
MELFA

Industrial Robots

Instruction Manual
(Detailed explanations of functions

and operations)

CR1/CR2/CR3/CR4/CR7/CR8/CR9
Controller

INDUSTRIAL AUTOMATIONMITSUBISHI ELECTRIC

MITSUBISHI ELECTRIC

Art. no.: 132315
14 07 2005
Version K
BFP-A5992

Caution

Users of the robot given as a "Object Model" in "Table 1: List of origin position
joint angles" must observe the details below.

Warning

If the operation is carried out, a warning error indicating positional deviation
(error No.: L1820) may occur. If it is confirmed that the position has deviated
after carrying out "1. Operation to confirm positional deviation of origin
position", the origin data has been lost.
In this case, reset the origin with the ABS method. Refer to section "ABS
method" in the separate "Instruction Manual/Robot Arm Setup to
Maintenance" for the operation methods.
If operation is carried out without resetting the origin, interference with
peripheral devices or unforeseen operation could occur due to the loss of
origin data.

１．Operation to confirm positional deviation of origin position

(1)Set each axis of the robot to the ABS mark using the teaching box's joint jog
operation.

(2)Confirm that the joint angle displayed on the teaching box screen matches the
value corresponding to the object model given in Table 1. If the values do not
match, reset the origin with the ABS method.

Table 1: List of origin position joint angles (Position aligned with ABS mark arrow)

Joint angle Object Model J1 J2 J3 J4 Ｊ5 Ｊ6
RH-1000GHDC-SA 0degree 0degree 150mm 0degree
RH-1000GJDC-SA 0degree 0degree 150mm 0degree 0degree
RH-1000GHLC-SA 0degree 0degree 0degree 0degree
RH-1000GHLLC-SA 0degree 0degree 0degree 0degree
RH-1000GJLC-SA 0degree 0degree 0degree 0degree 0degree
RH-1500GJC-SA/SB 138.7

degree
140

degree 0degree
180

degree 0degree

RH-1500GC-SA**/SA5*
 -SB**/SB5*

138.7
degree

140
degree 0degree 180

degree 0degree 0degree

RC-1000GHW DC-SA 0degree 0degree 0degree 180
degree

RC-1000GHW LC-SA 0degree 0degree 0degree 180
degree

RC-1300G* 0mm 0mm 0mm 0degree 0mm

Do not release the brakes from an external source and
forcibly move the robot arm at a high speed.

All teaching work must be carried out by an operator who has received special
training. (This also applies to maintenance work with the power source turned ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of
operating the robot, and to the measures to be taken when an error occurs or when
restarting. Carry out work following this plan. (This also applies to maintenance
work with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching
work. (This also applies to maintenance work with the power source turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on
the start switch, etc. (This also applies to maintenance work with the power source
turned ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator
and robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work, and fol-
low this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicat-
ing that maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related
devices, etc., and confirm that there are no errors.
Inspection before starting work

 CAUTION

 CAUTION

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

Always read the following precautions and the separate
"Safety Manual" before starting use of the robot to learn the
required measures to be taken.

Safety Precautions

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

Use the robot within the environment given in the specifications. Failure to do so
could lead to a drop or reliability or faults. (Temperature, humidity, atmosphere,
noise environment, etc.)

Transport the robot with the designated transportation posture. Transporting the
robot in a non-designated posture could lead to personal injuries or faults from
dropping.

Always use the robot installed on a secure table. Use in an instable posture could
lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise
source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable. Fail-
ure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to mal-
functioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure the
priority right for the robot control. Failure to observe this could lead to personal inju-
ries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with periph-
eral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic opera-
tion, the door is locked or that the robot will automatically stop. Failure to do so
could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-designated
maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or fin-
gers catching depending on the posture.

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

Do not stop the robot or apply emergency stop by turning the robot control-
ler's main power OFF. If the robot controller main power is turned OFF dur-
ing automatic operation, the robot accuracy could be adversely
affected.Moreover, it may interfere with the peripheral device by drop or
move by inertia of the arm.

Do not turn off the main power to the robot controller while rewriting the
internal information of the robot controller such as the program or parame-
ters.
If the main power to the robot controller is turned off while in automatic
operation or rewriting the program or parameters, the internal information of
the robot controller may be damaged.

Precautions for the basic configuration are shown below.(When CR1-571/CR1B-571 is used for the
controller.)

Provide an earth leakage breaker that packed together on the primary
power supply of the controller as protection against electric leakage. Con-
firm the setting connector of the input power supply voltage of the controller,
if the type which more than one power supply voltage can be used. Then
connect the power supply.
Failure to do so could lead to electric shock accidents.

For using RH-5AH/10AH/15AH series or RH-6SH/12SH/18SH series.
While pressing the brake releasing switch on the robot arm, beware of the
arm which may drop with its own weight.
Dropping of the hand could lead to a collision with the peripheral equipment
or catch the hands or fingers.

 CAUTION

 CAUTION

 CAUTION

Cover

Terminal cover

Rear side of controller

Earth leakage
breaker
(NV)

Protective earth
terminal
(PE)

Cover

Terminal

Power supply *RV-1A/2AJ series and RP-1AH/3AH/5AH series: Single phase 90-132VAC, 180-253VAC.
*Except the above: Single phase 180-253VAC.

 WARNING

Revision history

Date Specifications No. Details of revisions

1999-06 BFP-A5992Z-* First print

1999-09-20 BFP-A5992Z-A Error in writing correction.
The function of RH-1000 was considered.

1999-11-09 BFP-A5992 Error in writing correction.

2000-04-06 BFP-A5992-A Attention in the power supply connection was added.(CR1 Controller)

2000-06-09 BFP-A5992-B Parameter CNT was added.
Emergency stop input of CR1 controller was added.
JRC command was added.
The power supply voltage of CR1 controller was corrected.

2000-07-12 BFP-A5992-C Change title.
Error in writing correction.

2001-06-05 BFP-A5992-Da Major revision. Function list, publication of Q & A, description of system variables, as
well as language and similar notation of system functions, and supplementation of vari-
ous parameter functions.

2001-11-30 BFP-A5992-D Formal style.

2001-12-12 BFP-A5992-E Error in writing correction.

2002-11-15 BFP-A5992-F The explanation and supplementary explanation of the new function corresponding to
software version H7 edition were added.
The notation of the input-and-output circuit terminal was corrected.
Explanation of optimum acceleration/deceleration setting was added.
Error in writing correction.

2003-10-14 BFP-A5992-G The explanation and supplementary explanation of the new function corresponding to
software version J1 edition were added.
Change title.
Error in writing correction.

2003-12-01 BFP-A5992-H The explanation and supplementary explanation of the new function corresponding to
software version J4 edition were added.
Error in writing correction.

2005-02-28 BFP-A5992-J The explanation and supplementary explanation of the new function corresponding to
software version K1 edition were added.
Error in writing correction.

2005-07-14 BFP-A5992-K The explanation and supplementary explanation of the new function corresponding to
software version K4 edition were added.
Error in writing correction.

*Introduction

Thank you for purchasing the Mitsubishi industrial robot.
This instruction manual explains the functions and operation methods of the controller (CR1/CR2/CR3/CR4/
CR7/CR8/CR9) and teaching pendant (R28TB), and the functions and specifications of the MELFA-BASIC
IV programming language.
Always read through this manual before starting use to ensure correct usage of the robot.
Note that this document is prepared for the following software versions.

Controller : Version K4 or later
T/B : Version B2 or later

• No part of this manual may be reproduced by any means or in any form, without prior consent
from Mitsubishi.

• The details of this manual are subject to change without notice.
• An effort has been made to make full descriptions in this manual. However, if any discrepancies

or unclear points are found, please contact your dealer.
• The information contained in this document has been written to be accurate as much as possi-

ble. Please interpret that items not described in this document "cannot be performed.".
Please contact your nearest dealer if you find any doubtful, wrong or skipped point.

 Copyright(C) 1999 MITSUBISHI ELECTRIC CORPORATION

Contents
Page
1 Before starting use .. 1-1
1.1 Using the instruction manuals ... 1-1

1.1.1 The details of each instruction manuals ... 1-1
1.1.2 Symbols used in instruction manual ... 1-2

1.2 Safety Precautions .. 1-3
1.2.1 Precautions given in the separate Safety Manual .. 1-4

2 Explanation of functions .. 2-5
2.1 Operation panel (O/P) functions ... 2-5
2.2 Teaching pendant (T/B) functions ... 2-7

2.2.1 Operation rights .. 2-10
2.3 Functions Related to Movement and Control .. 2-11

3 Explanation of operation methods .. 3-13
3.1 Operation of the teaching pendant menu screens .. 3-13

(1) Screen tree ... 3-13
(2) Selecting a menu .. 3-14

3.2 Jog Feed (Overview) ... 3-15
3.2.1 Types of jog feed .. 3-15
3.2.2 Speed of jog feed .. 3-16
3.2.3 JOINT jog .. 3-16
3.2.4 TOOL jog .. 3-17
3.2.5 XYZ jog ... 3-17
3.2.6 3-axis XYZ jog .. 3-18
3.2.7 CYLNDER jog ... 3-18
3.2.8 Switching Tool Data .. 3-19
3.2.9 Impact Detection during Jog Operation .. 3-21

(1) Impact Detection Level Adjustment during Jog Operation ... 3-21
3.3 Opening/Closing the Hands .. 3-22
3.4 Aligning the Hand .. 3-23
3.5 Programming .. 3-24

3.5.1 Creating a program ... 3-24
(1) Opening the program edit screen ... 3-24
(2) Creating a program .. 3-25
(3) Completion of program creation and saving programs .. 3-26
(4) Correcting a program ... 3-27
(5) Registering the current position data .. 3-29
(6) Confirming the position data (Position jump) ... 3-30
(7) Correcting the current position data ... 3-31
(8) Correcting the MDI (Manual Data Input) .. 3-32
(9) Deleting position data ... 3-33
(10) Display on the position edit screen ... 3-34
(11) Saving the program .. 3-34

3.6 Debugging ... 3-35
(1) Step feed .. 3-35
(2) Step return .. 3-36
(3) Step feed in another slot .. 3-36
(4) Step jump ... 3-37

3.7 Automatic operation .. 3-38
(1) Setting the operation speed ... 3-38
(2) Selecting the program No. .. 3-38
(3) Starting automatic operation .. 3-39
(4) Stopping ... 3-39
(5) Resuming automatic operation from stopped state .. 3-40
(6) Resetting the program .. 3-41

3.8 Turning the servo ON/OFF ... 3-42
i

Page
3.9 Error reset operation ... 3-44
3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled 3-44
3.11 Operating the program control screen .. 3-45

(1) Program list display .. 3-45
(2) Program protection function ... 3-46
(3) Copying programs .. 3-47
(4) Changing the program name (Renaming) .. 3-48
(5) Deleting a program ... 3-49

3.12 Operating the monitor screen ... 3-50
(1) Input signal monitor .. 3-50
(2) Output signal monitor ... 3-51
(3) Variable monitor ... 3-52
(4) Error history .. 3-53

3.13 Operation of maintenance screen ... 3-54
(1) Setting the parameters ... 3-54
(2) Initializing the program ... 3-55
(3) Initializing the battery consumption time .. 3-56
(4) Releasing the brakes .. 3-57
(5) Setting the origin .. 3-58
(6) Displaying the clock data for maintenance ... 3-58

3.14 Operation of the setting screen ... 3-59
(1) Setting the time .. 3-59

4 MELFA-BASIC IV .. 4-60
4.1 MELFA-BASIC IV functions .. 4-60

4.1.1 Robot operation control .. 4-61
(1) Joint interpolation movement ... 4-61
(2) Linear interpolation movement ... 4-62
(3) Circular interpolation movement ... 4-63
(4) Continuous movement ... 4-65
(5) Acceleration/deceleration time and speed control .. 4-66
(6) Confirming that the target position is reached .. 4-68
(7) High path accuracy control ... 4-69
(8) Hand and tool control ... 4-70

