federation
What is federation? When we speak of federation, we are talking about clusters of ESB
servers. Users cluster ESB servers in order to eliminate a single point of failure—by using load
balancing you can not only spread load across multiple ESB servers, but provide redundancy
in case one of the servers goes down.

Chapter 7

[213]

Federation in SOA is very similar to what the term means in terms of actual government—it
is an organization of smaller groups wherein the smaller groups still have some autonomy. In
terms of the registry, when we "federate" a service, or deploy it across a cluster of servers,
the service may be deployed on several nodes, each of which is running its own registry, but
is backed by a shared database. When a service is called by the ServiceInvoker, it may
route a request to a server that is down, but then time out and resend the request to
a server that is up, like service location.

Load balancing
Load balancing through ServiceInvoker allows the ESB to achieve fail-over for services.
The ServiceInvoker does this by using different strategies to pick EPRs to invoke. You can
choose one of the default load balancing strategies in JBoss ESB (round-robin, first-available,
random, and so on) or develop your own and plug it into the configuration file.

You can choose a load balancing strategy by setting the org.jboss.soa.esb.
loadbalancer.policy property within jbossesb-properties.xml to one
of the following:

�� org.jboss.soa.esb.listeners.ha.RoundRobin: a round-robin policy which
alternates through a list of EPRs

�� org.jboss.soa.esb.listeners.ha.FirstAvailable: a policy which chooses
the first available EPR and then moves on to alternates if that one dies or becomes
unavailable

�� org.jboss.soa.esb.listeners.ha.RandomRobin: a policy that randomly
chooses between different EPRs

Registry maintenance and performance
What can happen with a hard crash? As the ESB shuts down, the ESB unregisters endpoint
references and services. When the ESB has finally shut down, it will have removed all
ESB-related services and endpoints—therefore if you hard crash your server, your service
will leave behind dead EPRs—EPRs that represent an endpoint from a previous session, that
are no longer available.

One hard crash alone probably won't have much effect, but if you allow your system to hard
crash a great deal, you'll continue to accrue dead EPRs. These extra EPRs can have a visible
effect on your runtime performance. Your startup times will increase a great deal, the time
that it takes to call a service with ServiceInvoker will increase—basically any EPR lookup
will become slower and slower.

How ESB Uses the Registry to Keep Track of Services

[214]

How can you stop these EPRs slowing down your ESB instance?

�� The first way you can speed things up is with the brute force method. Stop your
server, and completely clear your jUDDI database. On startup of the ESB, the tables
and default data of the jUDDI database will be recreated and only the default
endpoints and your current service endpoints will be registered. This will remove
all duplicate and extraneous EPRs and lookup will be faster.

�� The other method is a little easier. If you are using the ServiceInvoker, you can
set the org.jboss.soa.esb.failure.detect.removeDeadEPR property, and
when a stale EPR is selected, it will be removed. Note that there is a risk in using this
property. If your service is slow to respond and times out, its EPR may be removed.

Registry interceptors
One other way of improving performance is by making use of registry interceptors. Registry
interceptors catch registry requests and have the ability to handle them, modify results that
come back from other interceptors or the registry itself, or simply pass the request along.

You can set registry interceptors in server/[configuration]/deploy/jbossesb.sar/
jbossesb-properties.xml. This property lists the two registry interceptors provided by
default by JBoss ESB:

�� org.jboss.internal.soa.esb.services.registry:
InVMRegistryInterceptor handles InVMEprs (EPRs representing InVM
endpoints) by caching them and not passing requests on to subsequent EPRs.

�� org.jboss.internal.soa.esb.services.registry.
CachingRegistryInterceptor: maintains a cache for all EPRs, and additional
properties controlling the behavior of the EPR cache can be found within the
jbossesb-properties.xml file mentioned earlier.

Monitoring
jUDDI also has some simple monitoring abilities. As of JBoss ESB 4.10, jUDDI provided
MBeans with details on how many queries were processed for every single API method,
what the overall processing time was per method, and how many successful and failed
queries were launched. These counts, while simple, give you the opportunity to see which
API (Inquiry, Security, or Publish) and method-costly queries might be appearing on, and
where the bulk of the queries and query time is spent.

Chapter 7

[215]

Examining jUDDI query counts
With your ESB Server running, browse to http://localhost:8080/jmx-console, and
then browse down to the apache.juddi section. A counter MBean is listed for each of the
UDDI APIs; click on the apache.juddi:counter=org.apache.juddi.api.impl.UDDIInquiryImpl
MBean.

You should be able to see overall counts for the jUDDI Inquiry API (Total API Queries,
Successful API Queries, and Failed API Queries) as well as similar counts broken down by
each method within the UDDI Inquiry API (for example, get_operationalInfo). This
should be useful in determining how frequently the registry is being called and how much
time is spent in calling it.

How ESB Uses the Registry to Keep Track of Services

[216]

Time for action – querying the UDDI server
To get a sense of UDDI, let's try sending some UDDI queries to JBoss ESB. For this exercise,
you'll need to use JBoss ESB 4.10 on top of the JBoss 5.1.0.GA AS. There are instructions on
setting up this scenario in Chapter 1. After setting that up, follow these steps:

1.	 To start, download a copy of SOAPUI (http://www.soapui.org—the free open
source edition is all that is needed).

2.	 Run the soapui startup script (soapui.sh or soapui.bat, depending on
your OS).

3.	 Next, we need to find the jUDDI services WSDL. Copy uddi-ws-3.1.0.jar from
jboss-5.1.0.GA/server/default/deployers/esb.deployer/lib/ to a
temporary location. Uncompress the file and create a new SOAPUI project (File |
New SOAPUI Project in the SOAPUI menu) using the uddi_v3_service.wsdl file
from the JAR you just uncompressed as the initial WSDL:

Chapter 7

[217]

4.	 We'll try a simple query—scroll down to UDDI_Security_SoapBinding, and choose
get_AuthToken. Double-click on the Request 1 request to open it in the editor:

How ESB Uses the Registry to Keep Track of Services

[218]

5.	 Change "?" in the userID="?" property to "root", and then change the "?" in
the cred="?" property to "root" as well.

6.	 Select the dropdown box which contains the endpoint—it should by default say
something like http://localhost/uddi/security—and choose edit current, enter your
endpoint address, which is http://127.0.0.1:8080/juddiv3/services/
security?wsdl. You can look this up by using the JBoss WS console (http://
localhost:8080/jbossws) and then viewing the list of deployed services and
searching for the Endpoint Address that corresponds to the jUDDI SecurityService:

7.	 Press the green button, you should receive a response with an <authinfo>
element that contains a generated authToken string.

What just happened
You've just completed your first UDDI query using SOAPUI as a client and the jUDDI server
that comes along with JBoss ESB. For more information on UDDI queries, a good starting
point would be the jUDDI web site (http://juddi.apache.org) or the UDDI v3
specification (http://www.uddi.org/pubs/uddi_v3.htm).

Chapter 7

[219]

Pop quiz
Before we move on, it's time to see what you've learned. Pencils ready? Let's begin!

1.	 What is federation?

a.	 Clustering a service over multiple nodes to support failover

b.	 Using multiple transports to relay a message

c.	 Protecting a service with authentication

2.	 What is UDDI?

a.	 Universal Description, Discovery, and Integration

b.	 Universal Data Display Interface

c.	 Unguarded Data Determination Invocation

3.	 What is JAXR?

a.	 An abstraction on top of XML registries

b.	 A new database

c.	 A standard for federation

4.	 If your server suffers a hard crash, what might happen that would slow your
services down?

a.	 The logs fill up

b.	 Stale EPRs might accumulate

c.	 The database slows down with age

5.	 What is the purpose of a registry within an ESB?

a.	 Tracking the endpoints of services at runtime

b.	 Speeding up your service

c.	 To track every invocation that occurs

6.	 How can I view my service data within the registry?

a.	 Use a bean in the JMX Console

b.	 Send a message

c.	 Federation

How ESB Uses the Registry to Keep Track of Services

[220]

7.	 What UDDI registry does JBoss ESB use by default? Can I use another
implementation?

a.	 jUDDI

b.	 MUDDI

c.	 PUDDI

8.	 What is an EPR?

a.	 A runtime address of your service that the ESB sends messages to

b.	 A standard for federation

c.	 A way of invoking services

Chapter bibliography
Jamae, Javid and Johnson, Peter. JBoss in Action. : Manning, 2009.

Summary
We've covered several important concepts in this chapter:

�� What is federation

�� What the registry is used for

�� What technologies and standards are behind Jboss ESB's registry

�� How to perform a UDDI query on your registry

�� How to view your service data within the registry

This information may help you debug future issues and gives you a better understanding of
the underpinnings of JBoss ESB.

8
Integrating Web Services with ESB

In previous chapters we have covered the majority of the JBoss ESB core
functionality, including services, out-of-the-box actions, gateways, and its
registry. We are now going to cover another important aspect of an ESB, the
ability to expose an ESB service as a web service and to consume an existing
web service from within an ESB service.

A web service provides a standard mechanism through which one service can invoke a
second, possibly remote, service without having to be concerned with any of the service
implementation details, such as language and/or platform. The message exchange format
is well defined as are the interactions which are allowed to occur between the client
and server.

Web services enable many of the desirable attributes of an ESB service, such as loose
coupling, and are likely to be present in many of the legacy services already existing
within an organization.

In this chapter we will show how to:

�� Export an ESB service as a web service

�� Invoke an external web service

�� Invoke a co-located web service

�� Proxy a web service through the ESB, enabling interception and modification of the
service invocation

So let's get on with it...

Integrating Web Services with ESB

[222]

Preparing JBoss Developer Studio
The examples in this chapter are based on a standard ESB application template that can
be found under the Chapter8 directory within the sample download. We will modify this
template application as we proceed through this chapter.

Before we start, please make sure that you have set up JBoss Developer Studio and
JBoss 5.1 Runtime as described in Chapter 2.

Time for action – preparing the Chapter8 application
Before we can proceed with this chapter we must prepare the application and
runtime environment.

The first task will be importing the example application into JBoss Developer Studio then we
must modify the runtime configuration to allow us to run the Wise example which appears
later in this chapter.

Import the Chapter8 application into JBoss Developer Studio as follows:

1.	 Click on File menu and select Import.

2.	 Choose Existing Projects into workspace and select the folder where the book
samples have been extracted.

3.	 Choose Chapter8 project and click on Finish.

In order to execute the Wise example we will need to modify the runtime configuration to
include the JDK tooling library, a requirement of Wise. Modify the runtime configuration
as follows:

1.	 In JBoss Developer Studio, click Window | Preferences.

Chapter 8

[223]

2.	 Select the Installed JREs and select the default JRE that is ticked and click on the
Edit button:

Integrating Web Services with ESB

[224]

3.	 Click on the Add External Jars button and select the tools.jar file from the JDK
directory. Your JAR listing should now show tools.jar as shown:

4.	 Click the Finish button and restart the JBoss 5.1 Runtime server.

What just happened?
We have imported the example application into JBoss Developer Studio, which we will use
throughout the remainder of this chapter. We have also looked at the runtime configuration
which is used to execute these examples, modifying it to include a necessary JAR for
executing the example in the Wise section.

Time for action – switching consoles
When you are running the tests, you might notice that the console in JBoss Developer Studio
sometimes will not show the output, but rather show the server's log output. This is due to
the fact that JBoss Developer Studio displays both the server's log and the test output in one
console window, showing only one at a time. This might confuse the reader to think that the
test did not run. Here is a simple tip on how to switch between console outputs:

Chapter 8

[225]

1.	 In JBoss Developer Studio, select the Console tab.

2.	 Notice the icon to the right that looks like the Console tab's icon with a downward
pointing arrow ().

3.	 Click on that arrow and you will see there are two entries, one for the server and
another for the test application:

4.	 Click on the required one and the Console tab will display the selected one's output.

What just happened?
We looked at the different consoles and discovered how to switch between them.

Exporting ESB services as a web service
Earlier in this book, in the Message validation section of Chapter 3, we described how it
is possible to validate the request and response messages of a service by specifying the
schema files which describe the XML format of the service request, response, and fault
messages. What we didn't tell you at the time is that this same information can be used, by
JBoss ESB, to automatically generate a web service endpoint to represent the ESB service
(also known as an EBWS).

In order to validate the request and response messages it is necessary to explicitly enable
the functionality by specifying the validate attribute on the <actions> element. As
the desire to expose an ESB service through a web service is a common requirement, the
opposite is true, the web service will be created by default unless it has been explicitly
disabled by declaring the webservice attribute on the <actions> element to be false.

The schemas declared in the inXsd, outXsd, and faultXsd attributes of the <actions>
element are used by JBoss ESB to generate a Web Services Description Language (WSDL)
definition of the service, where the inXsd and outXsd attributes declare the message body
contents of the request and response messages respectively and the faultXsd attribute
declares the message body contents for all of the service fault messages.

Integrating Web Services with ESB

[226]

JBoss ESB supports two Message Exchange Patterns (MEP) when declaring the service
through WSDL, they are:

�� In-Out, also known as RequestResponse

�� In-Only, also known as OneWay

The choice of MEP is based on the existence of the outXsd attribute. If this attribute present
then an In-Out MEP will be declared otherwise it will use an In-Only MEP.

The processing of an In-Only web service may be handled in an asynchronous manner,
depending entirely on the SOAP stack being used, so that it allows the client invoker to
continue without being delayed. An In-Out web service, on the other hand, will always be
forced to wait for its response before it can continue.

Now take a look at the contents of the esbcontent/META-INF/jboss-esb.xml file for
the Chapter8 project, the relevant snippet of which is highlighted here:

<service category="Chapter8Sample"
 description="A template for Chapter8"
 name="Chapter8Service">
 <listeners>
 <jms-listener busidref="Chapter8EsbChannel"
 name="Chapter8EsbListener"/>
 </listeners>
 <actions mep="RequestResponse" inXsd="BookServiceRequest.xsd"

 outXsd="BookServiceResponse.xsd">

 <action name="esbaction"
 class="org.jboss.soa.esb.samples.chapter8.MyAction"/>
 </actions>
</service>

Time for action – running the sample
Let's now deploy the sample and test it:

1.	 In JBoss Developer Studio, select the Chapter8 project and click Run | Run As |
Run on Server.

2.	 Click Next. A window with the project pre-configured to run on this server is shown.
Ensure that project Chapter8 selected and shown on the right-hand side:

Chapter 8

[227]

3.	 Click Finish. The server's Console will display output similar to the following:

INFO [TomcatDeployment] deploy, ctxPath=/Chapter8
INFO [WSDLFilePublisher] WSDL published to: file:/home/book/
jboss-5.1.0.GA-esb4.10/server/default/data/wsdl/Chapter8.war/
Chapter8Sample/Chapter8Service.wsdl
INFO [EsbDeployment] Starting ESB Deployment 'Chapter8.esb'

4.	 Select the src folder, expand it till the TestWebService.java file is displayed in
the tree. Now click Run | Run As | Java Application.

