Quality

ARE METRICS

n Technology
- KHIWES



,You can't manage what you can't
control, and you can't control what
you don't measure.”

- Tom DeMarco



P
Software metrics

Metrics quantify the characteristics of the product or
process

Improvability is important
Objectivity
Comparison

Analysing metrics is part of quality control and quality
assurance



Types of software metrics

Process metrics
* e.g. mean time to repair
Product metrics

e e.g. lines of code, cyclomatic complexity



>

Process metrics

Efficiency of development

e new lines of codes per month
» should not measure productivity (copy-paste)

e new function points per month
* etc.

Quality of process
e number of bugs per line of code
e Mean Time To Repair (MTTR)
e Mean Time To Failure (MTTF)
e Mean Time Between Failures (MTBF)
e Probability of Failure On Demand (POFOD)



—_

=
Role of metrics

Risk analysis

Risk reduction

Resource and cost estimations
Software quality determination



—_—

> —

Product metrics

Size metrics
Inheritance metrics
Complexity

Cohesion

Coupling

Bad Smell and Cloning

Quality of Source (e.g. number of fouls)



>

Size metrics
Lines of Code (LOC)

e a connection was assumed with the number of system
defects

e but it is dependent on
» programming language
« programming style
- system type
Efficient Lines of Code (ELOC)

e not empty and not comment lines

Number of Classes (NCL)
Number of Attributes/Methods (NA/NM)



>

OO metrics

these metrics are for object oriented programming
Depth of Inheritance Tree (DIT)
e max. length from the node to the root

Response For a Class (RFC)

e Number of methods that can be invoked in response to
another class

Specialization Index (SIX)



/’

=

Complexity (McCabe)

Cyclomatic complexity
Graph metric
Used on control flow graph
E-N+2P
e E - number of edges
e N - number of nodes
e P - number of graph components (usually one)

The higher the complexity the harder it is to test, change or
understand the code

Time and space complexity are also important (,,O”
notation)



if (A)

1
Dosomething();
¥
if (B)
1
if ()
1
DoSomethingDifferent() { }
1
}
else
1
DoSomethingElse();
}

DoWhateverYouldant();

No. of Nodes: 10
No. of Edges: 12
No. of components: 1

Cyclomatic complexity:
12-10+2-1=4

DoScmething()

|

Do SomethingDifferent()

\

A

DoSomethingElse()

O

DoWhateveryouwant()




WMC

Weighted Methods per Class

Sum of the McCabe complexity of encapsulated
methods

A high value might point to a design flaw



>

LCOM

Lack of Cohesion on Methods

Measures how much the methods of a class are
connected to each other

A high value means better encapsulation

Low value might suggest design flaws and high
complexity



>

CBO

Coupling Between Object classes
How much classes are connected (e.g. through methods)

Number of classes the class uses (through methods,
attributes or inheritance)
High value means

e poor encapsulation

e high number of defects

 poor testability

e sensitivity to change

Really high correlation with the number of defects



.. s

>

Fan-in, fan-out

Fan-in - number of calling modules
Fan-out — number of called modules
Henry and Kafura complexity

e Complexity = Length ¢ (fan-in * fan-out)?
Card and Glass complexity

e structural: S(i) = fan-out2(i)

e data complexity: D(i) = v(i) / (fan-out(i) + 1)

o v(i) - number of I/O parameters

e system complexity: C(i) = S(i) + D(i)



>

Clone metrics

,Copy-paste usage”

The code is harder to change or understand
Useless code parts might come up

CCL - Clone Classes

CI - Clone Instances

CC - Clone Coverage

e percentage of source code identified as clone
e high CC means more errors, lower understandability



//

ztatic void Main(string[] args) static double[] CalculateFunction(double[] array)
1
/fdeclare array f as double array and double[] result
/fassign initial walues to double arrays a, b, ¢, d, e

new double[array.Length];

for (int 1 = @; 1 < array.Length; i++)

for (int 1 = @8; 1 <« a.Length; i++) 1
1 result[i] = 2 * array[i] * array[i] + 3;
f[i] = 2 * a[i] * a[i] + 3; }
h
DoSomething(f); return result;
h
for (int 1 = @; i < b.Length; i++)
1 static woid Main(string[] args)
f[i] = 2 * b[1] * b[i] + 3; 1
} . //declare array T as double array and
DoSomething(f); {/fassign initial walues to double arrays a, b, c, d, e
for (int 1 = @; i < c.length; i++) f = CalculateFunction{a);
1 DoScomething(f);
f[i] = 2 * c[1] * c[i] + 3;
h . f = CalculateFunction(b);
DoSomething(f); DoSomething(f);
for (int i = @; i < d.Length; i++) f = CalculateFunction{c);
1 DoSomething(f);
f[i] = 2 * d[1] * d[i] + 3;
} . f = CalculateFunction(d);
DoSomething(f); DoSomething(f);
for (int 1 = @; i < e.length; i++) f = CalculateFunction{e);
i DoSomething(f);
f[i] = 2 * e[1] * e[i] + 3; }
h

DoSomething(f);



Aggregated metrics (ISO/IEC 9126)

* Functionality
* Reliability

» Usability

* Efficiency

* Managability
* Portability



o
Analysis

Evaluated metrics should be analysed
Baseline values are needed

e Average of metrics of a large number of samples

May require an expert



>

Bad Smell

Data class (only members, maybe getters, setters)

Feature envy (focus is on the members of another
class)

Large class
Lazy class (parents, children or callers do all the work)
Long method

Long parameter list