4.1.2 Pallet operation ... 4-71
4.1.3 Program control .. 4-73

(1) Unconditional branching, conditional branching, waiting .. 4-73
(2) Repetition ... 4-75
(3) Interrupt .. 4-76
(4) Subroutine .. 4-77
(5) Timer .. 4-78
(6) Stopping ... 4-79

4.1.4 Inputting and outputting external signals .. 4-80
(1) Input signals ... 4-80
(2) Output signals .. 4-80

4.1.5 Communication ... 4-81
4.1.6 Expressions and operations ... 4-82

(1) List of operator ... 4-82
(2) Relative calculation of position data (multiplication) ... 4-84
(3) Relative calculation of position data (Addition) ... 4-84

4.1.7 Appended statement ... 4-85
4.2 Multitask function .. 4-86

4.2.1 What is multitasking? .. 4-86
4.2.2 Executing a multitask .. 4-87
4.2.3 Operation state of each slot .. 4-87
4.2.4 Precautions for creating multitask program .. 4-89

(1) Relationship between number of tasks and processing time ... 4-89
ii

Contents
Page
(2) Specification of the maximum number of programs executed concurrently 4-89
(3) How to pass data between programs via external variables .. 4-89
(4) Confirmation of operating status of programs via robot status variables 4-89
(5) The program that operates the robot is basically executed in slot 1. 4-89
(6) How to perform the initialization processing via constantly executed programs 4-89

4.2.5 Precautions for using a multitask program ... 4-90
(1) Starting the multitask .. 4-90
(2) Display of operation status ... 4-90

4.2.6 Example of using multitask ... 4-91
(1) Robot work details. ... 4-91
(2) Procedures to multitask execution ... 4-92

4.3 Detailed specifications of MELFA-BASIC IV ... 4-93
(1) Program name .. 4-93
(2) Command statement .. 4-93
(3) Variable .. 4-94

4.3.1 Statement ... 4-95
4.3.2 Appended statement ... 4-95
4.3.3 Line ... 4-95
4.3.4 Line No. .. 4-95
4.3.5 Label ... 4-95
4.3.6 Types of characters that can be used in program .. 4-96
4.3.7 Characters having special meanings .. 4-97

(1) Uppercase and lowercase identification ... 4-97
(2) Underscore (_) ... 4-97
(3) Apostrophe (') ... 4-97
(4) Asterisk (*) .. 4-97
(5) Comma (,) .. 4-97
(6) Period (.) ... 4-97
(7) Space ... 4-97

4.3.8 Data type .. 4-98
4.3.9 Constants .. 4-98
4.3.10 Numeric value constants .. 4-98

(1) Decimal number ... 4-98
(2) Hexadecimal number ... 4-98
(3) Binary number .. 4-98
(4) Types of constant ... 4-98

4.3.11 Character string constants .. 4-98
4.3.12 Position constants ... 4-99

(1) Coordinate, posture and additional axis data types and meanings 4-99
(2) Meaning of structure flag data type and meanings .. 4-99

4.3.13 Joint constants .. 4-100
(1) Axis data format and meanings .. 4-100

4.3.14 Angle value ... 4-100
4.3.15 Variables ... 4-101
4.3.16 Numeric value variables ... 4-102
4.3.17 Character string variables ... 4-102
4.3.18 Position variables .. 4-102
4.3.19 Joint variables ... 4-103
4.3.20 Input/output variables ... 4-103
4.3.21 Array variables .. 4-103
4.3.22 External variables ... 4-104
4.3.23 Program external variables ... 4-104
4.3.24 User-defined external variables .. 4-105
4.3.25 Creating User Base Programs .. 4-105
4.3.26 Robot status variables .. 4-106

4.4 Logic numbers .. 4-110
4.5 Functions .. 4-110

(1) User-defined functions ... 4-110
iii

Page
(2) Built-in functions ... 4-110
4.6 List of Instructions ... 4-113

(1) Instructions related to movement control ... 4-113
(2) Instructions related to program control ... 4-113
(3) Definition instructions ... 4-114
(4) Multi-task related ... 4-114
(5) Others .. 4-115

4.7 Operators .. 4-116
4.8 Priority level of operations ... 4-117
4.9 Depth of program's control structure ... 4-117
4.10 Reserved words .. 4-117
4.11 Detailed explanation of command words .. 4-118

4.11.1 How to read the described items .. 4-118
4.11.2 Explanation of each command word ... 4-118

ACCEL (Accelerate) .. 4-119
ACT (Act) ... 4-121
BASE (Base).. 4-123
CALLP (Call P) .. 4-125
CHRSRCH (Character search).. 4-127
CLOSE (Close) .. 4-128
CLR (Clear).. 4-129
CMP JNT (Comp Joint).. 4-130
CMP POS (Composition Posture) ... 4-132
CMP TOOL (Composition Tool)... 4-134
CMP OFF (Composition OFF) ... 4-136
CMPG (Composition Gain) .. 4-137
CNT (Continuous).. 4-138
COLCHK (Col Check).. 4-141
COLLVL (Col Level)... 4-144
COM ON/COM OFF/COM STOP (Communication ON/OFF/STOP) 4-145
DEF ACT (Define act).. 4-146
DEF ARCH (Define arch)... 4-149
DEF CHAR (Define Character) .. 4-151
DEF FN (Define function) .. 4-152
DEF INTE/DEF FLOAT/DEF DOUBLE (Define Integer/Float/Double) 4-153
DEF IO (Define IO) .. 4-154
DEF JNT (Define Joint).. 4-156
DEF PLT (Define pallet)... 4-157
DEF POS (Define Position) ... 4-158
DIM (Dim) .. 4-159
DLY (Delay) ... 4-160
ERROR (error) ... 4-162
END (End) ... 4-163
FINE (Fine) .. 4-164
FOR - NEXT (For-next).. 4-165
FPRM (FPRM) ... 4-166
GETM (Get Mechanism).. 4-167
GOSUB (RETURN)(Go Subroutine) .. 4-168
GOTO (Go To)... 4-169
HLT (Halt) .. 4-170
HOPEN / HCLOSE (Hand Open/Hand Close)... 4-171
IF...THEN...ELSE...ENDIF (If Then Else) .. 4-173
INPUT (Input)... 4-175
JOVRD (J Override)... 4-176
JRC (Joint Roll Change) .. 4-177
LOADSET (Load Set) .. 4-179
MOV (Move) .. 4-180
iv

Contents
Page
MVA (Move Arch) .. 4-181
MVC (Move C) ... 4-183
MVR (Move R) ... 4-184
MVR2 (Move R2) ... 4-186
MVR3 (Move R 3) .. 4-188
MVS (Move S) ... 4-190
OADL (Optimal Acceleration) .. 4-193
ON COM GOSUB (ON Communication Go Subroutine) ... 4-195
ON ... GOSUB (ON Go Subroutine) .. 4-196
ON ... GOTO (On Go To)... 4-197
OPEN (Open) .. 4-198
OVRD (Override) ... 4-199
PLT (Pallet).. 4-200
PREC (Precision)... 4-201
PRINT (Print) ... 4-202
PRIORITY (Priority) ... 4-203
RELM (Release Mechanism)... 4-204
REM (Remarks) ... 4-205
RESET ERR (Reset Error) .. 4-206
RETURN (Return).. 4-207
SELECT CASE (Select Case) ... 4-209
SERVO (Servo) ... 4-211
SKIP (Skip) .. 4-212
SPD (Speed).. 4-213
SPDOPT (Speed Optimize) ... 4-214
TITLE (Title)... 4-216
TOOL (Tool)... 4-217
TORQ (Torque).. 4-218
WAIT (Wait) ... 4-219
WHILE-WEND (While End) ... 4-220
WTH (With) .. 4-221
WTHIF (With If) .. 4-222
XCLR (X Clear).. 4-223
XLOAD (X Load).. 4-224
XRST (X Reset) ... 4-225
XRUN (X Run) ... 4-226
XSTP (X Stop) ... 4-227
Substitute... 4-228
(Label).. 4-229

4.12 Detailed explanation of Robot Status Variable ... 4-230
4.12.1 How to Read Described items .. 4-230
4.12.2 Explanation of Each Robot Status Variable .. 4-230

C_DATE... 4-231
C_MAKER ... 4-231
C_MECHA ... 4-232
C_PRG .. 4-232
C_TIME.. 4-233
C_USER .. 4-233
J_CURR... 4-234
J_COLMXL .. 4-235
J_ECURR .. 4-236
J_FBC/J_AMPFBC .. 4-237
J_ORIGIN .. 4-237
M_ACL/M_DACL/M_NACL/M_NDACL/M_ACLSTS ... 4-238
M_BRKCQ ... 4-239
M_BTIME... 4-239
M_CMPDST... 4-240
M_CMPLMT... 4-241
v

Page
M_COLSTS ... 4-242
M_CSTP .. 4-243
M_CYS .. 4-243
M_DIN/M_DOUT ... 4-244
M_ERR/M_ERRLVL/M_ERRNO ... 4-245
M_EXP... 4-245
M_FBD... 4-246
M_G... 4-247
M_HNDCQ... 4-247
M_IN/M_INB/M_INW ... 4-248
M_JOVRD/M_NJOVRD/M_OPOVRD/M_OVRD/M_NOVRD.. 4-249
M_LDFACT.. 4-250
M_LINE.. 4-251
M_MODE ... 4-251
M_ON/M_OFF ... 4-252
M_OPEN.. 4-253
M_OUT/M_OUTB/M_OUTW ... 4-254
M_PI .. 4-254
M_PSA... 4-255
M_RATIO... 4-255
M_RDST .. 4-256
M_RUN .. 4-256
M_SETADL.. 4-257
M_SKIPCQ .. 4-258
M_SPD/M_NSPD/M_RSPD .. 4-259
M_SVO .. 4-259
M_TIMER... 4-260
M_TOOL .. 4-261
M_UAR .. 4-262
M_WAI ... 4-262
M_WUPOV .. 4-263
M_WUPRT... 4-264
M_WUPST... 4-265
P_BASE/P_NBASE ... 4-266
P_COLDIR... 4-267
P_CURR .. 4-268
P_FBC ... 4-269
P_SAFE ... 4-269
P_TOOL/P_NTOOL... 4-270
P_ZERO .. 4-270

4.13 Detailed Explanation of Functions .. 4-271
4.13.1 How to Read Described items .. 4-271
4.13.2 Explanation of Each Function ... 4-271

ABS.. 4-272
ALIGN .. 4-273
ASC ... 4-274
ATN/ATN2 ... 4-274
BIN$... 4-275
CALARC .. 4-276
CHR$... 4-277
CINT .. 4-277
CKSUM.. 4-278
COS ... 4-278
CVI... 4-279
CVS ... 4-279
CVD ... 4-280
DEG... 4-280
DIST... 4-281
vi

Contents
Page
EXP.. 4-281
FIX ... 4-282
FRAM... 4-283
HEX$... 4-284
INT ... 4-284
INV... 4-285
JTOP.. 4-285
LEFT$.. 4-286
LEN.. 4-286
LN .. 4-287
LOG ... 4-287
MAX ... 4-288
MID$.. 4-288
MIN .. 4-289
MIRROR$.. 4-289
MKI$.. 4-290
MKS$... 4-290
MKD$... 4-291
POSCQ.. 4-291
POSMID... 4-292
PTOJ.. 4-292
RAD ... 4-293
RDFL 1 .. 4-293
RDFL 2 .. 4-294
RND ... 4-295
RIGHT$.. 4-295
SETFL 1... 4-296
SETFL 2... 4-297
SETJNT ... 4-298
SETPOS .. 4-299
SGN ... 4-300
SIN... 4-300
SQR ... 4-301
STRPOS .. 4-301
STR$.. 4-302
TAN.. 4-302
VAL .. 4-303
ZONE... 4-304
ZONE 2.. 4-305