5.	 The application Console will display the output as shown:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env=
 "http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <ns2:getAuthorsResponse xmlns:ns2=
 "http://chapter8.samples.esb.soa.jboss.org/">
 <return>Charles Dickens</return>
 <return>Sir Arthur Conan Doyle</return>
 <return>Dan Brown</return>
 <return>Amish Tripathi</return>
 </ns2:getAuthorsResponse>
 </env:Body>
</env:Envelope>

Integrating Web Services with ESB

[228]

What just happened?
By simply declaring the schemas for the service we were able to automatically create a web
service endpoint for the ESB service. We then sent a SOAP request to this web service and
received a SOAP response back, containing all the authors of the books which the service
had in stock. Notice that the WSDL was auto-generated for us, based on the specified
schemas, when the application was deployed.

Action implementation
Now that we have a better idea of how a web service is generated from the ESB service, let's
examine at how it looks to the actions in the pipeline.

Earlier we stated that the schemas declare the XML format of their respective message
bodies. What this means is that the message payload passed in to the service from the web
service will be the XML representation of the SOAP body and that the service response
payload must be the XML representation of the associated web service response.

The following listing of the MyAction class' process method shows how the payload
contents can be manipulated in a straightforward manner. Note that the action expects the
request to be in the form of an XML string and creates an XML string payload as a response.

private String _books[] = new String[] {
 "Great Expectations", "Hound Of The Baskervilles",
 "The Da Vinci Code", "The Immortals Of Meluha" };
private String _authors[] = new String[] {
 "Charles Dickens", "Sir Arthur Conan Doyle",
 "Dan Brown", "Amish Tripathi" };

public Message process(Message message) throws Exception {
 String req = (String) message.getBody().get();
 StringBuffer resp = new StringBuffer();
 if (req.indexOf("getAuthors") > 0) {
 resp.append("<ns2:getAuthorsResponse
 xmlns:ns2=\"http://chapter8.samples.esb.soa.jboss.org/\">");
 for (String author : _authors) {
 resp.append("<return>")
 .append(author)
 .append("</return>");
 }
 resp.append("</ns2:getAuthorsResponse>");
 } else if (req.indexOf("getBooks") > 0) {
 resp.append("<ns2:getBooksResponse
 xmlns:ns2=\"http://chapter8.samples.esb.soa.jboss.org/\">");
 for (String book : _books) {
 resp.append("<return>")
 .append(book)
 .append("</return>");

Chapter 8

[229]

 }
 resp.append("</ns2:getBooksResponse>");
 } else {
 resp.append("Unknown request!");
 }
 message.getBody().add(resp);
 return message;
}

Often it is desirable to transform the XML contents of the request and response into objects,
in order to enable simpler processing or reuse of existing code or services. This can easily
be achieved by introducing a transformation action into the exposed service pipeline, for
example by using Smooks or XStream as was covered in Chapter 4, and then routing the
message to a second service. This architecture may look like the following:

Note that the second ESB service can be directly consumed by other ESB services and also by
the ESB service that is exporting the web service endpoint.

It is important to note that the WSDL generated by JBoss ESB, through this
mechanism, will expose only one operation in the generated web service.
If the service is intended to support multiple operations then this must be
reflected in the schemas used to generate the request and response WSDL.
The contents of the request body can then be used to determine which
operation should be invoked.

Have a go hero – introduce a transformer
Modify the TestWebService.java file to retrieve the books. Update MyAction to
perform fault handling. Go ahead and add a Smooks transformer after the MyAction
configuration and try to remove the MyAction process methods' XML String code.

Securing EBWS
An ESB service exported through a web service endpoint can be secured through the
usual service security mechanism, specified through configuration of the <security>
element within the service definition. As with any other service you will need to specify
the moduleName and rolesAllowed attributes to control how the authentication and
authorization occurs.

Integrating Web Services with ESB

[230]

The web service endpoint will extract the security credentials from the incoming SOAP
request, identified within the request through the security SOAP header. The web
service endpoint will recognize the UsernameToken element, the BinarySecurityToken
element (for X.509/Kerberos and others), and Security Assertion Markup Language
(SAML) assertions.

Specifying the security configuration will ensure that access to the web service will be
authenticated and secure.

Here is a sample configuration that can be used to secure connections to EBWS.
The sample shows a security module allowing access from users having either the
thosewhohaveaccesstows or moreroleswithaccess role.

<service category="SecuredSample" name="SecuredService">
 <security moduleName="SomeSecurityModule"
 rolesAllowed="thosewhohaveaccesstows, moreroleswithaccess"/>
...
</service>

Time for action – securing the sample
Let us now add the security element to the sample and test it:

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

Chapter 8

[231]

2.	 Add the highlighted section contents to the service in question:

<service category="Chapter8Sample"
 description="A template for Chapter8"
 name="Chapter8Service">
 <security moduleName="JBossWS" rolesAllowed="friend"/>
 <listeners>
 <jms-listener busidref="Chapter8EsbChannel"
 name="Chapter8EsbListener"/>
 </listeners>
 <actions inXsd="BookService.xsd" mep="RequestResponse"
 outXsd="BookService.xsd">
 <action class="org.jboss.soa.esb.samples.chapter8.MyAction"
 name="esbaction"/>
 </actions>
</service>

3.	 Click the Save button and the modified application should now be deployed in
the server.

4.	 Select the src folder, expand it till the TestWebService.java file is displayed in
the tree. Now click Run | Run As | Java Application:

Integrating Web Services with ESB

[232]

5.	 You will see the following output in the test Console:

java.io.IOException: Server returned HTTP response code: 500
for URL: http://localhost:8080/Chapter8/ebws/Chapter8Sample/
Chapter8Service
...
<?xml version="1.0" encoding="UTF-8"?>
<error>java.io.IOException: Server returned HTTP response code:
500 for URL: http://localhost:8080/Chapter8/ebws/Chapter8Sample/
Chapter8Service
</error>

6.	 Open the server Console and this error log should display:

ERROR [ActionProcessingPipeline] SecurityService exception :
org.jboss.soa.esb.services.security.SecurityServiceException:
Service 'Chapter8Service' has been configured for security but no
AuthenticationRequest could be located in the Message Context.
Cannot authenticate without an AuthenticationRequest.
...
ERROR [BaseWebService] org.jboss.soa.esb.couriers.
FaultMessageException: org.jboss.soa.esb.services.security.
SecurityServiceException: Service 'Chapter8Service' has been
configured for security but no AuthenticationRequest could be
located in the Message Context. Cannot authenticate without an
AuthenticationRequest.

7.	 Modify the main method within TestWebService to replace the input as follows:

public static void main(String[] args) throws Exception {
 String serviceURL = "http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service";
String input = "<soapenv:Envelope" +
 " xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"" +
 " xmlns:chap=\"http://chapter8.samples.esb.soa.jboss.org/\"" +
 " xmlns:wsse=\"http://schemas.xmlsoap.org/ws/2002/04/secext\">" +
 " <soapenv:Header>" +
 " <wsse:Security>" +
 " <wsse:UsernameToken>" +
 " <wsse:Username>kermit</wsse:Username>" +
 " <wsse:Password>thefrog</wsse:Password>" +
 " </wsse:UsernameToken>" +
 " </wsse:Security>" +
 " </soapenv:Header>" +
 " <soapenv:Body>" +
 " <chap:getAuthors/>" +
 " </soapenv:Body>" +
 "</soapenv:Envelope>";

 String response = invokeWebService(serviceURL, input);

Chapter 8

[233]

8.	 Click the Save button, select the TestWebService.java file, click Run | Run As |
Java Application.

9.	 You will see the following output in the test Console:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/">
<env:Header/>
<env:Body>
<ns2:getAuthorsResponse
 xmlns:ns2="http://chapter8.samples.esb.soa.jboss.org/">
<return>Charles Dickens</return>
<return>Sir Arthur Conan Doyle</return>
<return>Dan Brown</return>
<return>Amish Tripathi</return>
</ns2:getAuthorsResponse>
</env:Body>
</env:Envelope>

What just happened?
We configured a security domain to enforce authentication for our EBWS service, choosing
the JBossWS domain included as part of the JBossWS stack, and required all authenticated
users to have the friend role in order to invoke the service. The client code was then
modified to include the UsernameToken WSSE (Web Service Security Extension) header,
enabling access to the service. If the service was to be invoked without credentials then the
processing of the service pipeline would result in an exception being raised.

Other security mechanisms
In the previous example we used the UsernameToken option of WS-Security, however
this results in the username and password being transferred in clear text. In production
usage it is advisable to use the BinaryToken or SAML capabilities coupled with a secure
transport. Readers are encouraged to look at WS-Security specifications, obtainable from
the OASIS Web Services Security Technical Committee (http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss), for usage and sample SOAP request/
responses for these mechanisms.

Integrating Web Services with ESB

[234]

ESB web service client
A common requirement when integrating services is often the ability to invoke existing web
services. These web services may be internally developed, perhaps by a different team in
your organization, or even external services, such as invoking the search API of your favorite
search engine provider. This is where the ESB SOAPClient actions come into the picture,
two implementations which take different approaches to invoking web services.

We will look at each of them more deeply in the following sections.

soapUI client
The first SOAP client action we will look at is based on the soapUI tool
(http://www.soapui.org/), a popular Open Source testing tool which enables
SOAP invocations using a template approach. The soapUI library generates a template
based on the WSDL definition of the required operation, which is then populated by
injecting parameters from the associated ESB message.

Before we go into further detail of the mapping, let's pause to take a quick look at this
in action.

A typical configuration of using org.jboss.soa.esb.actions.soap.SOAPClient
is shown:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
</action>

Time for action – ESB SOAP client
We exported an ESB service as a web service in the previous section. Let us now invoke that
web service with another ESB service.

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

2.	 Append the following service definition to the <services> tag.

<service category="Chapter8Sample" description=""
 name="Chapter8WSClient">
 <listeners>
 <jms-listener busidref="Chapter8EsbChannel2"

Chapter 8

[235]

 name="Chapter8EsbListener"/>
 </listeners>
 <actions mep="RequestResponse">
 <action name="requestAction"
 class="org.jboss.soa.esb.samples.chapter8.MyRequestAction"/>
 <action class="org.jboss.soa.esb.actions.soap.SOAPClient"
 name="soapui-client-action">
 <property name="wsdl" value="http://localhost:8080/Chapter8/
 ebws/Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="Chapter8ServiceOp"/>
 </action>
 </actions>
</service>

3.	 Click the Save button and the modified application should now be deployed in
the server.

4.	 Select the src folder, expand it till the SendEsbMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application:

Integrating Web Services with ESB

[236]

5.	 The server Console will display the output as follows:

INFO [STDOUT] (Thread-46) Progress: 1 - Caching definition
from url [http://localhost:8080/Chapter8/ebws/Chapter8Sample/
Chapter8Service?wsdl]

…

6.	 The test Console will display the output as follows:

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/
envelope/'><env:Header></env:Header><env:Body><ns2:getAutho
rsResponse xmlns:ns2='http://chapter8.samples.esb.soa.jboss.
org/'><return>Charles Dickens</return><return>Sir Arthur Conan
Doyle</return><return>Dan Brown</return><return>Amish Tripathi</
return></ns2:getAuthorsResponse></env:Body></env:Envelope>

What just happened?
We deployed an ESB service with the ability to invoke an external web service. Note that the
configuration of the pipeline contains a request mapper called MyRequestAction, used to
convert the incoming message into a Map for populating the SOAP request template.

Have a go hero – quickstarts
Have a look at the webservice_consumer1 quickstart. Examine the configuration and the
usage of the MyRequestAction class.

Request processing
As mentioned previously the soapUI version of SOAPClient generates a template based on
the WSDL definition for the appropriate service operation, which is then populated from a
set of parameters extracted from the current ESB message.

The SOAP parameters for the template are defined within a map that resides in the payload
location of the ESB message, the keys of the map entries specifying the template location of
their associated values. There are two choices when specifying values:

�� Individual text values based on their explicit location: For this choice each value
must be explicitly configured within the payload parameter map with the key for
each entry consisting of the concatenation of the local names of each element
starting with the first element within the SOAP body. For example the value
represented by the key processOrder.order.id would be used to populate
the id element nested within the order and processOrder elements.

Chapter 8

[237]

�� A single object instance representing all contents: For this second choice a
single object instance would be placed within the map to represent the contents
of the SOAP body, with each nested value being taken from the object by
following the normal java bean naming conventions. For example an instance
of ProcessOrderRequest, located within the parameter map with a key of
processOrder, would populate the order id by invoking the getOrder().
getId() methods and converting the result to a string.

The naming convention used in each choice follows the notation
defined as part of the Object-Graph Navigational Language (OGNL)
expression language for accessing properties of java objects. See
http://incubator.apache.org/ognl/ for more information.

Request transformations
The soapUI codebase creates a template based on the WSDL of the target web service which
is then populated using the parameters extracted from the ESB message. This template,
and its population, focus on the contents of the SOAP envelope's Body element but do not
support creation of elements within the SOAP envelope's Header element.

In order to attach SOAP headers to the request it is necessary to transform the
populated message before it is sent to the target web service. This can be achieved
by including a Smooks transformation in the configuration of the action, using the
smooksTransform parameter.

An example of this configuration is as follows:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
 <property name="smooksTransform" value="smooks-transform.xml"/>

</action>

Have a go hero – SOAP request header transformation
Add a Smooks transformation to create SOAP headers as part of the request.

You can see the effect on the resulting request contents by specifying an extra entry into the
parameter map, using the dumpSOAP key. The existence of this key will cause the integration
code to display the raw template and the populated template for the request on the
server console.

Integrating Web Services with ESB

[238]

Response processing
The SOAP response from the web service can be processed in one of three ways, the result
of which will be stored as the payload of the resulting ESB message:

�� As a string containing the raw SOAP response message (the default)

�� As a map containing the explicit element values, keyed using the same OGNL
notation as used in the request processing

�� As an Object Graph created and populated by the XStream toolkit

OGNL
In order to return a map containing the contents of the SOAP response message using the
OGNL notation it is necessary to configure an additional property on the SOAPClient
action. This property, responseAsOgnlMap, must be configured with the value true.

