
QUALITY ASSURANCE IN SOFTWARE

PRODUCTION

THE UNIQUENESS OF SOFTWARE

QUALITY ASSURANCE

 High product complexity:

 there are millions of software operation possibilities

 Product visibility:

 Software products are ”invisible”

 Opportunities to detect defects (”bugs”) are limited to the product

development phase

THE UNIQUENESS OF SQA (CONT.)

TYPICAL CAUSES OF SOFTWARE ERRORS

 Faulty definition of requirements

Client-developer communication failures

Deliberate deviations from software requirements

Logical design errors

Coding errors

Non-compliance with documentation and coding

instructions

 Shortcomings of the testing process

FAULTY DEFINITION OF REQUIREMENTS

One of the main causes of software errors

Erroneous definition of requirements

Missing vital requirements

 Incomplete requirements

Unnecessary requirements

CLIENT-DEVELOPER COMMUNICATION

FAILURES

Misunderstanding of the client’s requirement document

Miscommunications during client-developer meetings

Misinterpretation of the client’s requirement changes

DELIBERATE DEVIATIONS FROM THE

SOFTWARE REQUIREMENTS

The developer reuses software modules from earlier

projects without sufficient analysis of the changes needed to

fulfill the requirements

Due to time/money pressures, the developer leaves parts of

the required functions in an attempt to manage the

pressure

The developer makes unapproved improvements to the

software without the client’s knowledge

LOGICAL DESIGN ERRORS

Defining the software requirements by means of erroneous
algorithms

Process definitions contain sequencing errors

Erroneous definition of boundary conditions

Omission of definitions concerning special cases (lack of
error handling and special state handling)

CODING ERRORS

Misunderstanding of the design documents,

 linguistic errors,

development tool errors,

data errors,

data representation error,

etc.

NON-COMPLIANCE WITH DOCUMENTATION

AND CODING INSTRUCTIONS

Non-compliance with coding/documentation standards makes

it harder to understand, review, test and maintain the software

Unusual number of problems to cope with

Retired or promoted team member

Lack of understanding the design

SHORTCOMINGS OF THE TESTING

PROCESS

 Greater number of errors are left undetected and uncorrected

 Incomplete test plans will leave many of the functions and states

untested

 Failures to report and promptly correct found errors and faults

 Incomplete test due to time pressures

SOFTWARE DEFINITION

 IEEE definition.

Software is:

 Computer programs, procedures, and possibly associated documentation and

 data pertaining to the operation of a computer system.

 ISO definition

(ISO, 1997, Sec. 3.11 and ISO/IEC 9000-3 Sec. 3.14), lists the following four

components of software:

 Computer programs (the “code”)

 Procedures

 Documentation

 Data necessary for operating the software system.

SOFTWARE ERRORS, FAULTS AND

FAILURES

Software error Software fault Software failure

SOFTWARE QUALITY – DEFINITION

Software quality is:

1. The degree to which a system, component, or process meets

specified requirements.

2. The degree to which a system, component, or process meets

customer or user needs or expectations.

Software quality is defined as:

Conformance to explicitly stated functional and performance

requirements, explicitly documented development standards, and implicit

characteristics that are expected of all professionally developed software.

SOFTWARE QUALITY ASSURANCE

DEFINITION

„SQA is a systematic, planned set of actions necessary to

provide adequate confidence that the software development

process or the maintenance process of a software system

product conforms to established functional technical

requirements as well as with the managerial requirements of

keeping the schedule and operating within the budgetary

confines”

 --Daniel Galin

THE OBJECTIVES OF SQA ACTIVITIES

 Software development (process oriented)

To assure that the software will meet the functional

technical requirements

To assure that the software will conform to managerial

scheduling and budgetary requirements

To continuously improve the development process and

SQA activities in order to improve the quality and at the

same time reduce the cost

The same things apply to software maintenance (product

oriented)

THE OBJECTIVES OF SQA ACTIVITIES

Software maintenance (product oriented)

1. Assuring with an acceptable level of confidence that the

software maintenance activities will conform to the functional

technical requirements.