5 Functions set with parameters .. 5-306
5.1 Movement parameter .. 5-306
5.2 Signal parameter ... 5-314
5.3 Operation parameter ... 5-315
5.4 Command parameter .. 5-318
5.5 Communication parameter .. 5-322
5.6 Standard Tool Coordinates ... 5-324
5.7 About Standard Base Coordinates ... 5-327
5.8 About user-defined area ... 5-328
5.9 Free plane limit ... 5-329
5.10 Automatic return setting after jog feed at pause ... 5-330
5.11 Automatic execution of program at power up ... 5-332
5.12 About the hand type .. 5-333
5.13 About default hand status ... 5-334
5.14 About the output signal reset pattern .. 5-335
5.15 About the communication setting .. 5-337
vii

Page
5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-340
5.17 About the singular point adjacent alarm .. 5-344
5.18 About ROM operation/high-speed RAM operation function .. 5-345
5.19 Warm-Up Operation Mode .. 5-355
5.20 About singular point passage function .. 5-362

TYPE (Type) .. 5-365

6 External input/output functions .. 6-367
6.1 Types .. 6-367
6.2 Connection method ... 6-368
6.3 Dedicated input/output .. 6-371
6.4 Enable/disable status of signals .. 6-377
6.5 External signal timing chart ... 6-378

6.5.1 Individual timing chart of each signal .. 6-378
6.5.2 Timing chart example ... 6-385

(1) External signal operation timing chart (Part 1) ... 6-385
(2) External signal operation timing chart (Part 2) ... 6-386
(3) Example of external operation timing chart (Part 3) ... 6-387
(4) Example of external operation timing chart (Part 4) ... 6-388

6.6 Emergency stop input ... 6-389
6.6.1 Robot Behavior upon Emergency Stop Input ... 6-389

7 Q & A .. 7-390
7.1 Movement ... 7-390
7.2 Program .. 7-393
7.3 Operation .. 7-394
7.4 External input/output signal ... 7-396
7.5 Parameter ... 7-397

8 Collection of Techniques ... 8-398
8.1 Entry-Level Edition .. 8-399

8.1.1 Describing comprehensive programs ... 8-399
8.1.2 Managing program versions ... 8-405
8.1.3 Changing the operating speed in a program .. 8-405
8.1.4 Detecting fallen works while transporting .. 8-406
8.1.5 Positioning works accurately .. 8-407
8.1.6 Awaiting signal ON/OFF during the specified number of seconds 8-408
8.1.7 Interlocking by using external input signals .. 8-410
8.1.8 Sharing data among programs ... 8-412
8.1.9 Checking whether the current position and the commanded position are the same 8-413
8.1.10 Shortening the cycle time (entry-level edition) .. 8-414

8.2 Intermediate Edition .. 8-416
8.2.1 How to quickly support for the addition of types ... 8-416
8.2.2 Convenient ways to use the pallet instruction ... 8-417
8.2.3 How to write communication programs ... 8-418
8.2.4 How to reduce teaching points ... 8-421
8.2.5 Using a P variable in a counter, etc. ... 8-423
8.2.6 Getting position information when the sensor is on .. 8-424

8.3 Advance Edition .. 8-426
8.3.1 Using the robot as a simplified PLC (sequencer) .. 8-426
8.3.2 Implementing a mapping function ... 8-429
8.3.3 Finding out executed lines .. 8-431
8.3.4 Saving the status when an error has occurred ... 8-432

9 Appendix ... 9-433
viii

Contents
Page
9.1 Reference Material .. 9-433
9.1.1 About sink/source type of the standard external input and output 9-433

(1) Electrical specifications of input/output circuit .. 9-433
(2) Connection example ... 9-434
(3) Connector pin assignment .. 9-435
ix

Page
x

 1Before starting use
1 Before starting use

This chapter explains the details and usage methods of the instruction manuals, the basic terminology and
the safety precautions.

1.1 Using the instruction manuals
1.1.1 The details of each instruction manuals

The contents and purposes of the documents enclosed with this product are shown below. Use these doc-
uments according to the application.
For special specifications, a separate instruction manual describing the special section may be enclosed.

Explains the common precautions and safety measures to be taken for robot han-
dling, system design and manufacture to ensure safety of the operators involved
with the robot.

Explains the product's standard specifications, factory-set special specifications,
option configuration and maintenance parts, etc. Precautions for safety and technol-
ogy, when incorporating the robot, are also explained.

Explains the procedures required to operate the robot arm (unpacking, transporta-
tion, installation, confirmation of operation), and the maintenance and inspection
procedures.

Explains the procedures required to operate the controller (unpacking, transporta-
tion, installation, confirmation of operation), basic operation from creating the pro-
gram to automatic operation, and the maintenance and inspection procedures.

Explains details on the functions and operations such as each function and opera-
tion, commands used in the program, connection with the external input/output
device, and parameters, etc.

Explains details on the MOVEMASTER commands used in the program.
(For RV-1A/2AJ, RV-2A/3AJ and RV-3S/3SJ/3SB/3SJB series)

Explains the causes and remedies to be taken when an error occurs. Explanations
are given for each error No.

Safety Manual

Standard
Specifications

Robot Arm
Setup &
Maintenance

Controller
Setup, Basic
Operation and
Maintenance

Detailed
Explanation of
Functions and
Operations

Explanations
of MOVEMAS-
TER
COMMANDS

Troubleshoot-
ing
 Using the instruction manuals 1-1

1

1Before starting use
1.1.2 Symbols used in instruction manual
The symbols and expressions shown in Table 1-1 are used throughout this instruction manual. Learn the
meaning of these symbols before reading this instruction manual.

Table 1-1:Symbols in instruction manual

Symbol Meaning

Precaution indicating cases where there is a risk of operator fatality or
serious injury if handling is mistaken. Always observe these precautions
to safely use the robot.

Precaution indicating cases where the operator could be subject to fatali-
ties or serious injuries if handling is mistaken. Always observe these pre-
cautions to safely use the robot.

Precaution indicating cases where operator could be subject to injury or
physical damage could occur if handling is mistaken. Always observe
these precautions to safely use the robot.

[JOINT] If a word is enclosed in brackets or a box in the text, this refers to a key on
the teaching pendant.

[+/FORWD]+[+X]
 (A) (B)

This indicates to press the (B) key while holding down the (A) key.
In this example, the [+/Forward] key is pressed while holding down the
[+X/+Y] key.

[STEP/MOVE]+([COND]-[RPL])
 (A) (B) (C)

This indicates to hold down the (A) key, press and release the (B) key, and
then press the (C) key. In this example, the [Step/Move] key is held down,
the [Condition] key is pressed and released, and the [Replace] key is
pressed.

T/B This indicates the teaching pendant.

DANGER

 WARNING

CAUTION
-2 Using the instruction manuals

 1Before starting use
1.2 Safety Precautions
Always read the following precautions and the separate "Safety Manual" before starting use of the robot to
learn the required measures to be taken.

All teaching work must be carried out by an operator who has received special
training. (This also applies to maintenance work with the power source turned ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of
operating the robot, and to the measures to be taken when an error occurs or when
restarting. Carry out work following this plan. (This also applies to maintenance
work with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching
work. (This also applies to maintenance work with the power source turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on
the start switch, etc. (This also applies to maintenance work with the power source
turned ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator
and robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work, and fol-
low this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicat-
ing that maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related
devices, etc., and confirm that there are no errors.
Inspection before starting work

 CAUTION

 CAUTION

 WARNING

 CAUTION

 DANGER

 CAUTION

 CAUTION

 CAUTION
 Safety Precautions 1-3

1

1Before starting use
1.2.1 Precautions given in the separate Safety Manual
The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

Use the robot within the environment given in the specifications. Failure to do so
could lead to a drop or reliability or faults. (Temperature, humidity, atmosphere,
noise environment, etc.)

Transport the robot with the designated transportation posture. Transporting the
robot in a non-designated posture could lead to personal injuries or faults from
dropping.

Always use the robot installed on a secure table. Use in an instable posture could
lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise
source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure
the priority right for the robot control. Failure to observe this could lead to personal
injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with
peripheral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic oper-
ation, the door is locked or that the robot will automatically stop. Failure to do so
could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-desig-
nated maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or fin-
gers catching depending on the posture.

Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF.
If the robot controller main power is turned OFF during automatic operation, the
robot accuracy could be adversely affected.
Do not turn off the main power to the robot controller while rewriting the internal
information of the robot controller such as the program or parameters. If the main
power to the robot controller is turned off while in automatic operation or rewriting
the program or parameters , the internal information of the robot controller may be
damaged.

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 CAUTION

 CAUTION
-4 Safety Precautions

 2Explanation of functions
2 Explanation of functions
2.1 Operation panel (O/P) functions

(1) Explanation of buttons on the operation panel
Table 2-1:Names of each part on operation panel (Controller)

Button name Function

1) Start button This executes the program and operates the robot. The program is run continuously.
The LED (green) lights during operation. When only executing the program to which "ALWAYS" was
set as start conditions, the LED not lights.

2) Stop button This stops the robot immediately. The servo does not turn OFF.
The LED (red) lights while stopped. (Turns on when the program is interrupted.)
However, the program to which "ALWAYS" was set as start conditions does not stop.

3) Reset button This resets the error. The LED (red) lights while an error is occurring. This also resets the program's
interrupted state and resets the program. (Only when program numbers are displayed.)

4) Emergency stop button This stops the robot in an emergency state. The servo turns OFF. Turn to the right to cancel.

5) T/B connection switch This is used to connect/disconnect the T/B without turning OFF the controller's control power. The
T/B should be removed within five seconds after pressing the switch. An error occurs if more than
five seconds elapses after pressing the switch. Similarly, when the T/B should be remounted, it
should be connected and the switch returned to the original position within five seconds.

6) Display changeover
switch

This changes the details displayed on the display panel in the order of "Program No." - "Line No." -
"Override". When an error is occurring, "Program No."- "Line No." - "Override" appear only when
the key is pressed. The error No. will appear when the key is released.

7) End button This stops the program being executed at the last line or END statement. (Cycle operation) The
LED (red) winks during cycle operation. (Cancels continuous operation.)
When it is pressed again while flushing in software version J1 or later, the operation returns to con-
tinuous operation.

8) SVO.ON button This turns ON the servo power. The LED (green) lights during servo ON.

9) SVO.OFF button This turns OFF the servo power. The LED (red) lights during servo OFF.

10) STATUS.NUMBER The error No., program No., override value (%), etc., are displayed.
The program name is shown with simplified symbols if alphabetic characters are used.

11) MODE changeover
switch Note1)

This changes the robot's operation rights. Note2)

AUTO(Op.) : Only operations from the controller are valid. Operations for which the operation
rights must be at the external device or T/B are not possible.

TEACH : When the T/B is valid, only operations from the T/B are valid. Operations for
which the operation rights must be at the external device or controller are not
possible.

AUTO(Ext.): Only operations from the external device are valid. Operations for which the operation
rights must be at the T/B or controller are not possible.

12) UP/DOWN button This scrolls up or down the details displayed on the display panel
(Valid for program numbers, override, and error numbers)

SVO OFF STOP END

SVO ONMODE

TEACH

AUTO
(Ext.)

AUTO
(Op.)

START RESET

DOWN

UP

STATUS NUMBER

REMOVE T/B

EMG.STOPCHANG DISP

 11) 9) 2) 7) 5)

10) 8) 1) 6) 12) 3) 4)
 Operation panel (O/P) functions 2-5

2

2Explanation of functions
Note1) The servo will turn OFF when the controller's [MODE] switch is changed.
Note that axes not provided with brakes could drop with their own weight.