The following is an example of receiving our sample's response as an OGNL map:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="Chapter8ServiceOp"/>
 <property name="responseAsOgnlMap" value="true"/>

</action>

Have a go hero – OGNL response
Go ahead and set the responseAsOgnlMap property to true and see how the response
looks on the test Console. Take a look at the webservice_consumer2 quickstart and
familiarize yourself with the OGNL notation. Change the request map of the quickstart so
that it uses explicit locations instead of an object instance.

XStream
XStream (http://xstream.codehaus.org/) is an Open Source library which supports
the serialization and deserialization of XML to and from Java Objects. When used through
the SOAPClient it supports the deserialization of the SOAP response into a Java object
which is then returned through the ESB message payload.

In order to use the XStream functionality it is necessary to define a
responseXStreamConfig action property containing the appropriate mappings. Here
is an example of how our getAuthorsResponse SOAP envelope can be converted into a
List<String> object.

Chapter 8

[239]

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="Chapter8ServiceOp"/>
 <property name="responseXStreamConfig">

 <alias name="getAuthorsResponse" class="java.util.ArrayList"

 namespace="http://chapter8.samples.esb.soa.jboss.org/"/>

 <alias name="return" class="java.lang.String" namespace=""/>

 </property>

</action>

Have a go hero – XStream conversion
Go ahead and add the highlighted section above to the sample and see how it changes the
response output.

The Wise SOAPClient
The second SOAPClient action is based on Wise (Wise Invokes Services Easily), a JBoss
Open Source project (http://www.jboss.org/wise) which handles most of the
necessary interactions of dealing with the JAX-WS APIs and proxies.

The goal of Wise is to make your life easier by automatically processing a web service's WSDL
to generate the client-side proxy classes, select the appropriate services and endpoints, and
enable the invocation of the operations by mapping an object model that you define to the
JAX-WS objects needed to perform the operation. The result is that you can access a web
service without having to generate the classes yourself.

A typical configuration sample would be like this:

<action name="soap-wise-client-action"
 class="org.jboss.soa.esb.actions.soap.wise.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/ebws/
 Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
</action>

Integrating Web Services with ESB

[240]

Time for action – Incorporating the Wise SOAP Client
Let us modify our sample to use the Wise SOAPClient now. Follow these steps:

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

2.	 Replace the following code:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:8080/Chapter8/
 ebws/Chapter8Sample/Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="Chapter8ServiceOp"/>
</action>

With the followingcode:

<action class="org.jboss.soa.esb.actions.soap.wise.SOAPClient"
 name="soap-wise-client-action">
 <property name="wsdl"
 value="http://localhost:8080/BookService?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
 <property name="EndPointName" value="BookServicePort"/>
</action>

3.	 Click the Save button, and the modified application should now be deployed in
the server.

4.	 Select the src folder, expand it till the SendEsbMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

The server Console will display the output as below:

INFO [STDOUT] (pool-41-thread-1) Request map is:
{getAuthors=null}

INFO [STDOUT] (pool-41-thread-1) parsing WSDL...

INFO [STDOUT] (pool-41-thread-1) generating code...

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\BookService.java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\BookServiceService.
java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\GetAuthors.java

Chapter 8

[241]

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\GetAuthorsResponse.
java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\GetBooks.java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\GetBooksResponse.
java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\ObjectFactory.java

INFO [STDOUT] (pool-41-thread-1) org\jboss\soa\esb\samples\
quickstart\webservice_consumer_wise\generated\package-info.java

The test Console will display the output as shown:

{result=[Great Expectations, Hound Of The Baskervilles,
The Da Vinci Code, The Immortals Of Meluha]}

What just happened?
We used the Wise SOAPClient to invoke a web service. Note that we are using WSDL from
a different service than the soapUI example and that the processing of the WSDL results in
the automatic generation of the appropriate Java client proxy classes. This stub generation
will only happen once with all subsequent requests using the cached WSDL and the pre-
compiled Java classes. This "on the fly" compilation is the reason that the tools.jar file
was added at the beginning of the chapter to your JRE library list.

Have a go hero – Wise properties
Take a look at the wise-core.properties file in the esbcontent directory of the
Chapter8 project, you will find a wise.tmpDir property which specifies the location of the
temporary files generated by Wise. By default this will be /tmp on Mac and Linux and <ESB
server drive>:/tmp on Windows.

Now take a look at the Wise generated files. Modify the SOAPAction and see if you can
invoke the getAuthors method.

Request and response processing
The request parameters for the Wise SOAPClient are configured as a map in the payload of
the incoming ESB message. The contents of this map can take one of two forms:

�� A map of parameters where the key of each entry is the name of the SOAP
parameter as declared within the WSDL

Integrating Web Services with ESB

[242]

�� A general map of parameters that can be transformed into the map required by the
specific operation through a Smooks transformation. The Smooks transformation
will be responsible for translating the incoming Map into the correct model required
by the invocation of the SOAP operation.

The response will be stored in a map which will contain all the parameters that are
returned as part of the SOAP invocation, the key for each entry being the name of the SOAP
parameter as it is declared in the WSDL. This will include the result of the operation as well
as the values associated with any in/out or out parameters defined in the WSDL for the
operation. This map will be stored in the ESB message payload as a result of this action.

As with the request parameters, it is also possible to transform the response into a different
Java model using a Smooks transformation. The map containing the transformed objects
will, in that case, be stored in the ESB message payload instead of the original result of the
SOAP invocation.

Transformations on the request and response objects are declared within the configuration
by specifying the SmooksRequestMapper and SmooksResponseMapper action properties
respectively. These properties will each reference a Smooks configuration which will be used
to transform one Java model into another. Here is a sample from the quickstarts:

<action name="soap-wise-client-action"
 class="org.jboss.soa.esb.actions.soap.wise.SOAPClient">
 <property name="wsdl" value=
 "http://127.0.0.1:8080/Quickstart_webservice_consumer_wise2/
PingWS?wsdl" />
 <property name="SOAPAction" value="pingComplexObject"/>
 <property name="EndPointName" value="PingWSPort"/>
 <property name="SmooksRequestMapper"
 value="smooks-request-config.xml"/>

 <property name="SmooksResponseMapper"
 value="smooks-response-config.xml"/>

 <property name="LoggingMessages" value="false" />
 <property name="serviceName" value="PingWS"/>
</action>

As with the soapUI SOAPClient it is possible to further transform the SOAP request to add
custom SOAP headers or to further manipulate the SOAP body before the invocation of the
web service. Here is another sample from the quickstarts:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.wise.SOAPClient">
 <property name="wsdl" value="http://127.0.0.1:8080/
Quickstart_webservice_consumer_wise3/HelloWorldWS?wsdl" />
 <property name="SOAPAction" value="sayHello"/>
 <property name="EndPointName" value="HelloWorldPort"/>

Chapter 8

[243]

 <property name="LoggingMessages" value="true" />
 <property name="smooks-handler-config"
 value="smooks-handler.xml"></property>

 <property name="serviceName" value="HelloWorldWS"/>
</action>

Have a go hero – Smooks configurations
Take a look at the quickstarts webservice_consumer_wise, webservice_consumer_
wise2, webservice_consumer_wise3, and webservice_consumer_wise4. Familiarize
yourself with the approach these quickstarts apply.

Custom handlers
The Wise SOAPClient also supports the configuration of JAX-WS handlers, both
LogicalHandler and SOAPHandler, which can enable additional processing of
the incoming and outgoing messages. A sample configuration will look like this:

<action class="org.jboss.soa.esb.actions.soap.wise.SOAPClient"
 name="soap-wise-client-action">
 <property name="wsdl"
 value="http://localhost:8080/BookService?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
 <property name="EndPointName" value="BookServicePort"/>
 <property name="custom-handlers"

 value="org.jboss.soa.esb.samples.chapter8.MyLogHandler"/>

</action>

A simple implementation of this type of handler is shown:

package org.jboss.soa.esb.samples.chapter8;

import java.util.Collections;
import java.util.HashSet;
import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

public class MyLogHandler implements SOAPHandler<SOAPMessageContext> {
 private static Set<QName> headers;

 static {

Integrating Web Services with ESB

[244]

 HashSet<QName> set = new HashSet<QName>();
 headers = Collections.unmodifiableSet(set);
 }

 public Set<QName> getHeaders() {
 return headers;
 }

 public void close(MessageContext messageContext) {
 }

 public boolean handleFault(SOAPMessageContext smc) {
 return true;
 }

 public boolean handleMessage(SOAPMessageContext msgContext) {
 System.out.println(msgContext.getMessage());
 return true;
 }

}

Have a go hero – using a custom handler
Go ahead and add the previous code to the src folder and configure the Wise SOAPClient
to use this custom handler. Do you see the SOAP message being printed out on the
server console?

Co-located web services
The two actions we have covered so far have discussed the invocation of remote web service
endpoints, but what if the endpoint is deployed within the same server? We can still use the
previous actions to invoke the endpoints but this will incur a cost, both from the network
access at the transport layer and from any resource pooling on the receiving side.

The SOAPProcessor action provides a simple, optimized mechanism which allows the
invocation of a web service within the same server but without taking any additional
performance hit.

Chapter 8

[245]

SOAPProcessor
The ability to invoke co-located web services lies within the org.jboss.soa.esb.
actions.soap.SOAPProcessor action class. The input to this action is an ESB message
which contains the raw SOAP request as its payload, allowing the indirect invocation of the
web service through any listeners configured on the service.

In addition to providing indirect access to the web service endpoint, the SOAPProcessor
action will also expose a WSDL if the service contains a HTTP or JBoss Remoting gateway,
allowing the service to act as a proxy for the target web service.

A minimal configuration using this action would look like this:

<action name="JBossWSAdapter"
 class="org.jboss.soa.esb.actions.soap.SOAPProcessor">
 <property name="jbossws-context" value="webservice_war"/>
 <property name="jbossws-endpoint" value="BookService"/>
</action>

The properties which can be configured are as follows:

�� jbossws-endpoint: The name of the JBoss WS endpoint that the
SOAPProcessor is exposing. This property is required.

�� jbossws-context: The name of the web service's deployment context. This
property is optional.

�� rewrite-endpoint-url: The default action, when exposing the WSDL through
one of the gateways, is to rewrite the URL so that it appears to come from the
gateway's endpoint. Sometimes this behavior is undesirable, for example when the
web service container has already been configured to override the endpoint to that
of a load balancer. Setting this to false disables the rewriting capabilities.

Time for action – incorporating a SOAPProcessor client
We will now modify the sample to use SOAPProcessor:

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

2.	 Replace the following code:

<action name="requestAction"
 class="org.jboss.soa.esb.samples.chapter8.MyRequestAction"
 />
<action class="org.jboss.soa.esb.actions.soap.wise.SOAPClient"
name="soap-wise-client-action">

Integrating Web Services with ESB

[246]

 <property name="wsdl"
 value="http://localhost:8080/BookService?wsdl"/>
 <property name="SOAPAction" value="getBooks"/>
 <property name="EndPointName" value="BookServicePort"/>
</action>

With the following code:

<action class="org.jboss.soa.esb.actions.soap.SOAPProcessor"
 name="JBossWSAdapter">
 <property name="jbossws-endpoint" value="BookService"/>
 <property name="jbossws-context" value="BookService"/>
</action>
<action name="print-after"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message"
 value="AFTER invoking jbossws endpoint"/>
</action>

3.	 Add another listener to this service:

<service category="Chapter8Sample" description=""
 name="Chapter8WSClient">
 <listeners>
 <jms-listener busidref="Chapter8EsbChannel2"
 name="Chapter8EsbListener"/>
 <jms-listener busidref="Chapter8GwChannel"
 name="Chapter8GwListener"
 is-gateway="true"/>
 </listeners>

4.	 Click the Save button and the modified application should now be deployed in
the server.

5.	 Select the src folder, expand it till the SendJMSMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application:

Chapter 8

[247]

6.	 The server Console will display the output as shown:

INFO [STDOUT] AFTER invoking jbossws endpoint:

INFO [STDOUT] [<env:Envelope xmlns:env='http://schemas.xmlsoap.
org/soap/envelope/'><env:Header></env:Header><env:Body><ns2:get
BooksResponse xmlns:ns2="http://chapter8.samples.esb.soa.jboss.
org/"><return>Great Expectations</return><return>Hound Of The
Baskervilles</return><return>The Da Vinci Code</return><return>The
Immortals Of Meluha</return></ns2:getBooksResponse></env:Body></
env:Envelope>].

What just happened?
We used SOAPProcessor to invoke the web service. We used a JMS queue to send a
SOAP message. Notice that SendJMSMessage.java uses the gateway queue to send
the SOAP message.

QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
que = (Queue) iniCtx.lookup("queue/chapter8_Request_gw");

replyQueue =
 (Queue) iniCtx.lookup("queue/chapter8_Request_esb2_reply");

Notice we also removed the MyRequestAction from the pipeline.

Integrating Web Services with ESB

[248]

Have a go hero – co-located services
Use other gateways like HTTP or File to send the SOAP requests. Route the response to
another ESB service and write the contents to a file. Look at the webservice_wssecurity
and webservice_wsaddressing quickstarts for usage of these advanced features.

Web service proxies
Another useful capability of JBoss ESB is to act as a proxy for existing web services. There are
a number of reasons why this could be desirable, including controlling access to the service,
modifying request and/or response invocations, redirecting requests to different versions of
the web service, exposing a subset of the functionality and more. JBoss ESB forms a bridge
between the client and the web service, reducing the coupling between the two endpoints.
This reduced coupling increases the flexibility inherent in the system, allowing it to adapt to
changes as and when they arise.