2. Assuring with an acceptable level of confidence that the

software maintenance activities will conform to managerial

scheduling and budgetary requirements.

3. Initiating and managing activities to improve and increase the

efficiency of software maintenance and SQA activities. This

involves improving the prospects of achieving functional and

managerial requirements while reducing costs.

SOFTWARE QUALITY FACTORS

McCall’s quality factor model consisting of 11 quality factors grouped into
3 categories

 Product operation factors:
 Correctness,

 Efficiency,

 Integrity,

 Usability

 Product revision factors:
 Maintainability,

 Flexibility,

 Testability

 Product transition factors:
 Portability,

 Reusability,

 Interoperability

PRODUCT OPERATION FACTORS

Correctness: defined in a list of the software system’s required
output

 The output mission (e.g. red alarms when temperature rises to 100 °C)

 Required accuracy of the output (e.g. non-accurate output will not exceed 1%)

 Completeness of the output info (e.g. probability of missing data less than 1%)

 The up-to-dateness of the info (e.g. it will take no more than 2s for the
information to be updated)

 The availability of the info (e.g. reaction time for queries will be less than 2s on
average)

 The required standards and guidelines (the software and its docs must comply
with the client’s guidelines)

PRODUCT OPERATION FACTORS (CONT.)

Efficiency:

 Focus is on hardware resources needed to perform the

operations to fulfill the requirements

 memory,

 storage,

 CPU speed,

 data communication capability,

 battery, etc.)

PRODUCT OPERATION FACTORS (CONT.)

Reliability:

Determines the maximum allowed software system

failure rate

Can focus on entire system or just on a separate

function

E.g. a heart-monitor’s failure rate must be less than 1:20

years

PRODUCT OPERATION FACTORS (CONT.)

 Integrity:

 Security:

 Requirements to prevent access to unauthorized persons („read permit”)

 Rights management (e.g. limit the ”write permit” to key personnel)

 Safety:

 recorded exactly as intended (rejecting mutually exclusive access)

 Data integrity

 Entity integrity (primary keys)

 Referential integrity (foreign keys)

 Domain integrity (set of values to use)

 User defined integrity

PRODUCT OPERATION FACTORS (CONT.)

Usability:

Deals with the scope of staff resources needed to train a

new employee and to operate the software system

E.g. training of a new employee to operate the system

will take no more than 2 working days

PRODUCT REVISION FACTORS

 Maintainability:

 Determines the effort needed to identify the causes for software
failures, to correct them, and to verify the success of the
corrections

 Refers

 to the modular structure of the software as well as

 to the manuals and

 documentations

 E.g.:
 Size of the module should not exceed a page on the screen

 Coding standards to apply

PRODUCT REVISION FACTORS (CONT.)

 Flexibility:

The effort required to support adaptive maintenance

activities

E.g. man-days required to adapt a software package to a

variety of customers of the same trade

Testability:

Testability requirements include automatic diagnostics

checks and log files, etc.

E.g. a standard test must be run every morning before

the production begins

PRODUCT TRANSITION FACTORS

Portability:

Adaptation of the system to other environments of

different hardware, OS, etc.

Reusability:

Mostly the developer will initiate the reusability

requirement by recognizing the potential benefit of a

reuse

 It’s expected to save development resources, shorten

the development time and provide higher quality

modules

PRODUCT TRANSITION FACTORS (CONT.)