Carry out the following operations to prevent the servo from turning OFF
whenthe [MODE] switch is changed.

The servo on status can be maintained by changing the mode with keeping
pressing
lightly the deadman switch of T/B. The operating method is shown below.

*When the mode is changed from TEACH to AUTO.
1) While holding down the deadman switch on the T/B, set the [ENABLE/DISABLE]

switch to "DISABLE".
2) While holding down the deadman switch on the T/B, set the controller [MODE]

switch to "AUTO".
3) Release the T/B deadman switch.

*When the mode is changed from AUTO to TEACH.
1) While the [ENABLE/DISABLE] switch on the T/B is "DISABLE", hold down the

deadman switch.
2) While holding down the deadman switch on the T/B, set the controller [MODE]

switch to "TEACH".
3) While holding down the deadman switch on the T/B, set the [ENABLE/DISABLE]

switch to "ENABLE", then do the operation of T/B that you wish.

Note2) If you want to retain the LED display when switching the mode changeover
switch, change the following parameter.

(2) About the status number display
The following is a description of the simplified symbols shown on the 7-segment LED display when display-
ing a program name specified with alphabetic characters.

The character "P" is fixed at the beginning of the program name display, which means that the number of
characters that can be displayed are four or less. Make sure to use no more than four characters when
entering the program name.
It is not possible to select a program name consisting of more than four characters from the operation panel.
However, it is allowed to create a program name consisting of more than four characters in the case of a
program to be executed as a sub-program by the CALLP instruction of the robot language.

Parameter name Meaning of the value Explanation

OPDISP 0:Display the override.(default)
1:Keep display mode.

Specify the action of the LED display when
changing the mode changeover switch.

A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z

 CAUTION
-6Operation panel (O/P) functions

 2Explanation of functions
2.2 Teaching pendant (T/B) functions
This chapter explains the functions of R28TB (optional).

(1) Display screens and functions
Table 2-2 shows the functions corresponding to the screens displayed on the T/B, and the pages on which
expla-nations of the operation methods are given.
The screen tree is shown in the Page 13, "(1) Screen tree".

Table 2-2:Display screens and functions
Screen display Function Explanation page

 Title screen Type and software version display Page 13, "3.1 Operation of the teaching pendant menu
screens"

 Menu screen Selection of following screens

Teach screen Selection and editing of program No. Page 24, "3.5.1 Creating a program"

Operation menu screen Servo ON/OFF
Step operation

Page 42, "3.8 Turning the servo ON/OFF"

Control menu screen Program list display Page 45, "(1) Program list display"
Program protection Page 46, "(2) Program protection function"
Program copy Page 47, "(3) Copying programs"
Program name change Page 48, "(4) Changing the program name (Renam-

ing)"
Program deletion Page 49, "(5) Deleting a program"

 Monitor menu screen Input signal status display Page 50, "(1) Input signal monitor"

Output signal status change and display Page 51, "(2) Output signal monitor"

Variable details display Page 52, "(3) Variable monitor"

Error history display Page 53, "(4) Error history"

Register display Use when CC-Link option is used.
Separate manual "CC-Link Interface".

Maintenance screen Parameter setting value display and
change

Page 54, "(1) Setting the parameters"

Program initialization Page 55, "(2) Initializing the program"

Battery timer initialization Page 56, "(3) Initializing the battery consumption time"

Brake release Page 57, "(4) Releasing the brakes"

Origin setting Page 58, "(5) Setting the origin"

Operation time display Page 58, "(6) Displaying the clock data for mainte-
nance"

Setting menu screen Date and time display and change Page 59, "(1) Setting the time"

CRn-5xx Ver.A1
RP-1AH
Copyright(C)1999
 ANY KEY DOWN

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<TEACH>
(1)

SELECT

<RUN>
1.SERVO
2.CHECK

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

<MONI>
1.INPUT2.OUTPUT
3.VAR 4.ERROR
5.REGISTER

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<SET>
1.CLOCK
 Teaching pendant (T/B) functions 2-7

2

2Explanation of functions
(2) Function of each key

Fig.2-1:T/B keys

Key Explanation

1) [EMG. STOP] switch This is a push-button switch with lock function for emergency stop. When this switch is pressed,
the servo will turn OFF and the robot will stop immediately regardless of the T/B enable/disable
state. To cancel this state, turn the switch clockwise.

2) [ENABLE/DISABLE]
switch

This changeover switch is used to enable or disable the T/B key operations. To carry out opera-
tions using the T/B, always set this switch to "ENABLE" (valid). Operations with the T/B will be
enabled, and operations from the controller and external sources will be disabled. The T/B will
have the operation rights. To operate with the controller or external source, set this switch to
"DISABLE" (invalid). It is possible to change modes of operation related to the monitor and the
override even in the disabled status. Set this switch to "DISABLE" position while editing in order
to save the current program.

3) Display LCD The program contents and robot state are displayed with the T/B key operations.

4) [TOOL] key This selects the TOOL jog mode

4) [JOINT] key This selects the JOINT jog mode. Press twice to select the additional axis jog mode.

4) [XYZ] key The XYZ jog mode is selected if the key is pressed while in the TOOL and/or JOINT jog condi-
tion, the 3-axis XYZ jog mode is selected if pressed twice, and the cylinder jog mode is selected
if pressed three times.

5) [MENU] key This returns the display screen to the menu screen. If the key is pressed while editing, the cur-
rent program is saved.

6) [STOP] key This stops the program and decelerates the robot to a stop. This is the same function as the
[STOP] switch on the front of the controller, and can be used even when the T/B [ENABLE/DIS-
ABLE] switch is set to DISABLE.

7) [STEP/MOVE] key Jog operations are possible when this key is pressed simultaneously with the 12) jog operation
key. Step jump is carried out when pressed simultaneously with the [INP/EXE] key.
Press it when the servo is off to turn the servo on (while the deadman switch is pressed).

8) [+/FORWD] key Step feed is carried out when this key is pressed simultaneously with the [INP/EXE] key. On the
edit screen, the next program line is displayed.
Press it at the same time as the [STEP/MOVE] key during program operation to increase the
override (speed). It is possible to perform this operation even when the T/B is disabled.
 A "+" is input when characters are entered.

R28TB

1)

6)

5)

13)

2)

14)

15)

16)

17)

10)

3)

4)

12)

11)

18)

7)

8)

9)

DISABLE

EMG.STOP

TOOL

 =＊/

STEP

MOVE

＋

 FORWD

－

 BACKWD

ADD

↑

 RPL

↓

 DEL

←

 HAND

→

INP

EXE

COND

ERROR

RESET

POS

　 　CHAR

JOINT

 ()？

XYZ

 $" :

MENU

STOP

－X

(J1)

＋ X

(J1)

－Y

(J2)

＋ Y

(J2)

－Z

(J3)

＋ Z

(J3)

－A

(J4)

＋ A

(J4)

－B

(J5)

＋ B

(J5)

－C

(J6)

＋ C

(J6)

SVO ON

ENABLE

 # % !
19)

Back

19)

20)

Front Back Side
-8Teaching pendant (T/B) functions

 2Explanation of functions
9) [-/BACKWD] key On the edit screen, the previous line is displayed. When pressed simultaneously with the [INP/
EXE] key, the axis will return along the robot's operation path. When pressed simultaneously
with the [STEP/MOVE] key, the override (speed) will decrease.It is possible to perform this oper-
ation even when the T/B is disabled.
 A "+" is input when characters are entered.

10) [COND] key Use this key to display the program instruction screen.

11) [ERROR RESET] key This key resets an error state that has occurred. When pressed simultaneously with the [INP/
EXE] key, the program will be reset.

12) [Jog operation] key (12
keys from [-X (J1) to +C
(J6)]

In this manual, these keys are generically called the "jog operation" keys. When JOINT jog is
selected, each axis will rotate, and when XYZ jog is selected, the robot will move along each
coordinate system. These keys are also used to input numeric values such as when selecting a
menu or inputting a step No.

13) [ADD] key Moves the cursor upward. It also, you can add or correct position data by pressing it simulta-
neously with the [STEP] key on the position data edit screen. (T/B version B1 or later.)

14) [RPL] key Moves the cursor to the downward. It also, you can display the next screen after the current posi-
tion display by pressing it simultaneously with the [STEP] key on the position data edit screen.
(T/B version B1 or later.)

15) [DEL] This deletes the position data. It also moves the cursor to the left.

16) [HAND] key The following hand operations
 When pushed simultaneously with [+C (J6)] or [-C (J6)] key, operate the hand 1.
 When pushed simultaneously with [+B (J5)] or [-B (J5)] key, operate the hand 2.
 When pushed simultaneously with [+A (J4)] or [-A (J4)] key, operate the hand 3.
 When pushed simultaneously with [+Z (J3)] or [-Z (J3)] key, operate the hand 4.
This key also moves the cursor to the right.

17) [INP/EXE] key This inputs the program, and carries out step feed/return

18) [POS CHAR] key Use this key to display the position edit screen and to enter characters and symbols.

19) Deadman switch When the [ENABLE/DISABLE] switch 2 is enabled, and this switch is released or pressed with
force, the servo will turn OFF. Press this switch lightly when carrying out functions with the servo
ON, such as jog operations. If emergency stop or servo OFF have been applied, and the servo is
OFF, the servo will not turn ON even when this switch is pressed. In this case, carry out the
servo ON operation again.

20) Contrast setting switch
(Top: Shade, bottom: light)

This sets the display LCD brightness.

Key Explanation
 Teaching pendant (T/B) functions 2-9

2

2Explanation of functions
2.2.1 Operation rights
Only one device is allowed to operate the controller (i.e., send commands for operation and servo on, etc.)
at the same time, even if several devices, such as T/Bs or PCs, are connected to the controller.This limited
device "has the operation rights".
Operations that start the robot, such as program start and error reset, and operations that can cause starting
require the operation rights. Conversely, operation that stop the robot, such as stopping and servo OFF, can
be used without the operation rights for safety purposes.

Table 2-3:Relation of setting switches and operation rights O:Has operation rights, X:Does not have operation rights

Note 1) When the "operation right input signal (IOENA)" is input from an external device, the external signal
has the operation rights, and the personal computer's operation rights are disabled.

Note 2) If the [MODE] switch is set to "AUTO" when the T/B is set to "ENABLE", the error 5000 will occur.

Table 2-4:Operations requiring operation rights Operation item: O=Requires operation rights, X= Does not require operation rights

Setting
 switch

T/B [ENABLE/DISBLE] DISABLE ENABLE

Controller [MODE] AUTO(Op.) AUTO(Ext.) TEACH AUTO(Op.) AUTO(Ext.) TEACH

Operation
rights

T / B X X X XNote 2) XNote 2) O

Controller operation panel O X X XNote 2) XNote 2) X

Personal computer X ONote 1) X XNote 2) XNote 2) X

External signal X ONote 1) X XNote 2) XNote 2) X

Class Operation
rights Operation

Operation O Servo ON
X Servo OFF
O Program stop/cycle stop
X Slot initialization (program reset)
O Error reset
X Override change. Note this is always possible from the T/B.
O Override read
X Program No. change
O Program No./line No. read
X Program stop/cycle stop

Input/output
signal

X Input/output signal read
X Output signal write
O Dedicated input start/reset/servo ON/brake ON/OFF/manual mode changeover/general-pur-

pose output reset/program No. designation/line No. designation/override designation
X Dedicated input stop/servo OFF/continuous cycle/ operation rights input signal/ program

No.output request/line No. output request/override output request/error No. request, numeric
input

X Hand input/output signal read
O Hand output signal write

Program edit-
ing
Note1)

Note1) When one device is being used for editing on-line, editing from other devices is not possible.