SOAPProxy
There are a number of parameters that can be specified with the SOAPProxy action:

�� wsdl: a mandatory URL representing the WSDL for the original service

�� wsdlTransform: an optional transformation resource that can be applied to the
original WSDL before publishing

�� wsdlCharset: an optional parameter specifying the character set of the original
WSDL, if necessary

A basic example configuration would look like the following:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl"
 value="http://localhost:8080/BookService?wsdl"/>
</action>

Time for action – incorporating SOAPProxy into the application
We will now modify the current example to use SOAPProxy:

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

Chapter 8

[249]

2.	 Replace the following code:

<action class="org.jboss.soa.esb.actions.soap.SOAPProcessor"
 name="JBossWSAdapter">
 <property name="jbossws-endpoint" value="BookService"/>
 <property name="jbossws-context" value="BookService"/>
</action>

With this code:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl" value=
 "internal://jboss.ws:context=BookService,endpoint=BookService"/>
</action>

3.	 Click the Save button and the modified application should now be deployed in
the server.

4.	 Select the src folder, expand it till the SendJMSMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

The server Console will display the output as below:

INFO [STDOUT] AFTER invoking jbossws endpoint:

INFO [STDOUT] [<env:Envelope xmlns:env='http://schemas.xmlsoap.
org/soap/envelope/'><env:Header></env:Header><env:Body><ns2:get
BooksResponse xmlns:ns2="http://chapter8.samples.esb.soa.jboss.
org/"><return>Great Expectations</return><return>Hound Of The
Baskervilles</return><return>The Da Vinci Code</return><return>The
Immortals Of Meluha</return></ns2:getBooksResponse></env:Body></
env:Envelope>].

What just happened?
We used SOAPProxy to invoke the web service. We used a JMS Queue to send a
SOAP message.

Have a go hero – advanced use cases for SOAPProxy
Have a look at webservice_proxy_routed and webservice_proxy_versioning
quickstarts to see how those are configured and work.

Integrating Web Services with ESB

[250]

Tweaking HttpClient
The soapUI SOAPClient and SOAPProxy actions use Apache Commons HttpClient in
order to invoke the SOAP operation, it is common practice to specify a property file which
can be used to alter the behavior, for example by specifying security-related configuration or
details of a proxy.

Both of these actions allow the location of this property file to be configured as a parameter,
however there is a difference in how this is done. Let's take a look at the ways these
properties can be specified.

SOAPClient
This action allows a custom tag <http-client-property> to specify the configuration
through a file attribute or explicitly through http-client-property properties.

The file attribute can refer to a configuration through:

�� A path on the local file system

�� An absolute resource path accessible from the deployment's ClassLoader

�� A URL referencing a remote resource

The following configuration shows a reference to a resource which is included in the
deployment:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value=
"http://localhost:8080/Chapter8/ebws/Chapter8Sample/
Chapter8Service?wsdl"/>
 <property name="SOAPAction" value="Chapter8ServiceOp"/>
 <http-client-property name="file" value="/http.properties"/>

</action>

Individual properties can also be set as follows:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 ...
 <property name="http-client-properties>

 <http-client-property name="http.proxyHost" value="esbhost"/>

 <http-client-property name="http.proxyPort" value="808"/>

 </property>

</action>

Chapter 8

[251]

SOAPProxy
The SOAPProxy action allows the file attribute to be set via the <property> tag. A
sample configuration is shown:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl" value=
 "internal://jboss.ws:context=BookService,endpoint=BookService"/>
 <property name="file" value="/http.properties"/>

</action>

Sample properties
The following are some common properties specified in the HttpClient properties file:

See:
- http://wiki.jboss.org/wiki/Wiki.jsp?page=HttpRouter and
- http://wiki.jboss.org/wiki/Wiki.jsp?page=HttpClientFactory

Configurators
#configurators=HttpProtocol,AuthBASIC
configurators=HttpProtocol,AuthNTLM

HttpProtocol config
#protocol-socket-factory=org.apache.commons.httpclient.contrib.ssl.
StrictSSLProtocolSocketFactory
protocol-socket-factory=org.apache.commons.httpclient.contrib.ssl.
EasySSLProtocolSocketFactory
#protocol-socket-factory=org.jboss.soa.esb.http.protocol.
SelfSignedSSLProtocolSocketFactoryBuilder
#protocol-socket-factory=org.jboss.soa.esb.http.protocol.
AuthSSLProtocolSocketFactoryBuilder
keystore=@keystore@
keystore-passw=@keystore.password@
truststore=@keystore@
truststore-passw=webservice_proxy_security_pass

Connection config
max-connections-per-host=5

HttpProtocol config
http.proxyHost=192.168.1.3
http.proxyPort=808

AuthNTLM config
ntauth-username=JBOSSTEST

Integrating Web Services with ESB

[252]

ntauth-password=JBOSSPASS
ntauthscope-host=ESBHOST
ntauthscope-port=80
ntauthscope-domain=JBOSS

AuthBASIC config
auth-username=kermit
auth-password=thefrog
authscope-host=localhost
authscope-port=8443
authscope-realm=webservice_proxy_security

Custom configurator
The SOAPProxy action can make use of an HttpClient to invoke a remote endpoint.
Occasionally it may be necessary to extend the configuration of this client class and enable
some features which are not directly exposed by JBoss ESB. This can be achieved through
the inclusion of a custom configurator, a simple class which can initialize the HttpClient
programmatically using the properties supplied to the action.

The following shows how to implement a simple configurator which does nothing more than
log the fact that it has been invoked:

Configurators
configurators=HttpProtocol, org.jboss.soa.esb.samples.chapter8.
MyConfigurator

The code for this configurator is shown here:

package org.jboss.soa.esb.samples.chapter8;

import org.apache.commons.httpclient.HttpClient;
import org.jboss.soa.esb.http.Configurator;
import org.jboss.soa.esb.ConfigurationException;

import org.apache.log4j.Logger;
import java.util.Properties;

public class MyConfigurator extends Configurator {

 private Logger log = Logger.getLogger(MyConfigurator.class);

 public void configure(HttpClient httpClient,
 Properties properties) throws ConfigurationException {

 System.out.println("MyConfigurator:: just logging entries!");
 }
}

Chapter 8

[253]

Have a go hero – using a custom configurator
Go ahead and add the previous code to the src folder and configure the soapUI's
SOAPClient to use this custom configurator. Do you see the message being printed
out on the server Console?

SOAPProxy security pass through
When proxying a web service it is often necessary to consider the security requirements
of the HTTP transport of the proxied service; with the SOAPProxy action there are two
alternatives for specifying the basic authentication credentials of that connection:

�� The credentials are provided by the client of the ESB service

�� The SOAPProxy action will specify them directly

This behavior is controlled through the inclusion of the clientCredentialsRequired
property on the action. By default this property has the value true, requiring that all
necessary credentials will be provided by the client of the ESB service, however setting this
to false will cause the SOAPProxy action to ignore any client credentials in favor of those
within its HttpClient properties file.

The following is a sample configuration when using this property:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl" value=
"internal://jboss.ws:context=BookServiceSecured,endpoint=BookServiceS
ecured"/>
 <property name="file" value="/http.properties"/>

 <property name="clientCredentialsRequired" value="false"/>

</action>

Integrating Web Services with ESB

[254]

Cleaning up deployments
In JBoss Developer Studio expand the esbcontent folder of Chapter8. You will see there is
another war file named webservice-secured.war. This is the service that we will use in
the next section:

1.	 Rename the webservice.war file to "webservice.war.bak".

2.	 We will need to create a new File Filter to clean up our previous deployment,
the details for which we first covered in the Chapter 5 section entitled Creating
File Filters.

Create a filter, as shown in that section, then continue to complete the details.

3.	 In the New File Filter dialog, enter Name as "WSDLs", Root Directory as
"server/${jboss_config}/data/wsdl" and Includes as "**/*.wsdl".

Chapter 8

[255]

4.	 Click on OK and there should be an entry for WSDLs.

5.	 Expand to see the webservice.war folder, right-click on it and click Delete File.

Time for action – SOAPProxy security pass through
Let us now proxy the secured web service using SOAPProxy passing in the authentication
credentials from a properties file:

1.	 In JBoss Developer Studio, open the esbcontent/META-INF/jboss-esb.xml file
in Source mode.

2.	 Replace the following code:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl" value=
"internal://jboss.ws:context=BookService,endpoint=BookService"/>
</action>

With this code:

<action class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy"
 name="proxy-action">
 <property name="wsdl" value=
"internal://jboss.ws:context=BookService,endpoint=BookService "/>
 <property name="file" value="/http.properties"/>
 <property name="clientCredentialsRequired" value="false"/>
</action>

3.	 Click the Save button and the modified application should now be deployed in
the server.

Integrating Web Services with ESB

[256]

4.	 Select the src folder, expand it till the SendJMSMessage.java file is displayed in
the tree. Now click Run | Run As | Java Application.

The server Console will display the output as shown:

INFO [STDOUT] AFTER invoking jbossws endpoint:

INFO [STDOUT] [<env:Envelope xmlns:env='http://schemas.xmlsoap.
org/soap/envelope/'><env:Header></env:Header><env:Body><ns2:get
BooksResponse xmlns:ns2="http://chapter8.samples.esb.soa.jboss.
org/"><return>Great Expectations</return><return>Hound Of The
Baskervilles</return><return>The Da Vinci Code</return><return>The
Immortals Of Meluha</return></ns2:getBooksResponse></env:Body></
env:Envelope>].

What just happened?
We used SOAPProxy to invoke a BASIC secured web service. We used a JMS queue to send a
SOAP message. We passed the security credentials from an HttpClient properties file.

Have a go hero – security pass through
Look at the contents http.properties file. Modify the clientCredentialsRequired
property to true and see what is displayed on the server Console. Execute the
webservice_proxy_security quickstarts to see how SSL and BASIC are both
configured together.

Chapter 8

[257]

Summary
We learned a lot in this chapter about web service integration. Specifically, we covered:

�� How to automatically export ESB services through a web service endpoint

�� How to invoke externally hosted web services using SOAPClients

�� How to invoke co-located web services using SOAPProcessor

�� How to proxy another web service so that the internal details of this web service is
not exposed to the outside world or on to the bus

�� How to pass through credentials for proxied web services

We also discussed briefly about OGNL and XStream configurations, how to tweak
HttpClient properties, an HttpClient custom handler and a JAXWS custom handler.

Now that you have been introduced to the core concepts and features of JBoss ESB you
should have a better understanding of how to develop loosely coupled, robust, scalable,
distributed enterprise SOA Services and clients.

But this book is just a starting point. There are many other areas which can be covered in
order to expand your knowledge, such as clustering and load balancing, that we have not
had the time to delve into. You are encouraged to explore the JBoss ESB site, ask questions
on the forums and, perhaps, help others by answering their queries.

In the final section we have gathered together some additional resources that we think will
be of interest to you, helping to enrich your knowledge of this and other JBoss projects.
Happy reading and merry coding!

A
Where to go Next with JBoss ESB?

This book describes the core capabilities of JBoss ESB, and how you can apply them in
building your own services and applications. For all its functions, JBoss ESB does not exist
in a vacuum, however. One of JBoss ESB's great strengths is its wealth of integrations
with supporting tools and other JBoss technologies. We've briefly referred to some of
these integrations (for example, as in Chapter 4 where we describe JBoss ESB's library of
OOTB actions, including actions that support the integration of JBoss ESB with other JBoss
projects). This appendix expands on the discussion of JBoss ESB's integrations with other
JBoss technologies and tools and how you can use them with JBoss ESB.

Creating service definitions with the JBDS ESB editor
The "heart" of the configuration of a JBoss ESB based application is the set of services
and providers that you define in the application's jboss-esb.xml file. If your application
makes use of multiple services (and their actions and listeners) and providers, then this
file can grow quite large and can be troublesome to maintain by editing its raw XML. JBDS,
however, includes a GUI based ESB editor that makes it much easier to create and maintain
an application's configuration in the jboss-esb.xml file.

Where to go Next with JBoss ESB?

[260]

To invoke the editor, simply double-click on an application's jboss-esb.xml file in JBDS.
The editor looks like this (note that we'll use the "helloworld" quickstart's jboss-esb.xml
file as an example):

The major configuration elements of a JBoss ESB application are its providers and its
services. To define a new service, the editor presents you with a drop-down list of all
the supported provider types:

Appendix A

[261]

A service performs its tasks through the actions that you define. For out-of-the-box actions
implemented by JBoss ESB, the editor presents you with a drop-down list of the full set of
supported actions:

You can edit the properties for these OOTB actions in the editor. For example:

Where to go Next with JBoss ESB?

[262]

Custom actions that you create still require you to write the custom code for the actions. The
ESB editor enables you to view and modify the action properties. For example:

Using other UDDI providers (HP Systinet and SOA
Software Service Manager)
As mentioned in Chapter 7, JBoss ESB supports other UDDI providers as a registry provider.
Other than jUDDI, the two other UDDI implementations that have been tested with JBoss
ESB are HP Systinet (version 6.64):

http://www8.hp.com/us/en/software/software-product.
html?compURI=tcm:245-936884

And SOA Software ServiceManager (version 6.0.1):

http://www.soa.com/products/service_manager/

Documents with details on integrating one of these providers are available at the JBoss ESB
documentation page:

http://www.jboss.org/jbossesb/docs

Appendix A

[263]

Using other JBoss project technologies
We've discussed several times in this book how JBoss ESB enables you to re-use existing code
by creating services that "plug" into the ESB instead of having to reinvent the wheel in your
applications. JBoss ESB's integrations with other JBoss technologies serve a similar role in
that they enable your services to take advantage of the unique capabilities provided by
these technologies, without your having to recreate those capabilities in your own code.

JBoss Drools and rules-based services
What do we mean when we talk about "rules-based" programming?

Rules-based programming involves defining decision points that are controlled by rules. This
is similar to other types of programming, but what makes rules-based programming different
is that you separate the rules-related decision points from other programming logic. This
may sound like a hair-splitting difference, but it's a big deal because:

�� By separating these rules from your application's business logic code, you can enable
your programmers to concentrate on the code and your business process people,
who are probably not programmers, to concentrate on the business process rules.
This separation makes the development, and equally importantly, the maintenance
over time of the whole application easier.

�� Additionally, while it is possible for you to hand code all the rules-handling code
yourself (are you getting a mental picture of lots of very big nested if-then-else
statements yet?), a dedicated rules engine that can process rules-based programs
is going to be able execute rules more efficiently. This means that your rules-based
application will not only be easier to maintain, it will also run faster.

All of which leads us to JBoss Drools. (http://www.jboss.org/drools)

Drools is sometimes thought of as a rules-based programming language and runtime engine,
but it's really more than that. Drools is a unified and fully integrated solution for Business
Rules, Business Processes Management, Task Planning, and Event Processing. The JBoss
Drools project is organized into sub-projects, each of which handles one technology. The
Drools "Expert" sub-project covers the rules-based programming that you can use in the
JBoss ESB-Drools integration. The Expert sub-project includes the Rules API, the Rules
engine, and Eclipse-based editing and debugging tools.

Now, don't panic! Just because the sub-project's name is "Expert" doesn't mean that you
have to be an expert to learn how to program in Drools. What does a Drools rule look like?
Let's take a look at a rule.

