
Quality Assurance for Information Technology

Dávid Gégény - KHIWFS

- Tom DeMarco

Software metrics
 Metrics quantify the characteristics of the product or

process

 Improvability is important

 Objectivity

 Comparison

 Analysing metrics is part of quality control and quality
assurance

Types of software metrics
 Process metrics

 e.g. mean time to repair

 Product metrics

 e.g. lines of code, cyclomatic complexity

Process metrics
 Efficiency of development

 new lines of codes per month
 should not measure productivity (copy-paste)

 new function points per month

 etc.

 Quality of process
 number of bugs per line of code

 Mean Time To Repair (MTTR)

 Mean Time To Failure (MTTF)

 Mean Time Between Failures (MTBF)

 Probability of Failure On Demand (POFOD)

Role of metrics
 Risk analysis

 Risk reduction

 Resource and cost estimations

 Software quality determination

Product metrics
 Size metrics

 Inheritance metrics

 Complexity

 Cohesion

 Coupling

 Bad Smell and Cloning

 Quality of Source (e.g. number of fouls)

Size metrics
 Lines of Code (LOC)

 a connection was assumed with the number of system
defects

 but it is dependent on
 programming language

 programming style

 system type

 Efficient Lines of Code (ELOC)
 not empty and not comment lines

 Number of Classes (NCL)

 Number of Attributes/Methods (NA/NM)

OO metrics
 these metrics are for object oriented programming

 Depth of Inheritance Tree (DIT)

 max. length from the node to the root

 Response For a Class (RFC)

 Number of methods that can be invoked in response to
another class

 Specialization Index (SIX)

Complexity (McCabe)
 Cyclomatic complexity

 Graph metric

 Used on control flow graph

 E – N + 2P
 E – number of edges

 N – number of nodes

 P – number of graph components (usually one)

 The higher the complexity the harder it is to test, change or
understand the code

 Time and space complexity are also important („O”
notation)

WMC
 Weighted Methods per Class

 Sum of the McCabe complexity of encapsulated
methods

 A high value might point to a design flaw

LCOM
 Lack of Cohesion on Methods

 Measures how much the methods of a class are
connected to each other

 A high value means better encapsulation

 Low value might suggest design flaws and high
complexity

CBO
 Coupling Between Object classes

 How much classes are connected (e.g. through methods)

 Number of classes the class uses (through methods,
attributes or inheritance)

 High value means

 poor encapsulation

 high number of defects

 poor testability

 sensitivity to change

 Really high correlation with the number of defects

Fan-in, fan-out
 Fan-in – number of calling modules

 Fan-out – number of called modules

 Henry and Kafura complexity

 Complexity = Length • (fan-in • fan-out)2

 Card and Glass complexity

 structural: S(i) = fan-out2(i)

 data complexity: D(i) = v(i) / (fan-out(i) + 1)

 v(i) – number of I/O parameters

 system complexity: C(i) = S(i) + D(i)

Clone metrics
 „Copy-paste usage”

 The code is harder to change or understand

 Useless code parts might come up

 CCL – Clone Classes

 CI – Clone Instances

 CC – Clone Coverage

 percentage of source code identified as clone

 high CC means more errors, lower understandability

Aggregated metrics (ISO/IEC 9126)
 Functionality

 Reliability

 Usability

 Efficiency

 Managability

 Portability

Analysis
 Evaluated metrics should be analysed

 Baseline values are needed

 Average of metrics of a large number of samples

 May require an expert

Bad Smell
 Data class (only members, maybe getters, setters)

 Feature envy (focus is on the members of another
class)

 Large class

 Lazy class (parents, children or callers do all the work)

 Long method

 Long parameter list