X Line registration/read/call; Position addition/correction/read; Variable write/read
O Step feed/return, execution
X Step up/down
O Step jump, direct execution, jog

File operation X Program list read/protection setting/copy/delete/rename/ initialization
Maintenance
operation

X Parameter read, clock setting/read, operation hour meter read, alarm history read
O Origin setting, parameter change
-10Teaching pendant (T/B) functions

 2Explanation of functions
2.3 Functions Related to Movement and Control
This controller has the following characteristic functions.

Function Explanation Explanation page
Optimum speed control This function prevents over-speed errors as much as possible by limiting

the speed while the robot is tracking a path, if there are postures of the
robot that require the speed to be limited while moving between two
points. However, the speed of the hand tip of the robot will not be con-
stant if this function is enabled.

Page 213, "SPD (Speed)"

Optimum acceleration/
deceleration control

This function automatically determines the optimum acceleration/deceler-
ation time when the robot starts to move or stops, according to the weight
and center of gravity settings of the hand, and the presence of a work-
piece. The cycle time improves normally, although the cycle time
decreases by the condition..

Page 193, "OADL (Optimal Acceler-
ation)",
Page 179, "LOADSET (Load Set)"

XYZ compliance With this function, it is possible to control the robot in a pliable manner
based on feedback data from the servo. This function is particularly effec-
tive for fitting or placing workpieces. Teaching along the robot's orthogo-
nal coordinate system is possible. However, depending on the workpiece
conditions, there are cases where this function may not be used.

Page 134, "CMP TOOL (Composi-
tion Tool)"

Impact Detection The robot stops immediately if the robot's tool or arm interferes with a
peripheral device, minimizing damage.
This function can be activated during automatic operation as well as dur-
ing jog operation. (Limited to the RV-S/ RH-S series.)
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Page 141, "COLCHK (Col Check)"
Refer to "COL" parameter in Page
306, "5 Functions set with parame-
ters".

Maintenance Forecast The maintenance forecast function forecasts the robot's battery, belt and
grease maintenance information based on the robot's operating status.
This function makes it possible to check maintenance information using
the optional Personal Computer Support software. (Limited to the RV-S/
RH-S series.)
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Use optional Personal Computer
Support software. This function can
be used in Version E1 or later.

Position Restoration
Support

The position restoration support function calculates the correction values
of OP data, tools and the robot base by only correcting a maximum of
several 10 points if a deviation in the joint axis, motor replacement, hand
deformation or a deviation in the robot base occurs, and corrects position
deviation. This function is implemented by optional Personal Computer
Support software. This function can be used with the vertical multi-joint
robot and the RH-S series.

Use optional Personal Computer
Support software.
Vertical multi-joint robot:
This function can be used in Version
E1 or later.
RH-S series:
This function can be used in Version
F2 or later.

Continuous path con-
trol

This function is used to operate the robot between multiple positions con-
tinuously without acceleration or deceleration. This function is effective to
improvement of the cycle time.

Page 65, "(4) Continuous move-
ment",
Page 138, "CNT (Continuous)"

Multitask program
operation

With this function, it is possible to execute programs concurrently by
grouping between programs for the robot movement, programs for com-
munication with external devices, etc. It is effective to shorten input/out-
put processing. In addition, it is possible to construct a PLC-less system
by creating a program for controlling peripheral jigs.

Refer to X*** instructions such as
Page 86, "4.2.1 What is multitask-
ing?", Page 226, "XRUN (X Run)".

Program constant exe-
cution function

With this function, it is possible to execute a program all the time after the
controller's power is turned on. This function is effective when using the
multitask functions to make the robot program serve as a PLC.

Refer to "SLTn" parameter start
attribute (ALWAYS) in Page 306, "5
Functions set with parameters".

Continuity function With this function, it is possible to store the status at power off and
resume from the same status when the power is turned on again.

Refer to "CTN" parameter in Page
306, "5 Functions set with parame-
ters".

Additional axis control With this function, it is possible to control up to two axes as additional
axes of the robot. Since the positions of these additional axes are stored
in the robot's teaching data as well, it is possible to perform completely
synchronous control. In addition, arc interpolation while moving additional
axes (travelling axes) is also possible. The additional axis interface card
optional is required of CR1/CR2 series controller.

Separate manual "ADDITIONAL
AXIS INTERFACE".

Multi-mechanism con-
trol

With this function, it is possible to control up to two (excluding the stan-
dard robots) robots (user mechanism) driven by servo motors, besides
the standard robots.

Separate manual "ADDITIONAL
AXIS INTERFACE".
 Functions Related to Movement and Control 2-11

2

2Explanation of functions
External device com-
munication function

The following methods are available for communicating with the external
devices
For controlling the controller and for interlock within a program
 1) Via input/output signals

(32 points each for standard input/output in the CR2, CR3, CR4, CR7,
CR8 and CR9)

 2) Via CC-Link (optional)

As a data link with an external device
 3) Communication via RS-232C
 (1 standard port, and up to four optional ports)
 4) Communication via Ethernet
The data link refers to a given function in order to exchange data, for
instance amount of compensation, with external devices (e.g., vision sen-
sors).

Refer to Page 248, "M_IN/M_INB/
M_INW",
Page 254, "M_OUT/M_OUTB/
M_OUTW".

Page 337, "5.15 About the commu-
nication setting"
Separate manual "Ethernet Inter-
face".

Interrupt monitoring
function

With this function, it is possible to monitor signals, etc. during program
operation, and pause the current processing in order to execute an inter-
rupt routine if certain conditions are met. It is effective for monitoring that
workpieces are not dropped during transport.

Page 146, " DEF ACT (Define act)",
Page 121, " ACT (Act)"

Inter-program jump
function

With this function, it is possible to call a program from within another pro-
gram using the CALLP instruction.

Page 125, " CALLP (Call P)"

Pallet calculation func-
tion

This function calculates the positions of workpieces arranged in the grid
and glass circuit boards in the cassette. It helps to reduce the required
teaching amount. The positions can be given in row-by-column format,
single row format, or arc format.

Page 71, "4.1.2 Pallet operation",
Page 157, "DEF PLT (Define pal-
let)",Page 200, "PLT (Pallet)"

User-defined area func-
tion

With this function, it is possible to specify an arbitrary space consisting of
up to eight areas, monitor whether the robot's hand tip is within these
areas in real time, output the status to an external device, and check the
status with a program, or use it to generate an error. Moreover, two func-
tions (ZONE and ZONE2) that have a similar function are available for
use in a robot program.

Page 328, "5.8 About user-defined
area",Page 262, "M_UAR".

Page 304, "ZONE",
Page 305, "ZONE 2"

JOINT movement
range
XYZ operation range
Free plane limit

It is possible to restrict the robot movement range in the following three
ways
JOINT movement range:
It is possible to restrict the movement range of each axis.
XYZ operation range:
It is possible to restrict the movement range using the robot's XYZ coordi-
nate system.
Free plane limit:
It is possible to define an arbitrary plane and restrict the movement range
of the robot to be only in front of or only behind the plane.

Refer to "MEJAR" and "MEPAR"
parameter in Page 306, "5 Functions
set with parameters"

Refer to Page 329, "5.9 Free plane
limit"

Function Explanation Explanation page
-12Functions Related to Movement and Control

 3Explanation of operation methods
3 Explanation of operation methods

This chapter describes how to operate R28TB (optional)

3.1 Operation of the teaching pendant menu screens
(1) Screen tree

Command editing screenTeach screen Position editing screen

<MENU>

1.TEACH 2.RUN

3.FILE 4.MONI

5.MAINT 6.SET

Menu screen Tittle screen

CRx-5xx Ver A1

 RV-1A

Copyright(C)1999
 ANY KEY DOWN

[COND]

+ [RPL]

[POS]

[INP]

[1][2]

[1]

Press one of
the keys

<TEACH>

(1)

 SELECT PROGRAM

PR:1 ST:255

 LN:10

10 MOV P1

 CODE EDIT

MO.POS(P1)

 X: +200.00

 Y: +200.00

 Z: +500.00

<RUN>

1.SERVO

Run menu screen

<SERVO>

SERVO OFF()

 0:OFF 1:ON

Servo screen

<FILE>

1.DIR 2.COPY

3.RENAME 4.DELETE

File menu screen

<DIR> 　10

1 99-12-20

2 01-01-10

3 01-01-20

Directory screen（protect）

<COPY>

FROM()

TO()

 INPUT SOURCE

Copy screen

<RENAME>

FROM()

TO()

 INPUT DEST.

Rename screen

<DELETE>

DELETE()

INPUT DEL.FILE

Delete screen

<MONI>

1.INPUT 2.OUTPUT

3.VAR 4.ERROR

5.REGISTER

Monitor menu screen

<INPUT>

NUMBER (0)

BIT :76543210

DATA:00000000

Input monitor screen

<OUTPUT>

NUMBER (0)

BIT :76543210

DATA:00000000

Output monitor screen

<VAR>

()

 SELECT PROGRAM

Variable monitor screen

<ERROR> -1

00-12-20 15:30

Error history screen

<MAINT>

1.PARAM 2.INIT

3. BRAKE 4.ORIGIN
5.POWER

Maintenance menu screen

<PARAM>

()()

()

 SET PARAM.NAME

Parameter screen

<INIT>

INIT ()

1.PROGRAM 2.BATT.

 Initialize screen

<BRAKE>12345678

BRAKE (00000000)

 0:LOCK 1:FREE

Brake screen

<ORIGIN>

1. DATA 2.MECH
2. TOOL 4.ABS
5.USER

Origin setting screen

<HOUR DATA> Hr

POWER ON: 5000

BATTERY: 400

Operating time screen

<MAINT>

1.CLOCK

Setting menu screen

<CLOCK>

DATE(00-12-20)

TIME(15:30:00)

 INPUT DATA

Parameter screen

[1][3]

[3]

[1][4]

[2]

[4]

[2]

[3] [4]

[1][5] [2]

[3] [5][4]

[1][6]

2.CHECK

Step operation screen

<CHECK> ST:3
LN:10

10 MOVE P100
[2]

[5]
5000 ***********

<REG.>

Register screen

1.INPUT 2.OUTPUT
 Operation of the teaching pendant menu screens 3-13

3

3Explanation of operation methods
(2) Selecting a menu
A menu can be selected with either of the following two methods.

*Press the number key for the item to be selected.
*Move the cursor to the item to be selected, and press the [INP] key.

How to select the TEACH screen ("1. TEACH") from the menu screen with each method is shown below.

1) Set the controller [MODE] switch to "TEACH".

2) Set the T/B to "ENABLE".

3) Press one of the keys (example, [MENU] key)
while the <TITLE> screen is displayed.
The <MENU> screen will appear.

*Press the number key method

1) Press the [1] key. The <TEACH> screen will
appear.

*Use the arrow key method

1) Press the arrow keys and move the cursor to
"1. TEACH", and then press the [INP] key.
The <TEACH> screen will appear.
The same operations can be carried out on
the other menu screens.

The same operations can be used on the other menu screens.

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE
DISABLE ENABLE

O/P T/B

Display the MENU screen from the TEACH screen.

CRn-5xx Ver.A1
 RP-1AH
COPYRIGHT(C)1999
 ANY KEY DOWN

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

MENU

#%!

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<TEACH>
(1)

SELECT PROGRAM

-B
(J5)

1 DEF

Move the cursor - set
-

ADD RPL DEL HAND INP
EXE

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<TEACH>
(1)

SELECT PROGRAM

Using the T/B
Unless the controller [MODE] switch is set to "TEACH", operations other than specific operations (current
position display on JOG screen, changing of override, monitoring of input/output, error history) cannot be
carried out from the T/B.

Inputting numbers and spaces
To input a number, press the key having a number on the lower left.
To input a space, press the key having "SPACE" on the lower left.

Inputting numbers and spaces
To input a number, press the key having a number on the lower left.
To input a space, press the key having "SPACE" on the lower left.