Where to go Next with JBoss ESB?

[264]

Rules are written in the Drools Rule Language. The file extension for a Drools rule file is
.drl This language is generic in nature, so that it can handle rules for a large variety of
applications. This rules language can also be extended to handle specific types of rules
applications such as accounting, medical, and so on. These extensions are referred to as
Domain Specific Languages (DSL).

Now, every rule follows a basic form. There's a left-hand side (LHS) and a right-hand side
(RHS). The left side defines the when clause, in other words the condition that causes the
rule to execute. And, the right side defines the then, in other words, the consequences of
the rule being executed. Here's a simple example of a rule:

 rule "a simple rule"
 when (LHS)
 you need a rules-based app
 then (RHS)
 build it with JBossDrools!

Just like any other programming language, in order for a rule to do something useful, it
needs access to information to process. How does a rule access information? Through
Drools' working memory. The way it works is that information in the form of Java beans is
loaded into working memory. Drools refers to these beans as "facts"—since in the real world
your memory is full of facts too. Facts are typically packaged and distributed in Java jar files.
By using Java beans as facts, Drools is able to access the data elements in facts through the
beans' getter and setter methods.

When and if a rule is executed depends on the state of things in working memory. Changes in
working memory resulting from facts being inserted into working memory, changing or being
updated in working memory, or being removed from working memory, can cause the rules'
when conditions to become true and the result in one or more rules being executed.

The determination as to when a rule is executed is a major difference between rules-based
programming in Drools and procedural programming. How does Drools decide which rule
to run first when conditions in working memory satisfy multiple rules' LHS conditions? The
Drools rules runtime engine does not decide which rules to run based on a hard-coded
sequence of rules. What the rules engine does instead is it adds each rule with a matching
condition rule to its "agenda" of rules to run. If the agenda includes more than one rule, then
the rules engine has to perform conflict resolution on the rules to decide on the sequence in
which the rules should be run. The rules engine performs this conflict resolution based on a
combination of factors including:

Appendix A

[265]

�� How often the rule has fired in the past. If the rule has been run many times in the
past, then it is likely that it should be run often in the future too.

�� The rule's complexity. If a rule is more complex, then the rule engine is more likely
to consider applying it to the current condition.

�� The order in which the rules were loaded into working memory.

�� The salience of the rule. You define a Rule's salience (importance) as a property and
assign it a numeric value when you write a rule.

�� Invoking rules from a JBoss ESB service in the SOA platform, more recent rules are
given precedence.

The JBoss ESB-Drools integration enables you to access rules from your service's actions.
There are two JBoss ESB classes that support this:

�� org.jboss.soa.esb.actions.BusinessRulesProcessor

�� org.jboss.soa.esb.actions.DroolsRuleService

The BusinessRuleProcessor (this is sometimes referred to as "BRP") class uses rules
loaded from rules files. This works well for relatively simple rules services. But, loading lots
of rules from lots of files can be hard to maintain and makes for inefficient processing.

This service uses the RuleAgent class (org.drools.agent.RuleAgent) to either access
packages of rules from files, or, to handle a more complex environment, where you want
to use large numbers of complex rules services, and hundreds or even thousands of rules,
DroolsRuleService is the better choice. In a large scale implementation such as this, you
would not keep the rules in a correspondingly large number of standalone files. Instead,
you would use a Business Rules Management System (BRMS) such as Drools Guvnor
(http://www.jboss.org/drools/drools-guvnor.html).

Guvnor makes it easier to handle a production environment and a large number of rules
(and large numbers of people writing rules) by implementing a central repository (backed
by a database) for rules, with a web-based rules authoring interface that provides import/
export/archiving functions, audit trails for changes made to rules, an error log to help debug
problems, automated test development and execution, rule status tracking, and version
control. Guvnor makes it easier for business rules expert non-programmers to create rules
and for administrators to maintain large numbers of rules and manage multiple users.

Where to go Next with JBoss ESB?

[266]

Here's what Guvnor looks like:

JBoss ESB supports rules services that are either stateless or stateful. In the stateless model,
messages sent to the services contain all the facts to be inserted into the rules engine's
working memory, before the rules are executed. In the stateful model, where the execution
of the rules may take place in a session over an extended time period, several messages may
be sent to a rule service, and the rules may fire and update either the message or the facts
until a final message causes the service to end the session.

To see the JBoss ESB-Drools integration in action, take a look at any of the quickstarts whose
names begin with "business_ruleservice" or review the JBoss ESB-Drools integration in the
JBoss ESB Programmers' guide:

http://docs.jboss.org/jbossesb/docs/4.10/manuals/html/Programmers_
Guide/index.html

In the business_rules_service JBoss ESB quickstart, a business order placement system
is simulated. Part of this system assigns a sales discount percentage to incoming customer
orders, customer status (gold, platinum, and so on) and order priority.

Appendix A

[267]

The action that invokes the rules processor looks like this:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="BRP">
 <property name="ruleSet" value="MyBusinessRules.drl" />
 <property name="ruleReload" value="true" />
 <property name="object-paths">
 <object-path esb="body.orderHeader" />
 <object-path esb="body.customer" />
 </property>
</action>

Here's a fragment of the rules file (MyBusinessRules.drl) that is referenced in the action.
Note that the salience value of the logging rule is lower than that of the customer order
processing rules (as order processing is more time critical than logging). Also note how using
Drools enables you to move the business process rules definitions out of your application
programs and into a separate rules file.

The syntax of the rules follow the when/then model we discussed previously. The net result
of the execution of these rules is to define the appropriate customer discount based on the
customer status and order priority included in the messages processed by the ESB services.

rule "Logging"
salience 10
when
 order: OrderHeader()
 customer: Customer()
then
 System.out.println("Customer Status: " + customer.getStatus());
 System.out.println("Order Total: " + order.getTotalAmount());
end

rule "Customer Platinum Status"
salience 20
when
 customer: Customer(status > 50)
 order: OrderHeader(orderPriority == 3)
then
 System.out.println("Platinum Customer - High Priority -
 Higher discount");
 order.setOrderDiscount(8.5);
end

rule "Customer Gold Status"
salience 20

Where to go Next with JBoss ESB?

[268]

when
 customer: Customer(status > 10, status <= 50)
 order: OrderHeader(orderPriority == 2)
then
 System.out.println("Gold Customer - Medium Priority -
 discount ");
 order.setOrderDiscount(3.4);
end

JBoss Riftsaw and BPEL services
JBoss ESB's support for web services is described in detail in Chapter 8. This support is
augmented by the JBoss ESB integration with the JBoss' open source BPEL engine, RiftSaw
(http://www.jboss.org/riftsaw). RiftSaw enables you to integrate BPEL processes
(which are exposed as web services).

There are a couple of set-up tasks that you have to perform before you can use Riftsaw with
JBoss ESB, they are:

�� Install RiftSaw and deploy it to your JBoss AS Server

�� Install the BPEL Process Editor into JBDS

Let's install RiftSaw first. To do this, follow these steps: the entire set-up process is
documented in the RiftSaw Getting Started Guide (http://docs.jboss.org/riftsaw/
releases/2.3.0.Final/gettingstartedguide/html/)—we're covering the steps
that will work for the JBoss AS server and JBoss ESB installation used throughout the book.

1.	 Create a directory where you can build RiftSaw, and set it as the current
working directory:

	 cd /opt/local; mkdir riftsaw ; cd riftsaw

2.	 Download the RiftSaw 2.3.0 source from:

http://downloads.jboss.org/riftsaw/releases/2.3.0.Final/
riftsaw-2.3.0.Final-src.zip

3.	 Unzip the source file:

	 unzip riftsaw-2.3.0.Final-src.zip

4.	 Change your current working directory to the RiftSaw installation directory:

	 cd /opt/local/riftsaw-2.0-SNAPSHOT/install

5.	 Build RiftSaw:

	 mvn clean install -P docs

Appendix A

[269]

6.	 Edit the RiftSaw deployment.properties file and set org.jboss.esb.
server.home=/opt/local/jboss-5.1.0.GA and org.jboss.esb.home=/
opt/local/jbossesb-4.10.

7.	 Stop the AS server.

8.	 Deploy RiftSaw:

	 ant deploy

9.	 Restart the AS server.

10.	 Finally, you should see the RiftSaw quickstarts were installed into /jboss/local/
riftsaw/riftsaw-2.3.0.Final/samples/

Next, you should install the BPEL Process Editor into JBDS.

Strictly speaking, installing the BPEL editor is an optional step, but it's a tool that will make
your life a lot easier (Easier than trying to create and maintain BPEL process definitions by
editing raw XML, that is). The tool is a visual editor for BPEL processes. It's not installed
into the default JBDS download, but it's easy (and of course, it's also free) to install it. The
installation steps are as follows:

1.	 Open up JBDS and select Help | Install New Software, then select Available
Sites and then JBoss Developer Studio 4.0 Extras -https://devstudio.jboss.com/
updates/4.0/extras/:

Where to go Next with JBoss ESB?

[270]

2.	 Then select the BPEL editor:

The editor displays and enables you to edit BPEL process files graphically:

Note that the JBoss ESB-RiftSaw integration is similar to the JBoss ESB-JBPM integration
(explained in a different section of this appendix), with one important difference. When
we're dealing with BPEL, which means dealing with web services, all communication is
synchronous and follows a request-response pattern. This makes the RiftSaw-JBoss ESB
integration simpler than the corresponding JBPM-JBoss ESB integration in that just one
message exchange pattern (MEP) is supported. The JBoss ESB-RiftSaw integration
supports two types of operations:

Appendix A

[271]

�� Orchestrating ESB services from BPEL in Riftsaw to the ESB: "Orchestration"?
What's orchestration? Sorry, it's another term that's become a buzzword.
Orchestration got its name as it is similar to the way that an orchestra conductor
leads and directs the members of the orchestra. In contrast, "choreography" refers
to programs or processes operating as equal partners, just like a well-rehearsed
dance team. In the context of JBoss ESB and RiftSaw, "orchestration" refers to
an integration of multiple computer programs or software processes, where the
programs do not operate as co-equal peers, but rather one of them directs the
operation of the other. Orchestration enables a BPEL process to combine with JBoss
ESB services, but maintain control over the combination of services and the process.

Orchestration with RiftSaw is actually very simple as from the ESB's point of view,
the BPEL process is just another web service. This means that the ESB is able to
receive messages from a RiftSaw BPEL process just as it would from any other
web service.

�� Making calls from the ESB to a RiftSaw BPEL process definition: There are two ways
to do this, as follows:

�� First, as we just mentioned, as far as JBoss ESB is concerned, a RiftSaw BPEL
process is a web service. Accordingly, a JBoss ESB service can just invoke
a RiftSaw BPEL process just like any other web service that exposes a
WSDL definition.

�� Second, JBoss ESB includes an OOTB action that is used to directly invoke
a RiftSaw BPEL process. The org.jboss.soa.esb.actions.bpel.
BPELInvoke OOTB action can be used if RiftSaw is running in the same
Java VM as the JBoss ESB and if the BPEL process to be invoked is also
deployed to the local RiftSaw instance. In addition, the BPELInvoke action
lets you specify not just the RiftSaw process to be invoked, but also the
specific operation that you want to execute within that process.

In the esb_helloworld quickstart, the following action invokes the BPEL process:
Remember, that as far as the ESB is concerned, the BPEL process is just another web
service that is accessed through its WSDL.

<action name="action2"
 class="org.jboss.soa.esb.actions.bpel.BPELInvoke">
 <property name="service" value="{http://www.jboss.org/bpel/
 examples/wsdl}HelloService"/>
 <property name="operation" value="hello" />
 <property name="requestPartName" value="TestPart" />
 <property name="responsePartName" value="TestPart" />
</action>

Where to go Next with JBoss ESB?

[272]

And, here's the corresponding service definition in the WSDL:

<wsdl:service name="HelloService">
 <wsdl:port name="HelloPort" binding="tns:HelloSoapBinding">
 <soap:address location="http://localhost:8080/
 Quickstart_bpel_hello_worldWS"/>
 </wsdl:port>
</wsdl:service>

JBoss jBPM and Business Process Management
Just as "middleware" can be a confusing term, "Business Process Management (BPM)" can
also be an overused and misunderstood term. What it really comes down to is a systematic
approach to defining, reviewing, and ultimately making business processes more effective.
One of JBoss ESB's most powerful integrations is with JBoss jBPM. This integration enables
you to connect your business processes to ESB services.

Before we describe this integration, how it works, and how you can use it, we have to
be certain that we understand the definition of a "business process". In the context of
Business Process Management, a process is not an active, executing program or application.
We're talking about the process by which your business performs operations to fulfill a
business requirement. For example, a business process can define the tasks that a business
performs to execute a retail sale, request that a credit account be opened, restock a supply
warehouse, or send bills to customers. The means that your business uses to perform
these tasks can be manual, mechanical, involve software, or be a combination of all
these approaches.

jBPM is the JBoss open source BPM framework. jBPM provides an Eclipse-based
development environment, an administrative console, and a workflow management system.
In jBPM, processes are defined in a Java-like Process Definition Language (jPDL). The jBPM
development also includes a Graphical Process Design tool (GPD) that enables you to design
your processes visually. Note that the process has a start and an end, references to multiple
services, and transitions between states, based on the results of operations, including
conditional operations.

Appendix A

[273]

Finally, since a business process can be "long-running", where humans and computers
often have to wait for something to happen (such as waiting for a credit application to be
approved), jBPM includes a process engine runtime (this must be deployed to an application
server) that is able to maintain a process state (in a database) while it runs and waits.

 The JBoss ESB-jBPM integration supports two types of operations:

�� Calling a jBPM process from an ESB service

�� Orchestrating ESB services from a jBPM process

Orchestration enables a jBPM process to combine with JBoss ESB services, but maintain
control over the combination of services and the process.

To see the JBoss ESB-jBPM integration in action, take a look at any of the quickstarts
whose names begin with "bpm" or review the JBoss ESB-jBPM integration in the JBoss ESB
Programmers' guide:

http://docs.jboss.org/jbossesb/docs/4.10/manuals/html/Programmers_
Guide/index.html

Where to go Next with JBoss ESB?

[274]

Calling a jBPM process from a JBoss ESB service uses the org.jboss.soa.esb.services.
jbpm.actions.BpmProcessor action. Under the covers, this action uses the jBPM
command API to execute three possible operations:

�� NewProcessInstanceCommand: This creates a new ProcessInstance using a
process definition that has already been deployed to jBPM. The process instance is
left in the start state so that tasks referenced by the start node are executed.

