
Quality Assurance for Information Technology

Dávid Gégény - KHIWFS

- Tom DeMarco

Software metrics
 Metrics quantify the characteristics of the product or

process

 Improvability is important

 Objectivity

 Comparison

 Analysing metrics is part of quality control and quality
assurance

Types of software metrics
 Process metrics

 e.g. mean time to repair

 Product metrics

 e.g. lines of code, cyclomatic complexity

Process metrics
 Efficiency of development

 new lines of codes per month
 should not measure productivity (copy-paste)

 new function points per month

 etc.

 Quality of process
 number of bugs per line of code

 Mean Time To Repair (MTTR)

 Mean Time To Failure (MTTF)

 Mean Time Between Failures (MTBF)

 Probability of Failure On Demand (POFOD)

Role of metrics
 Risk analysis

 Risk reduction

 Resource and cost estimations

 Software quality determination

Product metrics
 Size metrics

 Inheritance metrics

 Complexity

 Cohesion

 Coupling

 Bad Smell and Cloning

 Quality of Source (e.g. number of fouls)

Size metrics
 Lines of Code (LOC)

 a connection was assumed with the number of system
defects

 but it is dependent on
 programming language

 programming style

 system type

 Efficient Lines of Code (ELOC)
 not empty and not comment lines

 Number of Classes (NCL)

 Number of Attributes/Methods (NA/NM)

OO metrics
 these metrics are for object oriented programming

 Depth of Inheritance Tree (DIT)

 max. length from the node to the root

 Response For a Class (RFC)

 Number of methods that can be invoked in response to
another class

 Specialization Index (SIX)

Complexity (McCabe)
 Cyclomatic complexity

 Graph metric

 Used on control flow graph

 E – N + 2P
 E – number of edges

 N – number of nodes

 P – number of graph components (usually one)

 The higher the complexity the harder it is to test, change or
understand the code

 Time and space complexity are also important („O”
notation)

WMC
 Weighted Methods per Class

 Sum of the McCabe complexity of encapsulated
methods

 A high value might point to a design flaw

LCOM
 Lack of Cohesion on Methods

 Measures how much the methods of a class are
connected to each other

 A high value means better encapsulation

 Low value might suggest design flaws and high
complexity

CBO
 Coupling Between Object classes

 How much classes are connected (e.g. through methods)

 Number of classes the class uses (through methods,
attributes or inheritance)

 High value means

 poor encapsulation

 high number of defects

 poor testability

 sensitivity to change

 Really high correlation with the number of defects

Fan-in, fan-out
 Fan-in – number of calling modules

 Fan-out – number of called modules

 Henry and Kafura complexity

 Complexity = Length • (fan-in • fan-out)2

 Card and Glass complexity

 structural: S(i) = fan-out2(i)

 data complexity: D(i) = v(i) / (fan-out(i) + 1)

 v(i) – number of I/O parameters

 system complexity: C(i) = S(i) + D(i)

Clone metrics
 „Copy-paste usage”

 The code is harder to change or understand

 Useless code parts might come up

 CCL – Clone Classes

 CI – Clone Instances

 CC – Clone Coverage

 percentage of source code identified as clone

 high CC means more errors, lower understandability

Aggregated metrics (ISO/IEC 9126)
 Functionality

 Reliability

 Usability

 Efficiency

 Managability

 Portability

Analysis
 Evaluated metrics should be analysed

 Baseline values are needed

 Average of metrics of a large number of samples

 May require an expert

Bad Smell
 Data class (only members, maybe getters, setters)

 Feature envy (focus is on the members of another
class)

 Large class

 Lazy class (parents, children or callers do all the work)

 Long method

 Long parameter list