Correcting incorrect numbers
Press the [DEL] key while holding down the [CHAR] key to delete the character, and then input it again.
If the cursor is returned by pressing the [<-] key, and a character is input, it will be inserted.
-14 Operation of the teaching pendant menu screens

 3Explanation of operation methods
3.2 Jog Feed (Overview)
Jog feed refers to a mode of operation in which the position of the robot is adjusted manually. Here, an over-
view of this operation is given, using the vertical multi-joint type robot "RV-1A" as an example. The axes are
configured differently depending on the type of robot. For each individual type of robot, please refer to sepa-
rate manual: "ROBOT ARM SETUP & MAINTENANCE," which provides more detailed explanations.

3.2.1 Types of jog feed
The following five types of jog feed are available
Table 3-1:Types of jog feed

Type Operation Explanation

JOINT jog 1) Set the key switch to the [ENABLE] posi-
tion.

2) Hold the deadman lightly.
3) Press the [STEP/MOVE] key. (The servo is

turned on.)
4) Press the [JOINT] key to change to the

JOINT jog mode.
5) Press the key corresponding to each of the

axes from J1 to J6.
6) Press the [JOINT] key twice to shift to the

additional axis mode.

In this mode, each of the axes can be adjusted independently.
It is possible to adjust the coordinates of the axes J1 to J6 as
well as the additional axes J7 and J8 independently. Note that
the exact number of axes may be different depending on the
type of robot, however.

The additional axis keys [J1] and [J2] correspond to axes J7
and J8, respectively.

TOOL jog Perform steps 1) to 3) above.
4) Press the [TOOL] key to change to the

TOOL jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

The position can be adjusted forward/backward, left/right, or
upward/downward relative to the direction of the hand tip of the
robot (the TOOL coordinate system).
The tip moves linearly. The posture can be rotated around the
X, Y, and Z axes of the TOOL coordinate system of the hand tip
by pressing the A, B, and C keys, without changing the actual
position of the hand tip. It is necessary to specify the tool length
in advance using the MEXTL parameter.
The TOOL coordinate system, in which the hand tip position is
defined, depends on the type of robot. In the case of a vertical
multi-joint type robot, the direction from the mechanical inter-
face plane to the hand tip is +Z.
In the case of a horizontal multi-joint type robot, the upward
direction from the mechanical interface plane is +Z.

XYZ jog Perform steps 1) to 3) above.
4) Press the [XYZ] key to change to the XYZ

jog mode.

The axes are adjusted linearly with respect to the robot coordi-
nate system.
The posture rotates around the X, Y, and Z axes of the robot
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip. It is necessary to
specify the tool length in advance using the MEXTL parameter.

3-axis XYZ jog Perform steps 1) to 3) above.
4) Press the [XYZ] key twice to switch to

the 3-axis XYZ jog mode.

The axes are adjusted linearly with respect to the robot coordi-
nate system.
Unlike in the case of XYZ jog, the posture will be the same as
in the case of the J4, J5, and J6 axes JOINT jog feed. While
the position of the hand tip remains fixed, the posture is inter-
polated by X, Y, Z, J4, J5, and J6; i.e., a constant posture is not
maintained. It is necessary to specify the tool length in advance
using the MEXTL parameter.

CYLNDER jog Perform steps 1) to 3) above.
4) Press the [XYZ] key twice to switch to

the CYLNDER jog mode.

Use the cylindrical jog when moving the hand in the cylindrical
direction with respect to the robot's origin. Adjusting the X-axis
coordinate moves the hand in the radial direction from the cen-
ter of the robot. Adjusting the Y-axis coordinate moves the
hand in the same way as in JOINT jog feed around the J1 axis.
Adjusting the Z-axis coordinate moves the hand in the Z direc-
tion in the same way as in XYZ jog feed.
Adjusting the coordinates of the A, B, and C axes rotates the
hand in the same way as in XYZ jog feed. They may be valid in
horizontal 4-axis (or 5-axis) RH type robots.

+J1

ｰJ1

+J2
-J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6

+Z

+Y
+X

＋Ａ

＋Ｃ

＋Ｂ

ｰＣ

－Ｂ
－Ａ

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ

＋Ｚ

＋Ｙ ＋Ｘ

+J4

+J5

-J5

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ ＋Ｂ

－Ｂ

＋Ｃ －Ｃ

－Ｙ
 Jog Feed (Overview) 3-15

3

3Explanation of operation methods
If the robot's control point comes near a singular point during the operation of TOOL jog, XYZ jog or CYLIN-
DER jog mode among the types of jog feed listed in Table 3-1, a warning mark is displayed on the T/B
screen together with the sound of buzzer to warn the operator. It is possible to set this function valid or
invalid by parameter MESNGLSW. (Refer to Page 306, "5 Functions set with parameters".) Please refer to
Page 344, "5.17 About the singular point adjacent alarm" for details of this function.

3.2.2 Speed of jog feed
Press the [STEP/MOVE] key to display the current position and speed (%) on the screen. To change these
values, hold the [STEP/MOVE] key down and press either the [+] key or the [-] key. The following types of
jog feed speed are available.

 [-] key -- [+] key

LOW and HIGH are fixed-dimension feed. In fixed-dimension feed, the robot moves a fixed amount every
time the key is pressed. The amount of movement depends on the individual robot.

Table 3-2:Fixed-dimension of RV-1A

3.2.3 JOINT jog
Adjusts the coordinates of each axis independently in angle units.

LOW HIGH 3% 5% 10% 30% 50% 70% 100%

JOINT jog TOOL, XYZ jog

LOW 0.01 deg. 0.01 mm

HIGH 0.10 deg. 0.10 mm

+J1

ｰJ1

+J2 -J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6
-16 Jog Feed (Overview)

 3Explanation of operation methods
3.2.4 TOOL jog
Adjusts the coordinates of each axes along the direction of the hand tip.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

3.2.5 XYZ jog
Adjusts the axis coordinates along the direction of the robot coordinate system.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

+Z

+Y
+X

＋Ａ

＋Ｃ

＋Ｂ

－Ｃ

－Ｂ
－Ａ

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ
 Jog Feed (Overview) 3-17

3

3Explanation of operation methods
3.2.6 3-axis XYZ jog
Adjusts the X, Y, and Z axis coordinates along the direction of the robot coordinate system in the same way
as in XYZ jog feed. The J4, J5 and J6 axes perform the same operation as in JOINT jog feed, but the pos-
ture changes in order to maintain the position of the control point (X, Y and Z values).
The X, Y, and Z axis coordinates are adjusted in mm units. The J4, J5, and J6 axis coordinates are adjusted
in angle units.

3.2.7 CYLNDER jog
Adjusting the X-axis coordinate moves the hand in the radial direction away from the robot's origin. Adjust-
ing the Y-axis coordinate rotates the arm around the J1 axis. Adjusting the Z-axis coordinate moves the
hand in the Z direction of the robot coordinate system. Adjusting coordinates of the A, B, and C axes moves
the hand in the same way as in XYZ jog feed.
The X and Z axis coordinates are adjusted in mm units. The Y, A, B, and C axis coordinates are adjusted in
angle units.

＋Ｚ

＋Ｙ
＋Ｘ

+J4

+J5

-J5

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ ＋Ｂ

－Ｂ

＋Ｃ －Ｃ

－Ｙ
-18 Jog Feed (Overview)

 3Explanation of operation methods
3.2.8 Switching Tool Data
With the combination of the controller's software version J1 or later and the teaching pendant's version A2
or later, tool data can be switched easily via the teaching pendant.

Set the tool data you want to use in the MEXTL1 to 4
parameters, and select the number of the tool you
want to use according to the following operation.

1) Set the controller's [MODE] switch to
"TEACH."

2) Set the teaching pendant to "ENABLE."

3) While holding down the tool key, switch tool
data by pressing from the [1] key to the [4] key.

4) A tool number appears on the jog screen.
A tool number is displayed after T in the upper
right of the T/B screen.

To move the robot to the position where teaching was performed while switching
tool data (MEXTL1 to 4 parameters) during the automatic operation of the program,
substitute the M_TOOL variable by a tool number when needed, and operate the
robot by switching tool data. Exercise caution as the robot moves to an unexpected
direction if the tool data during teaching does not match the tool number during
operation.

To move the robot while switching tool data during the step operation of the
program, exercise caution as the robot moves to an unexpected direction if the tool
data at the time of teaching does not match the tool number during step operation.

R28 TB
DISABLE

EMG.STOP

TOO L

=*/

STEP
MO VE

＋
 FOR WD

－
B A CKW D

ADD
↑

R PL

↓
DE L

←
H AN D

→

I NP
 EXE

COND

ER ROR
RESET

POS

CHAR

JOI NT
() ?

XYZ

$" :
ME NU

STOP

－ X
(J 1)

＋ X
(J1)

－ Y
(J 2)

＋ Y
(J2)

－ Z
(J 3)

＋ Z
(J3)

－ A
(J4)

＋ A
(J4)

－ B
(J5)

＋ B
(J5)

－ C
(J6)

＋ C
(J6)

S VO ON

ENABLE

% !

switch to tool 1.

While pressing

the tool key,

switch to tool 2.

switch to tool 3.

switch to tool 4.

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE
DISABLE ENABLE

O/P T/B

<TOOL SETTING>
TOOL NUMBER:0

PUSH 1 TO 4

<TOOL SETTING>
TOOL NUMBER:0

PUSH 1 TO 4

TOOL
-B

(J5)
1 DEF

+

Selecting Tool Data 1

JOINT T2 100%
J1 +34.50
J2 +20.00
J3 +80.00

 CAUTION

 CAUTION
 Jog Feed (Overview) 3-19

3

3Explanation of operation methods
Verifying the Tool Number
The current tool number can be checked on the <TOOL SETTING> screen or with the M_TOOL variable.

Related Information
MEXTL, MEXTL1, MEXTL2, MEXTL3 and MEXTL4 parameters
TOOL instruction, M_TOOL variable
The MEXTL parameter holds tool data at that point. When using the MEXTL1 to 4 parameters, be careful
as the MEXTL parameter is overwritten once a tool number is selected.
Execute the TOOL instruction to return the tool number to 0.
-20 Jog Feed (Overview)

 3Explanation of operation methods
3.2.9 Impact Detection during Jog Operation
The RV-S/RH-S series is installed with the impact detection function. Impact detection can be enabled even
during jog operation. (The initial value is set as disabled.) If the controller detects interference with a periph-
eral device during jog operation, an error numbered in 1010's will be issued (the first digit is the axis num-
ber).
Other models do not function even if the parameter is enabled.

(1) Impact Detection Level Adjustment during Jog Operation
The sensitivity of impact detection during jog operation is set to a lower value. If higher impact sensitivity is
required, adjust the COLLVLJG parameter before use. Also, be sure to set the HNDDAT0 and WRKDAT0
parameters correctly before use. If a jog operation is carried out without setting these parameters correctly,
erroneous detection may occur depending on the posture of the robot.

Parameter Name No. of
elements Description Initial value

Impact Detection
* This function can
be used in the
controller's soft-
ware version J2 or
later.

COL Integer 3 Define whether the impact detection function can/cannot be used, and
whether it is enabled/disabled immediately after power ON.
Element 1: The impact detection function can (1)/cannot (0) be used.
Element 2: It is enabled (1)/disabled (0) as the initial state during opera-
tion.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog opera-
tion

The NOERR mode does not issue an error even if impact is detected. It
only turns off the servo. Use the NOERR mode if it is difficult to operate
because of frequently occurring errors when an impact is detected.

RV-S series
0,0,1

RH-S series
1,0,1

Other models
0,0,0

Detection level
during jog opera-
tion

COL-
LVLJG

Integer 8 Set the detection sensitivity during jog operation for each joint axis. Unit
(%)
To increase detection sensitivity, reduce the numeric value.
If an impact error occurs even when no impact occurs during jog opera-
tion, increase a numeric value.