�� StartProcessInstanceCommand: This is the same as
NewProcessInstanceCommand, except that the process instance that is created is
moved from the start position to the first node in the process graph.

�� CancelProcessInstanceCommand: This cancels a process instance.

All of these operations require ESB action attributes such as a process ID to be defined.
The action definitions that call the jBPM process can also specify additional information
in action configuration properties. For example, the esbToBpmVars property defines
the variables that are to be extracted from the message from the ESB and set in the
jBPM context.

In the bpm_orchestration2 JBoss ESB quickstart, a jBPM process is used to simulate a
sales order processing system. The following action is used to start a new jBPM process (after
that process has been previously deployed), to pass the process variables, and to map these
variables from information extracted from the messages the JBoss ESB service processes to
the jBPM process variables:

<action name="start_a_new_process_instance"
 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">
 <property name="command" value="StartProcessInstanceCommand" />
 <property name="process-definition-name"
 value="bpm_orchestration2Process"/>
 <property name="esbToBpmVars">
 <mapping esb="eVar1" bpm="counter" value="45" />
 <mapping esb="BODY_CONTENT" bpm="theBody" />
 </property>
</action>

Using Maven with JBoss ESB
Most of the examples that we have gone through so far have used Apache ant to compile
and package JBoss ESB archives. Maven is another very popular build tool. You can use
Maven as an alternative to ant to build, compile, and package your archives, and also run
your JBoss ESB tests.

Appendix A

[275]

Compiling with Maven
The source of JBoss ESB is built with ant, which means that no list of dependencies for the
jbossesb-rosetta.jar file exists, and this presents a problem for compiling your own
custom actions, listeners, and notifiers. The jbossesb-rosetta.jar file, which contains
all the code which you must extend from is not hosted in a public maven repository. In order
to be able to compile, you'll have to locate the jbossesb-rosetta.jar file and treat it as
a third-party JAR and install it into your local maven repository manually. This will install it
locally, but if you try to build your project on another machine, remember that you will want
to install it manually on that machine as well.

Then you'll want to create a pom for yourself—the following example sets the compiler to
JDK 1.5 and includes a number of important dependencies for compiling custom actions. You
can use it as an example if you wish to compile your custom actions or gateways inside your
Maven build:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <packaging>jar</packaging>
 <groupId>com.packtpub</groupId>
 <artifactId>jbossesb-example</artifactId>
 <version>1.0</version>
 <name>JBoss ESB Maven Example</name>
 <description>JBoss ESB Maven Example</description>
 <url>http://www.packtpub.com/</url>
 <properties>
 <jbossesb.version>4.10</jbossesb.version>
 </properties>
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>

Where to go Next with JBoss ESB?

[276]

 <plugins>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.5</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging-api</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.soa.esb</groupId>
 <artifactId>rosetta</artifactId>
 <version>4.10</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 </dependencies>
</project>

ESB packaging with Maven
You can use the JBoss packaging plugin to package an ESB archive. The ESB packaging plugin
contains a number of configuration options which allow the user to configure the archive
name, whether the archive is exploded or not, the locations of the deployment descriptor
and deployment file, and what artifacts to include within the archive. Documentation can
be found at http://mojo.codehaus.org/jboss-packaging-maven-plugin/esb-
mojo.html.

The following is an example of a pom.xml file using the packaging plugin to package an ESB
archive. This example can be used as a template in order to create your own maven pom files
to package your ESB archives.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

Appendix A

[277]

 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <packaging>jboss-esb</packaging>
 <groupId>com.packtpub</groupId>
 <artifactId>jbossesb-example</artifactId>
 <version>1.0</version>
 <name>JBoss ESB Maven Example</name>
 <description>JBoss ESB Maven Example</description>
 <url>http://www.packtpub.com/</url>
 <properties>
 <jbossesb.version>4.10</jbossesb.version>
 </properties>
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jboss-packaging-maven-plugin</artifactId>
 <version>2.2</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>jboss-esb</id>
 <phase>package</phase>
 <goals>
 <goal>esb</goal>
 </goals>
 <configuration>
 <deploymentDescriptorFile>
 src/main/resources/META-INF/jboss-esb.xml
 </deploymentDescriptorFile>
 <excludeAll>true</excludeAll>
 </configuration>

Where to go Next with JBoss ESB?

[278]

 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.5</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging-api</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.soa.esb</groupId>
 <artifactId>rosetta</artifactId>
 <version>4.10</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

How to test your ESB services
Now that you have created ESB services, how do you test them? Actions themselves are
generally easily testable—create a message with some test data, and you can simulate the
effect of executing a single action. What is more complex is integration testing—testing your
complete action chain and testing your service through the listeners and providers that you
set up within your configuration file. In the following section, we'll discuss how to perform
this sort of integration test so that you can add it into your build process.

Appendix A

[279]

Testing a single action
Actions alone are generally easily testable. You can create a message with some test data,
invoke the action's process method upon the message, and then make comparisons with the
resulting message or check for exceptions.

package org.jboss.soa.esb.samples.quickstart.helloworld;
import junit.framework.TestCase;
import org.jboss.soa.esb.actions.SystemPrintln;
import org.jboss.soa.esb.helpers.ConfigTree;
import org.jboss.soa.esb.message.Message;
import org.jboss.soa.esb.message.format.MessageFactory;

public class SimpleJUnitTestCase extends TestCase {
 private static final String MESSAGE_STRING = "helloworld";
 public void testSystemPrintln() throws Exception {
 Message message = MessageFactory.getInstance().getMessage();
 message.getBody().add(MESSAGE_STRING);
 ConfigTree config = new ConfigTree("config");
 SystemPrintln spl = new SystemPrintln(config);
 Message result = spl.process(message);
 String resultString = (String) result.getBody().get();
 assertEquals(MESSAGE_STRING, resultString);
 }
}

This code gives the following output:

junit:

 [junit] Running org.jboss.soa.esb.samples.quickstart.helloworld.
 SimpleJUnitTestCase

 [junit] Testsuite: org.jboss.soa.esb.samples.quickstart.helloworld.
 SimpleJUnitTestCase

 [junit] Message structure:

 [junit] [helloworld].

 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.4 sec

 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.4 sec

 [junit] ------------- Standard Output ---------------

 [junit] Message structure:

 [junit] [helloworld].

 [junit] ------------- ---------------- ---------------

 [junit]

 [junit] Testcase: testSystemPrintln took 0.198 sec

BUILD SUCCESSFUL

Total time: 2 seconds

Where to go Next with JBoss ESB?

[280]

AbstractTestRunner
Do you want to be able to execute your action chain via the service invoker in tests?
AbstractTestRunner allows you to do that, without the overhead of starting a
container. In order to use AbstractTestRunner, you specify your ESB configuration
files (jboss-esb.xml and jbossesb-properties.xml), and AbstractTestRunner
will take care of setting up the registry and controller.

AbstractTestRunner is included inside the test-util.jar in the ESB binary
distribution. If you are using ant, simply add it to your <junit/> classpath. If
you are using Maven, install it locally into your repository:

mvn install:install-file -Dfile=test-util.jar -DgroupId=org.jboss.soa.esb
\ -DartifactId=test-util -Dversion=4.10 -Dpackaging=jar

Once installed, add org.jboss.soa.esb:test-util as a dependency with test
scope. The following HelloWorldTest class makes an anonymous instance of the
AbstractTestRunner class, invokes the run() method, and sets the service config
to the helloworld-jboss-esb.xml configuration.

The test method is where we use ServiceInvoker. ServiceInvoker invokes the
FirstServiceESB:SimpleListener service with a message containing "helloworld".
The test method is invoked when the testRunner object executes the run() method.

package org.jboss.soa.esb.samples.quickstart.helloworld;
import junit.framework.TestCase;
import org.jboss.soa.esb.testutils.AbstractTestRunner;
import org.jboss.soa.esb.client.ServiceInvoker;
import org.jboss.soa.esb.message.Message;
import org.jboss.soa.esb.message.format.MessageFactory;
import org.jboss.soa.esb.actions.ActionProcessingException;

public class HelloWorldTest extends TestCase {
 public void test_async() throws Exception {
 AbstractTestRunner testRunner = new AbstractTestRunner() {
 public void test() throws Exception {
 ServiceInvoker invoker =
 new ServiceInvoker("FirstServiceESB",
 "SimpleListener");
 Message message =
 MessageFactory.getInstance().getMessage();
 message.getBody().add("helloworld");

 message = invoker.deliverSync(message, 10000);

 // Insert code here to verify your results

Appendix A

[281]

 assertEquals("helloworld", message.getBody().get());
 }
 }.setServiceConfig("helloworld-jboss-esb.xml");

 testRunner.run();
 }
}

Below is the configuration for our AbstractTestRunner example. The following action
chain prints the message using the SystemPrintln action and stores the message in
TestMessageStore:

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/
 trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://anonsvn.labs.jboss.com/labs/
 jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
 http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/
 product/etc/schemas/xml/jbossesb-1.0.1.xsd"
 parameterReloadSecs="5">

 <providers>
 <jms-provider name="JBossMQ"
 connection-factory="ConnectionFactory">
 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_gw"/>
 </jms-bus>
 <jms-bus busid="quickstartEsbChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_esb"/>
 </jms-bus>

 </jms-provider>
 </providers>

 <services>
 <service category="FirstServiceESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jms-listener name="JMS-Gateway"
 busidref="quickstartGwChannel"
 is-gateway="true"/>

Where to go Next with JBoss ESB?

[282]

 <jms-listener name="helloWorld"
 busidref="quickstartEsbChannel"
 </listeners>
 <actions mep="OneWay">
 <action name="action1"
 class="org.jboss.soa.esb.samples.quickstart.
 helloworld.MyJMSListenerAction"
 process="displayMessage"/>
 <action name="action2"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 </action>
 <!-- The next action is for Continuous
 Integration testing -->
 <action name="testStore"
 class="org.jboss.soa.esb.actions.TestMessageStore"/>
 </actions>
 </service>
 </services>
</jbossesb>

AbstractTestRunner is a great way to test your actions in combination with others in
an action chain, but if you want to use your full ESB configuration—using providers and
listeners—you'll have to run an in-container test (see the Arquillian section).

TestMessageStore
If you want to test the aggregated results of your action chain, you have to store the
result message somewhere. JBoss ESB provides an org.jboss.esb.actions.
TestMessageStore action which logs the message result and any exceptions thrown.

TestMessageStore is very important for the situation in which you want to test in a
container against your deployed services. In this situation, you need to be able to receive the
exceptions in the chain and the result message, the TestMessageStore action allows you
to store both. In the tests that validate the quickstart examples within the JBoss ESB project,
a small MBean is created which stores a TestMessageStoreSink that can be queried
through JMX. This allows the tests to check results on the server itself without having to
worry about receiving the results from a file or checking the server log file, where timing
or permissions issues can lead to tests going astray.

Appendix A

[283]

In order for you to access TestMessageStore, you most likely need to reproduce the sort
of MBean that JBoss ESB uses internally for its integration tests. Download the esb source
and examine:

�� qa/quickstarts/src/org/jboss/soa/esb/server/
QuickstartMessageStoreImplMBean.java

�� qa/quickstarts/src/org/jboss/soa/esb/server/
QuickstartMessageStoreImpl.java

�� qa/quickstarts/src/org/jboss/soa/esb/server/
QuickstartMessageStore.java

�� qa/quickstarts/resources/server/META-INF/jboss-service.xml

If you compile the three sources and jboss-service.xml into an SAR, you can deploy it
and then start querying the MBean for results once you have invoked your service. The
qa/quickstarts/src/org/jboss/soa/esb/quickstart/test/ tests within the
JBoss ESB source are very good examples of how to access the MBean and retrieve
message results.

Once that is working, the TestMessageStore action is inserted in the action chain of your
jboss-esb.xml configuration.

<actions>
 <action name="action2"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
</action>
<!-- The next action is for Continuous Integration testing -->
 <action name="testStore"
 class="org.jboss.soa.esb.actions.TestMessageStore"/>
</actions>

After invoking your service, you should see your action chain execute, and a log message
that shows that your message was added into TestMessageStoreSink (output from the
helloworld quickstart shown):

01:17:44,937 INFO [STDOUT] TestMessageStoreSink: Adding message: Hello
World

Arquillian
Once you build an ESB archive, you also want to test it. Unit tests are excellent for testing
your business logic, but you also want to test how your services work when your archive is
deployed to a container. What's the easiest way to deploy, run tests, and then subsequently
undeploy all of your test resources? All sorts of issues lurk here—how do you tell whether
the container or your archive is fully deployed and ready to test? How do you ensure your
archive and resources are fully removed and undeployed by the time your next test runs?

Where to go Next with JBoss ESB?

[284]

Arquillian (http://www.jboss.org/arquillian/) is a test framework that focuses on
making container deployment very easy within your tests. It allows you to test within an
embedded or a remote container. In terms of testing JBoss ESB, Arquillian only supports
testing services in a remote container, but it is a big advantage in integration testing your
ESB archives because it manages the container lifecycle for you.

In this first example, we have a previously built ESB archive. In order for Arquillian to deploy
it, it needs to be created through ShrinkWrap (http://www.jboss.org/shrinkwrap),
so we wrap it in a file, we import it as a ZipFile object and create it as a JavaArchive object.
Arquillian will now deploy it during the execution of the test.

package org.jboss.soa.esb;

import java.io.File;
import java.util.zip.ZipFile;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.importer.ZipImporter;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(Arquillian.class)
public class ArquillianBinaryTest {
 private static final String ESB_LOCATION =
 "/src/jbossesb/product/samples/quickstarts/
 helloworld_book/build/QuickStartHelloWorld.esb";

 @Deployment(testable=false)
 public static JavaArchive createTestArchive() throws Exception {
 File file;
 ZipFile existingZipArchive = null;
 file = new File(ESB_LOCATION);
 existingZipArchive = new ZipFile(file);
 return ShrinkWrap.create(JavaArchive.class, "test.esb")
 .as(ZipImporter.class)
 .importZip(existingZipArchive)
 .as(JavaArchive.class);
 }

 @Test
 public void testMethod() throws Exception {
 // Insert your test logic and execution here
 }
}

Appendix A

[285]

The second Arquillian example shows how to create our deployment as a ShrinkWrap
archive. We import the necessary configuration and descriptor files as well as a custom
action, and then the resulting archive is deployed through ShrinkWrap. This is a great
option to take if you want to test alternative configurations.

package org.jboss.soa.esb;
import java.io.File;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.asset.FileAsset;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.jboss.soa.esb.samples.quickstart.helloworld.
MyJMSListenerAction;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(Arquillian.class)
public class ArquillianTest {

 @Deployment(testable=false)
 public static JavaArchive createTestArchive() throws Exception {
 return ShrinkWrap.create(JavaArchive.class, "test.esb")
 .add(new FileAsset(new File("jbm-queue-service.xml")),
 "jbm-queue-service.xml")
 .addClass(MyJMSListenerAction.class)
 .addAsManifestResource("jboss-esb.xml")
 .addAsManifestResource("deployment.xml");
 }

 @Test
 public void testMethod() throws Exception {
 // Insert your test logic and execution here
 }
}

Cargo
Cargo (http://cargo.codehaus.org/) is an alternative to using Arquillian. Cargo is a set
of build tools which allow you to control a Java container as part of your Maven or ant build
cycle. You can start a container pre-test, deploy your ESB archive, and then run tests, either
using ServiceInvoker or one the listeners that you have set up (file, JMS, and so on) to
test your application.