 Interoperability:

 Focuses on developing interfaces with other software

systems or with other equipment firmware

E.g.: a laboratory equipment is required to process its

results (output) according to a standard data structure,

which the laboratory information system can then use as

an input

THE SQA SYSTEM

Goal is to minimize the number of software errors and
to achieve an acceptable level of software quality

Can be divided into to six classes:
 Pre-project components

 Components of project life cycle activities assessment

 Components of infrastructure error prevention and improvement

 Components of software quality management

 Components of standardization, certification, and SQA system
assessment

 Organizing for SQA-the human components

PRE-PROJECT COMPONENTS

The schedule and budget as well as other project

commitments are adequately planned

Must assure that development and quality plans are

correctly determined

COMPONENTS OF PROJECT LIFE CYCLE

ACTIVITIES ASSESSMENT

Two phases:

 Development life cycle (verification-validation-qualification, reviews,

expert opinions, software testing)

 Operation-maintenance stage (Special maintenance components and

life cycle components for improving maintenance tasks)

Assuring the quality of parts made by subcontractors and

other external participants during development and

maintenance phases

COMPONENTS OF INFRASTRUCTURE

ERROR PREVENTION AND

IMPROVEMENT

Goals are to reduce software fault rates and to improve

productivity

Procedures and work instructions, staff training,

configuration management, documentation control, etc.

Applied throughout the entire organization

COMPONENTS OF SOFTWARE QUALITY

MANAGEMENT

Major goals are to control development and maintenance

activities and early managerial support (minimize schedule

and budget failures)

 Software quality metrics, quality cost, project progress

control, etc.

COMPONENTS OF STANDARDIZATION,

CERTIFICATION, AND SQA SYSTEM

ASSESSMENT

 Implements international, professional and managerial

standards within the organization

Quality management standards: focuses on what is required

in regards of managerial quality system (e.g. ISO 9001, SEI

CMM assessment standard)

Project process standards: methodological guidelines

(”how”) for the development team (e.g. IEEE 1012, ISO/IEC

12207)

ORGANIZING FOR SQA – THE HUMAN

COMPONENT

The organizational base: managers, testing personnel, SQA
team, etc.

To develop and support the implementation of SQA
components

To detect deviations from SQA procedures and
methodology

To suggest improvements to SQA components

REVIEWS IN SQA

 Sometimes called Formal Technical Review (FTR), Formal
Design Review, Inspection, Walkthrough, Peer Review, etc.

Originally developed by Michael Fagan in the 1970’s (IBM)

Meeting technique: based on teamwork

The goal is to find errors from basically any written
document (specification, code, etc.)

GOALS OF REVIEWS

Basic idea is to remove the errors in the early part of the
project

Project is divided into intermediate stages/phases (makes
the progression of the project more visible)

 Some basic objectives:
 Uncover errors in functions, logic or implementation

 To verify that the document (software code, specification, etc.)
meets its requirements

 To ensure that the software has been represented according to the
pre-defined standards

 To make projects more manageable

ORGANIZING THE REVIEW MEETING

The amount of material to be inspected must be reasonable

(not too much material)

No unfinished material

Participants must have enough time to get to know the

material beforehand

The amount of participants must be kept as low as possible

(no unnecessary people)

THE ACTUAL REVIEW MEETING

Roles: presenter (usually the producer himself),

moderator/review leader, secretary/recorder.

 Focus is on finding the problems rather than solving them

Review the product, not the producer.

Limit the amount of debate

The more new errors found the more successful the

meeting is

AFTER THE REVIEW MEETING

Accept the product (no modifications necessary)

Reject the product (severe errors)

Accept the product provisionally (small errors, new meeting

not necessary)

All the findings and conclusions are noted to the record

(important)

REVIEWS: PROS/CONS

Most of the errors are found early in the project (saves
money)

Producer has a better understanding of the correctness of
his work.

All the problems aren’t found just by testing: errors in phase
products, style errors, unnecessary code, etc.

Problems: causes extra work in the early stages of the
project, organizing the inspection might be problematic,
attitudes, unpreparedness to the meeting

REFERENCES

Daniel Galin, Software Quality Assurance, From theory to

implementation. Pearson Education Limited 2004, Essex,

England

Roger S. Pressman, Darrel Ince, Software Engineering: a

practitioner’s approach, European Adaptation, Fifth Edition.

McGraw-Hill Publishing Company, Printed by: TJ International Ltd,

Padstow, Cornwall, 2000.