Setting range: 1 to 500 (%)

The standard
is
200,200,200,2
00,200,200,20
0,200, but it
varies with
models.

Hand condition HNDD
AT0

Real value
7

Set the initial condition of the hand. (Specify with the tool coordinate
system.)
Immediately after power ON, this set value is used during jog operation.
To use the impact detection function during jog operation, set the actual
hand condition before using. If it is not set, erroneous detection may
occur.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y,
center of gravity Z)
Unit: Kg, mm

It is released
only with the
RV-S/RH-S
series.
The value may
vary with mod-
els. The maxi-
mum load is
set as the load.

Workpiece condi-
tion

WRKD
AT0

Real value
7

Set the initial condition of the workpiece. (Specify with the tool coordi-
nate system.)
Immediately after power ON, this setting value is used during jog oper-
ation.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y,
center of gravity Z)
Unit: Kg, mm

It is released
only with the
RV-S/RH-S
series.
0.0,0.0,0.0,0.0,
0.0,0.0,0.0

Precaution for the Impact Detection Function
Enabling the impact detection function does not completely prevent the robot, hand, workpiece and others
from being damaged, which may be caused by interference with peripheral devices. In principle, operate
the robot by paying attention not to interfere with peripheral devices.

Operation after Impact
If the servo is turned ON while the hand and/or arm is interfering with peripheral devices, the impact
detection state occurs again, preventing the servo from being turned ON. If an error persists even after
repeatedly turning ON the servo, release the arm by a brake release operation once and then turn ON the
servo again. Or, release the arm by turning ON the servo according to the Page 44, "Operation to
Temporarily Reset an Error that Cannot Be Canceled".
 Jog Feed (Overview) 3-21

3

3Explanation of operation methods
3.3 Opening/Closing the Hands
The open/close operation of the hands attached to on the robot is explained below.

1) Set the key switch to the [ENABLE] posi-
tion.

2) Hold the [HAND] key down and press
each axis key. For example, hold down
the [HAND] key and press the [+C] key
to open hand 1.

It is possible to mount various tools on the robot's hand area. In the case of pneumatic control, where the
solenoid valve (at double solenoid) is used, two bits of the hand signal is controlled by the open/close oper-
ation of the hand. For more information about the hand signal, please refer to Page 333, "5.12 About the
hand type" and Page 334, "5.13 About default hand status".

 R28TB

DISABLE

EMG.STOP

TOOL

 =＊/

STEP

MOVE

＋

 FORWD

－

 BACKWD

ADD

↑

 RPL

↓

 DEL

←

 HAND

→

INP

EXE

COND

ERROR

RESET

POS

　 　CHAR

JOINT

 ()？

XYZ

 $" :

MENU

STOP

－X

(J1)

＋ X

(J1)

－Y

(J2)

＋ Y

(J2)

－Z

(J3)

＋ Z

(J3)

－A

(J4)

＋ A

(J4)

－B

(J5)

＋ B

(J5)

－C

(J6)

＋ C

(J6)

SVO ON

ENABLE

 # % !

Hold down the [HAND]
key and press the axis key.

Opening/closing hand 4

Opening/closing hand 3

Opening/closing hand 2

Opening/closing hand 1

OpeningClosing
-22 Opening/Closing the Hands

 3Explanation of operation methods
3.4 Aligning the Hand
The posture of the hand attached to the robot can be aligned in units of 90 degrees.
This feature moves the robot to the position where the A, B and C components of the current position are set
at the closest values in units of 90 degrees.

If the tool coordinates are specified by the TOOL instruction or parameters, the hand is aligned at the speci-
fied tool coordinates. If the tool coordinates are not specified, the hand is aligned at the center of the
mechanical interface. The above illustration shows an example of a small vertical robot. [With Tool Coordi-
nate Specification] indicates when the tool coordinates are specified at the tip of the hand. For more infor-
mation about the tool coordinates, refer to Page 324, "5.6 Standard Tool Coordinates".

However, in the case of the RH-15UHC robot, the hand aligns
radially from the center position of the robot, as shown in the right
figure.

The hand alignment procedure is as follows:

1) Set the key switch to the [ENABLE]
position.

2) Hold the deadman switch lightly.

3) Press the [STEP/MOVE] key and turn
on the servo.

4) Hold down the [HAND] key and press
the "-X" or "+X" key.

The robot stops when any of the above keys is released while aligning the hand.

Without tool coordinate
specification.

With tool coordinate
specification.

Without tool coordinate
specification.

With tool coordinate
specification.

Control
point

Control
point

R28TB
DISABLE

EMG.STOP

TOOL

=*/

STEP
MOVE

＋ FO RWD

－
BACKWD

ADD
↑

RP L
↓

DEL
←

H AND
→

INP
 EXE

CON D

ERROR
RESET

POS

CHAR

JOI NT
() ?

XYZ

$" :
MENU

STOP

－ X
(J1)

＋ X
(J1)

－ Y
(J2)

＋ Y
(J2)

－ Z
(J3)

＋ Z
(J3)

－ A
(J4)

＋ A
(J4)

－ B
(J5)

＋ B
(J5)

－ C
(J6)

＋ C
(J6)

SVO ON

ENABLE

% !

Aligning the Hand

Hold down the [HAND]
key and press the “-X”
or ”+X” key.
 Aligning the Hand 3-23

3

3Explanation of operation methods
3.5 Programming
MELFA-BASIC IV used with this controller allows advanced work to be described with ample operation func-
tions. The programming methods using the T/B are explained in this section. The functions shown in Table
3-3 are used to input one line. (Refer to Page 118, "4.11 Detailed explanation of command words" in this
manual for details on the MELFA-BASIC IV commands and description methods.)

Table 3-3:Process for inputting one line

3.5.1 Creating a program
(1) Opening the program edit screen

Open the screen for editing the program to be created.

1) Press the [1] key.
The PROGRAM SELECTION screen will
appear.

2) Press the [1] key.
The program name 1 edit screen will appear,
and the head line will appear.

Input details Function

Line No. and command statement (Example: 10 MOV P1) Input as one line of the program

Only line No. (Example; 10) Deletes designated line from program

Only command statement (Example: MOV P1) Immediately executes that command (Direct execution)

Select the menu 1

Set the program number
-

Delete an input character

DELPOS
CHAR +

-B
(J5)

1 DEF

-B
(J5)

1 DEF

INP
EXE

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<TEACH>
()

SELECT PROGRAM

<TEACH>
(1)

SELECT PROGRAM

PR:1 ST:1
 LN:0
 --NO DATA--

Editing a program in constant execution mode (ALWAYS attribute)
In order to edit a program set to be in constant execution mode (the ALWAYS attribute in the SLTn param-
eter is set), the constant execution attribute must be canceled first. Since programs in constant execution
mode are executed continually, they cannot be edited. Change ALWAYS to START in the SLTn parameter,
turn the controller's power on again, and stop the constant execution.

Selection from the program list
When the [INP] key is pressed in a blank field on the program selection screen, the program list appears,
making it possible for you to edit a program by selecting it with the cursor and then pressing the [INP] key.
-24 Programming

 3Explanation of operation methods
(2) Creating a program

1) Press the [RPL] key three times.
The cursor will move to the command edit-
ing line.

2) Press the [1], [0] and [SPACE] keys. The
line No. "10" will be input.

3) Press the [-Y/MNO] key once while hold-
ing down the [CHAR] key. "M" will appear.

4) Release the [CHAR] key once, and then
hold it down. The four commands
assigned to "M" will appear.

5) Press the [1] key while holding down the
[CHAR] key.
The "MOV" command will be input.

Move the cursor

Input "1","0"
-

Input "M"
+

Input "M"

Input "MOV"
+

RPL

-C
(J6)

0 ABC

-B
(J5)

1 DEF

-X
(J1)

SPACEPQ
-

-Y
(J2)

4 MNO

POS
CHAR

POS
CHAR

POS
CHAR

-B
(J5)

1 DEF

PR:1 ST:1
 LN:0
 --NO DATA--

PR:1 ST:1
 LN:0

 CODE EDIT

PR:1 ST:1
 LN:0

 CODE EDIT

PR:1 ST:1
 LN:0
10
 CODE EDIT

PR:1 ST:1
 LN:0
10
 CODE EDIT

PR:1 ST:1
 LN:0
10 M
 CODE EDIT

PR:1 ST:1
 LN:0
10 M
 CODE EDIT

1.MOV 2.MVS
3.MVC 4.MVR
10 M
 CODE EDIT

1.MOV 2.MVS
3.MVC 4.MVR
10 M
 CODE EDIT

PR:1 ST:1
 LN:0
10 MOV
 CODE EDIT

Inputting characters
The characters that can be input are indicated, three in a group, on the lower right of each key.
To input a character, hold down the [CHAR] key and press the key having the character to be input. Each
time the corresponding character key is pressed while the [CHAR] key is pressed, the three characters will
appear alternately.
 Release the [CHAR] key when the target character appears, and set the character.

Inputting commands
The commands can be input one character at a time (ex., for "M" "O" "V" for the MOV command), but if
the head character of the command is input, the command can be selected as a number from the list of
commands that appears.
After inputting the head character of the command, press the [CHAR] key. The list of commands will
appear. While holding down the [CHAR] key, press the numeral key for the target command No., and
select the command. If the target command is not found in the list, press the [CHAR] key again to update
the list.
 Programming 3-25

3

3Explanation of operation methods
6) Press the [-X/PQR] key once while holding
down the [CHAR] key, and then release
the [CHAR] key.
"P" will be input.

7) Press the [1] key. "1" will be input.

8) Press the [INP] key.
"10 MOV P1" will be set.

9) Input the remaining program in the same
manner.

This completes the inputting of the program.

(3) Completion of program creation and saving programs
Press the [MENU] key, or
Set the [ENABLE/DISABLE] switch of the T/B to the "DISABLE" position.

The program is saved when either of these operations is performed.

Input "P"

Input "1"

Set

+
-X

(J1)
SPACEPQ

POS
CHAR

INP
EXE

-B
(J5)

1 DEF

PR:1 ST:1
 LN:0
10 MOV
 CODE EDIT

PR:1 ST:1
 LN:0
10 MOV P
 CODE EDIT

PR:1 ST:1
 LN:0
10 MOV P
 CODE EDIT

PR:1 ST:1
 LN:0
10 MOV P1
 CODE EDIT

PR:1 ST:1
 LN:0
10 MOV P1
 CODE EDIT

PR:1 ST:2
 LN:0

 CODE EDIT

PR:1 ST:2
 LN:0
20 MOV P2,-50
 CODE EDIT

PR:1 ST:13
 LN:0
130 END
 CODE EDIT

Precautions when saving programs
Make sure to perform the operation above. The edited data will not be updated if the power is turned off
without doing so after modifying a program on the program edit screen. Moreover, as much as possible, try
to save programs not only on the controller but also on a PC in order to make backup copies of your work.
It is recommended to manage programs using PC support software (optional).

Displaying the previous and next command line
To display the previous line, press the [BACKWD] key, and to display the next line, press the [FORWD]
key.

Displaying a specific line
Press the [ADD] key and move the cursor to LN:. Input the No. of the line to be displayed in the parenthe-
ses, and then press the [INP] key. The designated line will appear.
-26 Programming

 3Explanation of operation methods
(4) Correcting a program
Before correcting a program, refer to Page 24, "3.5.1 Creating a program" in "(1)Opening the program edit
screen", and open the program edit screen.

1) Press the [RPL] key, and move the cursor
to LN:().

2) Press the [2], [0], [INP] key to display line
20.

Move the cursor

Call the line No.