Where to go Next with JBoss ESB?

[286]

There are multiple ways you can deploy your newly built ESB archive to the Cargo-controlled
container that you are testing. You can copy the archive directly into the deploy directory as
part of the build, and then clean up by deleting it once your tests are finished. Alternatively
if you are using Maven, you can use the jboss-maven-plugin's jboss:hard-deploy/hard-
undeploy goal to copy it to the deploy directory. Finally, you can use Cargo to either locally
or remotely deploy to your container using the cargo:deploy goal.

Chapter bibliography
�� http://soa.dzone.com/articles/jbossesb-drools-integration

�� http://soa.dzone.com/news/impatient-start-jboss-riftsaw-0

�� http://soa.dzone.com/news/bpel-esb-and-back-introduction

�� http://soa.dzone.com/news/esb-bpel-continuing-riftsaw

�� http://planet.jboss.org/post/hanging_together_on_the_soa_
platform_introduction_to_the_esb_jbpm_integration

B
Pop-quiz Answers

Chapter 1
1.	 True.

2.	 Server, binary, and source.

3.	 False, although commercial support is available.

4.	 False, leaving a detailed post with attached files and configuration information
is preferred.

5.	 A set of configurations and services to start up at runtime.

6.	 Copy one of the existing profiles to another name in <jboss-as>/server. You
would want to make a copy to be able to refer to the original configuration files and
to start over again without having to reinstall in case something went wrong.

7.	 False! They contain valuable information.

8.	 MBeans are managed beans that abstract objects and monitor and display attributes
of services, as well as provide methods for controlling them.

Chapter 2
1.	 (c) In the quickstarts.properties file

2.	 (a) deployment.xml

3.	 (c) The Add and Remove feature in JBDS

4.	 (a) In the readme.txt files

5.	 (c) By using the JBoss AS admin console

Pop-quiz Answers

[288]

Chapter 4
1.	 (b) The process method.

2.	 (c) With content-based routing.

3.	 (b) A notifier OOTB action.

4.	 (b) A converter/transformer.

5.	 (a) SOAPProcessor.

Chapter 7
1.	 (a) Clustering a service over multiple nodes.

2.	 (a) Universal Description, Discovery, and Integration.

3.	 (a) Abstraction on top of XML registries.

4.	 (b) Stale EPRs might accumulate.

5.	 (a) Tracking the endpoints of a service at runtime.

6.	 (a) Use an MBean in the JMX console.

6.	 (a) jUDDI.

7.	 (a) A runtime address.

Index
Symbols
.ear, Java archives 33
.esb, Java archives 33
.jar, Java archives 33
.sar, Java archives 33
.war, Java archives 33
<actions> tag 190
<activation-config> element 198
<camel-gateway> element 189
<groovy-listener> element 194
<http-bus> element 187
<jbr-bus> element 192
<jbr-provider> element 192
<listeners> tag 185, 193

A
action chain

about 121
sample 121, 122

action class 120
actions

about 119
types, custom actions 120, 123
types, out-of-the-box actions 120

Address already in use exceptions 39
admin console

accessing 50
URL 39

affiliated registries 204
allowedPorts attribute 184
ant deploy command 138

ant runtest command 49, 139, 145
ant sendesb 49
Arquillian

about 284, 285
example 285

a ZipFile 284

B
Bean Scripting Framework. See BSF
boot.log 35
BPEL processes

JBoss Riftsaw 146
BPEL services 268-270
BRMS 265
BSF

URL 132
bus

graphical representation 150
Business Process Management

about 145
CancelProcessInstanceCommand 145
NewProcessInstanceCommand 145
StartProcessInstanceCommand 145

Business Rules 263
Business Rules Management System. See BRMS
ByteArrayToString action 135

C
camel gateway

about 188
provider configuration 188

[290]

quickstart, running 189
Cargo 285
Class not found (CNF) exceptions 39
Client API

UDDI Subscription Listener API set 205
 UDDI Value Set Caching API set 205

clientCredentialsRequired property 253
co-located web services

custom handlers 244
SOAPProcessor 245

compose method 178
composite services

about 112
service chaining 112
Service Continuations 114

ConfigProperty annotation
configuring, elements used 127

ConfigTree
using, for JBoss ESB configuration 95

ConfigTree annotation 128
ConfigTree parameter 99, 128
custom actions

about 120, 123
annotations, using 127, 128
JavaBean actions 126
lifecycle actions 123-125

custom actions, annotations used
about 127, 128
ConfigProperty annotation, configuring 127
lifecycle annotations 128
Process methods, defining 129, 130

custom registry solutions 209

D
database, jUDDI

about 206, 207
registry database, examining 208, 209

decompose method 178
deploy directory 286
destroy methods 123
displayMessage method 91, 125
Drools 146
Drools Guvnor 265
DSL 264

dynamic method
about 105
multiple process methods 106

E
EBWS

other security mechanisms 233
securing 229, 230
security element, adding to 230-233

End-point reference. See EPR
Endpoint References 150
Enterprise Service Bus. See ESB
EPR

about 210-212
cleaning 214

ESB
about 77
building blocks, actions 119
message structure, examining 80

ESB-aware provider 46
ESB runtime

setting up, in JBDS 63-68
ESB services

exporting, as web service 225, 226
testing 278

ESB services, exporting as web service
about 225
actions, implementing 228, 229
sample, running as 226, 227
transformer, adding 229

ESB services test
AbstractTestRunner 280-282
Arquillian 283-285
Cargo 285
single action, testing 279
TestMessageStore 282, 283

esbToBpmVars property 274
ESB-unaware provider 46
ESB web service client

about 234
ESB SOAP client 234
SOAPUI client 234
Wise SOAPClient 239

Event Processing 263

[291]

exceptions
Address already in use exceptions 39
Class not found (CNF) exceptions 39
Illegal state exceptions 39
Java not found exceptions 39

F
faultXsd attribute 225
federation 212, 213
file attribute 250
File gateway

about 182
using 182, 183

file provider
structure 173
using 173

FTP gateway
about 189
quickstart, running 189

FTP provider 171, 172
functional groups, OOTB

BPEL Processes 132
Business Process Management 131
EJBs 131
Miscellaneous 132
notifiers 131
routers 131
Rules Services 131
scripting 131
smooks message fragment processing 131
transformers/Converters 131
web services/SOAP 131

G
gateway

about 176
behavior 177
messages, composing 177

getContext() method 94
Graphical Process Design tool (GPD) 272
Groovy gateway

about 194
variables 194

groovy_gateway quickstart 195
Groovy script 194
Guvnor 265, 266

H
HP Systinet 262
HttpClient

custom configurator 252, 253
sample properties 251, 252
SOAPClient 250
SOAPProxy 251
tweaking 250

HTTP gateway
about 184
asynchronous behavior, using 187
HTTP bus 187
HTTP provider 187
minimal configuration 184, 185
using 185, 186

HTTP provider
about 187
configuration 187
configuring 188
exception element 187

I
Illegal state exceptions 39
Initialize methods 128
invmLockStep attribute 165, 170
inVMLockStepTimeout attributes 170
InVM message delivery

controlling 164
lock-step delivery, using 165-168

inVMPassByValue property 163
InVM threads

about 168
listener threads, increasing 168, 170

InVM transport
about 157, 158
body address, examining 163
caveats 162
GLOBAL attribute 157
NONE attribute 157
optimization 162
transactions 158

Invoke button 210
is-gateway attribute 189

[292]

J
JAAS 117
Java API for XML Registries. See JAXR
Java archives

.ear 33

.esb 33

.jar 33

.sar 33

.war 33
about 284

Java Authentication and Authorization Service.
See JAAS

Java-like Process Definition Language (jPDL) 272
Java Management Extension (JMX) console 37
Java Message Service API 171
Java not found exceptions 39
JAXR 212
JBDS

about 54, 78, 151, 179, 222
Chapter3 app, opening 78, 79
Chapter8 application, preparing 222-224
consoles, switching 224
downloading 54
ESB runtime, setting up 63-68
File Filter, creating 151-153
installing 55-60
running 60-62
quickstart, deploying 70-73
using, to run quickstart 68, 70

JBDS ESB editor
configuration elements, providers 260
configuration elements, services 260
invoking 260
service definitions, creating 259-262

JBoss 5.1 Runtime 78, 179, 222
JBoss 5.1 Runtime server 224
JBoss Application Server. See JBoss AS
JBoss AS

downloading 25-28
installing 25-28
JBoss ESB, deploying 30-32

JBoss Developer Studio. See JBDS
JBoss Drools 263, 264

JBoss ESB
bus 150
core capabilities 259
deploying, to JBoss AS 30-32
deployment files 46
distribution, selecting 28, 29
documentation page 262
downloading 24, 25
Drools integration 266
Helloworld quickstart 47
installation, testing 34
issues, handling 39
Maven, using 274
quickstart, deploying 48

jbossesb-4.10-src.zip 29
jbossesb-4.10.zip

about 29
contents, reviewing 30
Contributors.txt 30
docs 30
install 30
javadocs 30
JBossEULA.txt 30
lib 30
README_FIRST.txt 30
samples 30
xml 30

JBoss ESB archive
admin console, accessing 50
deploying, remotely 50
deployment, performing 51, 52

JBoss ESB classes 265
JBoss ESB configuration

ConfigTree, using 95
JBoss ESB configuration, ConfigTree used

about 95
attributes, accessing 96, 98
ConfigTree hierarchy, traversing 96
property configuration, in jboss-esb.xml file 95

JBoss ESB, distribution
jbossesb-4.10-src.zip 29
jbossesb-4.10.zip 29
jbossesb-server-4.10.zip 29
selecting 29

JBossESB-Drools integration 265

[293]

JBoss ESB-jBPM integration
in action 273
operations 273

JBoss ESB-RiftSaw integration
operations 270, 271

jbossesb-server-4.10.zip 29
JBoss ESB services

actions 119
jboss-esb.xml file 259
JBoss project technologies

about 263
BPEL services 268-270
JBoss Drools 263, 264
JBoss jBPM 272
JBoss Riftsaw 268
rules-based programming 263

JBoss Remoting 245
JBoss Remoting gateway

about 192
asynchronous JBR, using 194
asyncResponse property 192
provider configuration 192
serviceInvokerTimeout property 192
synchronous property 192
using 193

JBoss Riftsaw
about 146
web services, using 146

JBoss WS console 218
jbossws-context property 245
jbossws-endpoint property 245
JCA gateways

about 198
using 198

JMS gateway
about 180
using 180, 181

JMS provider
using 171

jUDDI
characteristics 205
monitoring abilities 214
query counts, examining 215
UDDI server, querying 216-218
URL 205
websites 218

K
key

dumpSOAP key 237
keyedReference validation 205

L
lifecycle methods 100, 101
listeners 46
load balancing 213
lock-step delivery 164
logs

application, deployment in server log 36
boot.log 35
files 35
finding 35
server.log 35

LongToDateConverter action 135

M
Managed Beans (MBeans) 38
Maven

compiling with 275, 276
ESB packaging 276, 278
JBoss ESB, using 274

maxThreads property 168
MBean

examining 38
MEP

about 106, 226
OneWay 107
RequestResponse 107
routing information 107
undefined 107

mep attribute
about 107
OneWay MEP 107
RequestResponse MEP 107
value specified 107

mep property 122
message body

about 84
body contents 88
header 89

[294]

main payload 85
main payload, examining 85-88
named objects 85

message composing
example 178, 179
steps 178

message context
about 93
printing 94

Message Exchange Pattern. See MEP
message header

about 89
additional contents 93
correlation 90
EPRs 90
examining 91, 92
information, routing 89, 90
MessageID 90
message identity 90
RelatesTo 90
service actions 91

message inflow 198
Message Oriented Middleware. See MOM
MessagePayloadProxy class 135
message structure, ESB

applications, deploying 84
attachment 80
body 80, 84
context 80, 93
examining 80
header 80, 89
loosely coupled 80
message, examining 80
messages, implementing 84
printing 81-83
properties 80
reusable 80
self contained 80
validation 94

message validation
about 94
enabling 95

MOM 108
MyAction class 106
MyAction lockStepAction method 168

N
New File Filter dialog 254
NewProcessInstanceCommand 145
Nodes

about 204
Inquiry API set 204
Publication API set 204
Replication API set 204
Security Policy API set 204

notifiers
about 144, 176
behavior 177
NotifyConsole 144
NotifyFiles 144
NotifyFTP 144
NotifyQueues 144
NotifySQLTable 144
NotifyTopics 144
working 144, 145

O
Object-Graph Navigational Language. See OGNL
ObjectInvoke ction 135
ObjectToCSVString action 135
ObjectToXStream action 135
OGNL 238
OGNL notation 238
OOTB

about 131
BPEL processes 146
Business Process Management 145
Drools 146
EJBs, invoking 133
functional groups 131
notifiers 144
scripting 132
Transformers/converters 135
web services 134

Organization for the Advancement of Structured
Information Standards 203

org.jboss.soa.esb.actions.annotation.OnExcep-
tion annotation 131

org.jboss.soa.esb.actions.annotation.OnSuccess
annotation 130

[295]

org.jboss.soa.esb.actions.annotation.Process
annotation 129

org.jboss.soa.esb.client.ServiceInvoker utility
class 108

org.jboss.soa.esb.configure.ConfigProperty
annotation 127

org.jboss.soa.esb.failure.detect.removeDeadEPR
property 214

org.jboss.soa.esb.http.HttpRequest.getRequest()
188

org.jboss.soa.esb.lifecycle.annotation.Destroy
annotation 128

org.jboss.soa.esb.lifecycle.annotation.Initialize
annotation 128

org.jboss.soa.esb.loadbalancer.policy property
213

Out-of-the-box. See OOTB
outXsd attributes 225, 226

P
PersistAction action 135
printLine() method 97
printMessage() method 97
process attribute 121
processException method 102
processing methods

about 102
AbstractActionPipelineProcessor method 105
exceptions, examining 103-105

processSuccess method 102, 130
profile

modifying 33
provider configuration

about 170
file provider 173
FTP provider 171
JMS provider 171
SQL provider 172

providers
about 44
attributes 45
busid 45
message filter 45
name 45

Q
quickstart

example programs 42
examples 42

R
Red Hat Enterprise Linux (RHEL) 54
registry

about 202-204
actions 202
diagram 202
hard crash 213

registry interceptors
about 214
setting 214

responseAsOgnlMap property 238
rewrite-endpoint-url property 245
RiftSaw

about 268
installing 268, 269
of set-up tasks 268

rolesAllowed attributes 229
routers

actions, ContentBasedRouter 141
actions, JMSRouter 140
actions, Aggregator 140
actions, EchoRouter 140
actions, HttpRouter 140
actions, StaticRouter 141
actions, StaticWiretap 141
content-based routing, implementing 142, 143

RuleAgent class 265
rules-based programming 263
run() method 280

S
SAML 230
SAML capabilities 233
scripting

actions 132
GroovyActionProcessor 132
ScriptingActio 132

Security Assertion Markup Language. See SAML

[296]

security context
about 117
encrypted authentication request 117
encrypted, pre-authenticated principal 117

server.log 35
service

binding template 204
business entity 203
business services 203
category 46
description 46
name 46
technical data models 204

service chaining
about 112, 113
more services, adding 114

Service Continuations
benefits 114, 115

ServiceInvoker
about 108
asynchronous delivery 109
exceptions, examining 110, 111
MEPs, experimenting with 112
sync delivery, experimenting with 112
synchronous delivery 109
transport mechanism 108

service pipeline
about 99
lifecycle methods 99-101
processing methods 101, 102

ShrinkWrap 284
Smooks

about 136
quickstart, running 138, 139
routers 140
transformation types, enrichment 136
transformation types, Java Binding 136
transformation types, Message Splitting 136
transformation types, persistence 136
transformation types, Templating 136
transformation types, validation 137
using, situations 137

SmooksAction action 136
SOAPProcessor

about 245
jbossws-context property 245

jbossws-endpoint property 245
rewrite-endpoint-url property 245
SOAPProcessor client, incorporating 245, 247

SOAPProxy
deployments, cleaning up 254, 255
incorporating, into application 248, 249
security pass through 253-256

SOAPProxy action 253
SOAPUI

URL 216
SOAPUI client

about 234
ESB SOAP client 234-236
OGNL 238
request processing 236, 237
request transformations 237
response processing 238
XStream conversion 238

soapUI tool 234
SOA Software ServiceManager 262
SQL gateway

about 195
using 195-198

SQL provider
configuration 172, 173

StartProcessInstanceCommand 145
statusCode attribute 185
synchronousTimeout property 184

T
Task Planning 263
TestMessageStore action 283
transactions, InVM transport

non transacted InVM listener 162
testing 159-162

transactions
about 115, 116
atomicity 115
consistency 115
durability 116
isolation 116

Transformers/converters
about 135
ByteArrayToString 135
LongToDateConverter 135

[297]

ObjectInvoke 135
ObjectToCSVString 135
ObjectToXStream 135
PersistAction 135
Smooks 136
SmooksAction 136
XStreamGToObject 135

transportGuarantee attribute 187
transport mechanism, ServiceInvoker

(JMS) InVM 108
about 109
File/FTP/FTPS/SFTP 108
Java Message Service 108
SQL 108

Transport providers
about 154
file provider, using 155-157
InVM transport 157, 158
temp file contents, examining 157

U
UDDI

about 203
building blocks 203
Client API 205
Node API 204
services 203

UDDI providers
HP SOA Systinet 209
HP Systinet 262
SOA Software Service Manager 209, 262

UDDI v3 specification 218
UDP gateway

about 189
configuration 190
handlerClass attribute 190
Host attribute 190
Port attribute 190
using 190-192

Uniform Resource Identifier. See URI
Uniform Resource Name. See URN
Universal Description, Discovery,

and Integration. See UDDI
URI 90
urlPattern attribute 184
URN 90

V
validate attribute 94, 225

W
W3C WS-Addressing specification 89
webservice attribute 225
web service proxies

about 248
SOAPProxy 248

web services
ESB services, exporting as 225, 226
integrating, with ESB 221
quickstart, running 134
SOAPClient 134
SOAPProcessor 134
WISE SOAPClient 134

when clause 264
Wise SOAPClient

about 239
custom handlers 243, 244
incorporating 240, 241
request processing 241-243
response processing 241-243

Wise (Wise Invokes Services Easily) 239

X
XML Schema Document. See XSD
XSD 94
XStream 238

Thank you for buying

JBoss ESB Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

JBoss AS 7 Configuration, Deployment and
Administration
ISBN: 978-1-84951-678-5 Paperback: 380 pages

Build a fully-functional, efficient application server
using JBoss AS

1.	 Covers all JBoss AS 7 administration topics in a
concise, practical, and understandable manner,
along with detailed explanations and lots of
screenshots

2.	 Uncover the advanced features of JBoss AS,
including High Availability and clustering, integration
with other frameworks, and creating complex AS
domain configurations

3.	 Discover the new features of JBoss AS 7, which has
made quite a departure from previous versions

Drools Developer’s Cookbook
ISBN: 978-1-84951-196-4 Paperback: 273 pages

Over 40 recipes for creating a robust business rules
implementation by using JBoss Drools rules

1.	 Master the newest Drools Expert, Fusion, Guvnor,
Planner and jBPM5 features

2.	 Integrate Drools by using popular Java Frameworks

3.	 Part of Packt’s Cookbook series: each recipe is
independent and contains practical, step-by-step
instructions to help you achieve your goal.

Please check www.PacktPub.com for information on our titles

Java EE 6 with GlassFish 3 Application Server
ISBN: 978-1-849510-36-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java EE 6
applications to be deployed to this server

1.	 Install and configure the GlassFish 3 Application
Server and develop Java EE 6 applications to be
deployed to this server

2.	 Specialize in all major Java EE 6 APIs, including new
additions to the specification such as CDI and JAX-RS

3.	 Use GlassFish v3 application server and gain
enterprise reliability and performance with less
complexity

4.	 Clear, step-by-step instructions, practical examples,
and straightforward explanations

Application Development for IBM WebSphere
Process Server 7 and Enterprise Service Bus 7
ISBN: 978-1-847198-28-0 Paperback: 548 pages

Build SOA-based flexible, economical, and efficient
applications for IBM WebSphere Process Server 7
and Enterprise Service Bus 7

1.	 Develop SOA applications using the WebSphere
Process Server (WPS) and WebSphere Enterprise
Service Bus (WESB)

2.	 Analyze business requirements and rationalize your
thoughts to see if an SOA approach is appropriate
for your project

3.	 Quickly build an SOA-based Order Management
application by using some fundamental concepts
and functions of WPS and WESB

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright

	Credits

	About the Authors

	About the Reviewers

	www.PacktPub.com

	Table of Contents

	Prologue—the need for an ESB
	Preface
	What is "JBoss"?
	
JBoss is also a community

	What is Open Source and what are its advantages?
	What is middleware?
	What is an SOA? What is an ESB?
	What is JBoss ESB?
	What capabilities does JBoss ESB have?
	Why JBoss ESB?
	What is JBoss ESB's relationship with SOA?
	What resources does the JBoss ESB community provide?
	Online forums with a difference
	The user forum
	The developer forum

	Other useful documents
	Mailing lists
	JIRA announcements and bugs
	Live chat

	What are the JBoss project and product models?
	What this book covers
	Chapter bibliography

	Chapter 1:
Getting Started
	Downloading JBoss ESB
	Downloading and installing an application server
	Time for action – downloading and installing JBoss AS
	Choosing which JBoss ESB distribution is right for you
	Time for action – downloading and installing jbossesb-4.10.zip
	Reviewing the contents of jbossesb-4.10.zip

	Time for action – deploying JBoss ESB to JBoss AS
	Keeping things slim
	Time for action – modifying a profile
	Deployable Java archives

	Testing the installation
	Time for action – testing the installation
	Looking at logs
	Finding the logs

	Time for action – viewing the deployment of an application in the server.log

	Consoles
	Time for action – examining an MBean
	What do you do if you see an error?
	Summary

	Chapter 2: Deploying your Services to the ESB
	The quickstarts
	Anatomy of a deployment
	Defining the providers, services, and listeners
	Other deployment files
	Helloworld quickstart

	Time for action – deploying the quickstart
	Deploying a JBoss ESB archive remotely
	Time for action – accessing the admin console
	Time for action – performing the deployment
	Introduction to JBDS
	Time for action – downloading JBDS
	Time for action – installing JBDS
	Running JBDS
	Time for action – setting up the ESB runtime in JBDS
	Time for action – using JBDS to run the quickstart
	Deploying the quickstart in JBDS
	Time for action – deploying the quickstart
	Summary

	Chapter 3:
Understanding Services
	Preparing JBoss Developer Studio
	Time for action – opening the Chapter3 app
	Examining the structure of ESB messages
	Examining the message

	Time for action – printing the message structure
	Message implementations
	The body

	Time for action – examining the main payload
	The header
	Routing information
	Message identity and correlation
	Service action

	Time for action – examining the header
	The context
	Message validation

	Configuring through the ConfigTree
	Configuring property in the jboss-esb.xml file
	Traversing the ConfigTree hierarchy
	Accessing attributes

	Time for action – examining configuration properties
	Service pipeline and service invocation
	Lifecycle methods
	Processing methods

	Time for action – examining exceptions
	Dynamic methods
	MEP (Message Exchange Pattern) and responses
	ServiceInvoker
	Synchronous delivery
	Asynchronous delivery

	Time for action – examining exceptions
	Composite services
	Service Chaining
	Service Continuations

	Transactions
	Security context
	Summary

	Chapter 4:
JBoss ESB Service Actions
	Understanding actions
	What is an action class?
	The action chain
	Custom actions
	Lifecycle actions
	JavaBean actions
	Custom actions using annotations
	Lifecycle annotations
	Processing annotations

	Out-of-the-box (OOTB) actions—how and when to use them
	Scripting
	Services—invoking EJBs
	Web services/SOAP

	Time for action – running the quickstart
	Transformers/converters
	Smooks message fragment processing

	Time for action – running the quickstart
	Routers

	Time for action – implementing content-based routing
	Notifiers

	Time for action – let's see how notifiers work
	Business Process Management
	Drools
	BPEL processes

	Chapter bibliography
	Summary

	Chapter 5:
Message Delivery on the Service Bus
	The bus
	Preparing JBoss Developer Studio
	Time for action – creating File Filters
	Time for action – opening the Chapter5 app
	Transport providers
	Time for action – using a File provider
	InVM transport
	Transactions with InVM transport

	Time for action – testing InVM transactions
	InVM message optimization
	Controlling InVM message delivery

	Time for action – using lock-step delivery
	InVM threads

	Time for action – increasing listener threads
	Provider configurations
	JMS provider
	FTP provider
	SQL provider
	File provider

	Summary

	Chapter 6:
Gateways and Integrating with External Clients
	What is a gateway and a notifier?
	How do we compose messages?
	Simple composer example

	Preparing JBoss Developer Studio
	The JMS gateway
	Time for action – using the JMS gateway
	The File gateway
	Time for action – using the File gateway
	The HTTP gateway
	Time for action – using the HTTP gateway
	The HTTP bus and HTTP provider

	The Camel gateway
	The FTP gateway
	The UDP gateway
	Time for action – using the UDP gateway
	The JBoss Remoting gateway
	Time for action – using the JBR gateway
	The Groovy gateway
	The SQL gateway
	Time for action – using the SQL gateway
	The JCA gateway
	Summary

	Chapter 7
: How ESB Uses the Registry to Keep Track of Services
	The registry—what, how, and why?
	UDDI—the registry's specification
	jUDDI—JBoss ESB's default registry
	Configuring jUDDI for different protocols
	Looking at jUDDI's database

	Time for action – looking at the jUDDI registry database
	Other supported UDDI providers
	Custom registry solutions
	End-point reference
	Time for action – looking at EPRs
	JAXR—introducing the Java API for XML registries
	Federation
	Load balancing
	Registry maintenance and performance
	Registry interceptors
	Monitoring
	Examining jUDDI query counts

	Time for action – querying the UDDI server
	Chapter bibliography
	Summary

	Chapter 8:
Integrating Web Services with ESB
	Preparing JBoss Developer Studio
	Time for action – preparing the Chapter8 application
	Time for action – switching consoles
	Exporting ESB services as a web service
	Time for action – running the sample
	Action implementation
	Securing EBWS

	Time for action – securing the sample
	Other security mechanisms

	ESB web service client
	SOAPUI client

	Time for action – ESB SOAP client
	Request processing
	Response processing

	The Wise SOAPClient

	Time for action – Incorporating the Wise SOAP Client
	Request and response processing
	Custom handlers

	Co-located web services
	SOAPProcessor

	Time for action – incorporating a SOAPProcessor client
	Web service proxies
	SOAPProxy

	Time for action – incorporating SOAPProxy into the application
	Tweaking HttpClient
	SOAPClient
	SOAPProxy
	Sample properties
	Custom configurator

	SOAPProxy security pass through
	Cleaning up deployments

	Time for action – SOAPProxy security pass through
	Summary

	Appendix A:
Where to go Next with JBoss ESB?
	Creating service definitions with the JBDS ESB editor
	Using other UDDI providers (HP Systinet and SOA
Software Service Manager)
	Using other JBoss project technologies
	JBoss Drools and rules-based services
	JBoss Riftsaw and BPEL services
	JBoss jBPM and Business Process Management

	Using Maven with JBoss ESB
	Compiling with Maven
	ESB packaging with Maven

	How to test your ESB services
	Testing a single action
	AbstractTestRunner
	TestMessageStore
	Arquillian
	Cargo

	Chapter bibliography

	Appendix B:
Pop-quiz Answers
	Index