Input the line number

-C
(J6)

0 ABC

INP
EXE

-A
(J4)

2 GHI

RPL

- -

PR:1 S(1)
 LN:10
10 MOV P1
 CODE EDIT

PR:1 ST:1
 L(10)
10 MOV P1
 CODE EDIT

PR:1 ST:1
 L(10)
10 MOV P1
 CODE EDIT

PR:1 ST:2
 L(20)
20 MOV P2,-50
 CODE EDIT

Cursor movement
When the cursor is at a command line display, the command can be edited. When at a line No. display
(LN:), the line No. is designated.
The cursor is moved with the [ADD], [RPL], [DEL] and [HAND] keys.

Calling out a line No.
When designating and calling out a line No., move the cursor to the line No. display (LN:), input the line
No., and then press the [INP] key.
The displayed line can be scrolled up or down by pressing the [FORWD] or [BACKWD] key.

Caution for Editing Array Variables
The number of elements in the array variable definition (DIM) can be changed in the software version K3
or later. If the number of elements is reduced, exercise caution as the data of the reduced elements will
be deleted. Also, the number of dimensions cannot be changed (for example, changing from one dimen-
sion to two dimensions is not possible).
 Programming 3-27

3

3Explanation of operation methods
3) Press the [RPL] key and move the cursor
to the command line.
Press the [HAND] key six times, and move
the cursor to the right of "V".

4) Press the [DEL] key two times while hold-
ing down the [CHAR] key, and delete
"OV". "M" will remain displayed.

5) Hold down the [CHAR] key.
The four commands assigned to "M" will
appear.

6) Press the [2] key while holding down the
[CHAR] key, and select "MVS". MVS will
appear on the screen.

7) Press the [INP] key, and set line No. 70.
The next line will appear on the screen.

8) After finishing modifying an instruction,
press the [MENU] key to save it.

Line No. 20 has been changed to linear movement with the above operation.

PR:1 ST:2
 LN:20
20 MOV P2,-50
 CODE EDIT

Move the cursor

PR:1 ST:2
 LN:20
20 MOV P2,-50
 CODE EDIT

Change the command

PR:1 ST:2
 LN:20
20 MOV P2,-50
 CODE EDIT

Deleting a character

PR:1 ST:2
 LN:20
20 M P2,-50
 CODE EDIT

PR:1 ST:2
 LN:20
20 M P2,-50
 CODE EDIT

Display the command list

1.MOV 2.MVS
3.MVC 4.MVR
20 M P2,-50
 CODE EDIT

1.MOV 2.MVS
3.MVC 4.MVR
20 M P2,-50
 CODE EDIT

Select the "MVS" command

1.MOV 2.MVS
3.MVC 4.MVR
20 MVS P2,-50
 CODE EDIT

+

PR:1 ST:2
 LN:20
20 MVS P2,-50
 CODE EDIT

Set line 30

PR:1 ST:3
 LN:30
30 MVS P3
 CODE EDIT

RPL HAND

DEL

POS
CHAR

INP
EXE

-A
(J4)

2 GHI
POS

CHAR

POS
CHAR +

 -

Correcting a character
Move the cursor to the right of the incorrect character, and press the [DEL] key to delete in the left direc-
tion. Then, input the correct character.

After correcting a program
After modifying a program, make sure to perform the save operation (pressing the [MENU] key) and per-
form a step operation to check that the content of the program is properly changed.
-28 Programming

 3Explanation of operation methods
(5) Registering the current position data

1) On the command editing screen, press
the [ADD] key or [RPL] while holding down
the [POS] key.
The position editing screen will appear.

2) Input "P1" in the parentheses at MO.POS,
and then press the [INP] key.
The position variable name P1 will be
called, and the currently registered coordi-
nate value will appear.

Refer to Page 25, "Inputting characters"
for details on inputting characters.

3) ÅmPress the [ADD] key or [RPL] key while
holding down the [STEP] key, and release
only the [ADD] key or [RPL] key.
The buzzer will sound a "beep", and a
confirmation message will appear.
While holding down the [STEP] key, press
the [ADD] key or [RPL] key again.
The buzzer will sound a "beep", and the
message "ADDING" will appear. Then, the
current position will be registered.

4) After finishing modifying an instruction,
press the [MENU] key to save it.

The robot's operation position can be taught with the above operations.

Entering position data(Teaching P1)

PR:1 ST:13
 LN:130
130 END
 CODE EDIT

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

Change to the position screen
+

MO.POS(P1)
 X: +0.00
 Y: +0.00
 Z: +0.00

MO.POS(P1)
 X: +0.00
 Y: +0.00
 Z: +0.00

+

.

Input "P","1"

MO.POS(P1)
 X: +0.00
 Y: +0.00
 Z: +0.00

MO.POS(P1)
 X: +0.00
 Y: +0.00
 ADDITION ?

MO.POS(P1)
 X: +0.00
 Y: +0.00
 ADDITION ?

MO.POS(P1)
 X: +132.30
 Y: +254.10
 Z: +32.00

ADD
POS

CHAR

-X
(J1)

SPACE PQR

POS
CHAR

INP
EXE -

-B
(J5)

1 DEF
 -

+
Entering position data

ADDSTEP
MOVE

ADD

Changing between the command editing screen and position editing screen.
The commands are edited on the command editing screen, and the positions are edited on the position
editing screen. To change from the command editing screen to the position editing screen, press [POS] +
([ADD] or [RPL] key). If the cursor is not displayed, press the [COND] key and then the [POS] key to dis-
play the cursor.
 Programming 3-29

3

3Explanation of operation methods
(6) Confirming the position data (Position jump)
Move the robot to the registered position data place.
The robot can be moved with the "MO position movement" or "MS position movement" method.
Perform a servo ON operation while lightly holding the deadman switch before moving positions.

Table 3-4:Moving to designated position data

1) MO position movement is only possible in
the CYLNDER jog mode. Thus, change
the mode if the jog mode is other than
JOINT jog.

2) When the [EXE] key is pressed while hold-
ing down the [MOVE] key, the robot will
move with joint interpolation to the cur-
rently displayed position data place only
while the [EXE] key is held down.

3) MS position movement is possible in jog
modes other than the XYZ jog, 3-axis XYZ
jog, CYLNDER jog and TOOL jog. Thus,
change the mode if these modes are
entered.

4) When the [EXE] key is pressed while hold-
ing down the [MOVE] key, the robot will
move with linear interpolation to the cur-
rently displayed position data place only
while the [EXE] key is held down.
If linear movement from the current posi-
tion to the designated position is not possi-
ble, the robot will not move.

Name Movement method

MO position movement The robot moves with joint interpolation to the designated position data place.
This moving method is used when the jog mode is JOINT jog.
The axes are adjusted in the same way as with the MOV instruction.

MS position movement The robot moves with linear interpolation to the designated position data place. Thus, the robot will
not move if the structure flag for the current position and designated position differ.
This moving method is used when the jog mode is XYZ, 3-axis XYZ, CYLNDER or TOOL jog.
The axes are adjusted in the same way as with the MVS instruction.

Move the MO position
+

INP
EXE

STEP
MOVE

MO.POS(P2)
 X: +132.30
 Y: +254.10
 Z: +32.00

Move the MO position

JOINT LOW
 J1 +34.50
 J2 +20.00
 J3 +80.00

X,Y,Z LOW
 X +80.09
 Y -21.78
 Z +137.36

Change to the jog mode
+

STEP
MOVE

MO.POS(P2)
 X: +132.30
 Y: +254.10
 Z: +32.00

Move the MS position
+

INP
EXE

STEP
MOVE

MS.POS(P2)
 X: +132.30
 Y: +254.10
 Z: +32.00

Move the MS position

JOINT LOW
 J1 +34.50
 J2 +20.00
 J3 +80.00

X,Y,Z LOW
 X +80.09
 Y -21.78
 Z +137.36

Change to the jog mode
+

STEP
MOVE

MS.POS(P2)
 X: +132.30
 Y: +254.10
 Z: +32.00

TOO
L

JOINT

()?
-30 Programming

 3Explanation of operation methods
(7) Correcting the current position data

1) On the command editing screen, press
the [ADD] key or [RPL] key while holding
down the [POS] key.
The position editing screen will appear.

2) Input "P3" in the parentheses at MO.POS,
and then press the [INP] key.
The position variable name P3 will be
called, and the currently registered coordi-
nate value will appear.

3) After finishing modifying an instruction,
press the [MENU] key to save it.

4) Move the robot to the new wait position
with jog operation.

5) Press the [RPL] key while holding down
the [STEP] key, and release only the
[RPL] key.
The buzzer will sound a "beep", and a
confirmation message will appear.
While holding down the [STEP] key, press
the [RPL] key again.
The buzzer will sound a "beep", and the
message "Replacing" will appear. Then,
the current position will be corrected.

*) If the software version of T/B is B1 or later,
change the [RPL] key to [ADD], and
operate.(like the left figure)

This completes correction of the wait position.

Change the movement position

PR:1 ST:8
 LN:80
80 MVS P3
 CODE EDIT

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

Change to the position screen
+

MO.POS(P3)
 X: +0.00
 Y: +0.00
 Z: +0.00

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

ADDPOS
CHAR

+
Input "P","3"

-X
(J1)

SPACEPQR

POS
CHAR

INP
EXE-

-Z
(J3)

3 JKL
-

Calling out a position variablec
Input the name of the variable to be called out in the parentheses at MO. POS on the position editing
screen. Then, press the [INP] key.
The position variable can be scrolled up or down by pressing the [FORWD] or [BACKWD] key.

JOINT LOW
 J1 +34.50
 J2 +20.00
 J3 +80.00

Position variable compensation

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

MO.POS(P3)
 X: +132.30
 Y: -284.10
 Z: +132.00

+ .
RPLSTEP

MOVE

RPL

.+
ADD ADDSTEP

MOVE

*) If the software version
of T/B is B1 or later,
operate with lower
stage specified keys.

After correcting a program
After modifying a program, make sure to perform the save operation (pressing the [MENU] key) and per-
form a step operation to check that the content of the program is properly changed.

The check of the software version of T/B
After turning on the controller power, it can check by the T/B screen before title screen is displayed.
 Programming 3-31

3

3Explanation of operation methods
(8) Correcting the MDI (Manual Data Input)

1) On the command editing screen, press the
[ADD] key or [RPL] key while holding
down the [POS] key. The position editing
screen will appear.

2) Input "P3" in the parentheses at MO.POS,
and then press the [INP] key.
The position variable name P3 will be
called, and the currently registered coordi-
nate value will appear.

3) Using the [RPL]key, move the cursor to
the Y: line, and then using the [HAND]
key, move the cursor to above 4.

4) Press the [5] key, and then press the [INP]
key. 5 will be written over 4, and the Y
coordinate value will be changed.

5) After finishing modifying an instruction,
press the [MENU] key to save it.

MDI compensation method

PR:1 ST:8
 LN:80
80 MVS P3
 CODE EDIT

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

Change to the position screen
+

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

ADDPOS
CHAR

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

MO.POS(P3)
 X: +132.30
 Y: +354.10
 Z: +132.00

MO.POS(P3)
 X: +132.30
 Y: +355.10
 Z: +132.00

Move the cursor

RPL HAND

Change a setting value

+C
(J6)

5 STU

INP
EXE

+
Input "P","3"

-X
(J1)

SPACE PQR

POS
CHAR

INP
EXE-

-Z
(J3)

3 JKL
-

-

-

-32 Programming

 3Explanation of operation methods
(9) Deleting position data
Only position data that is not currently being used by the program can be deleted. If position data being
used in the program is deleted, an error will occur.

1) On the command editing screen, press the
[ADD] key or [RPL] key while holding
down the [POS] key.
The position editing screen will appear.

2) Input "P4" in the parentheses at MO.POS,
and then press the [INP] key.
The position variable name P4 will be
called, and the currently registered coordi-
nate value will appear.

3) Press the [DEL] key while holding down
the [STEP] key, and release only the [DEL]
key. The buzzer will sound a "beep", and a
confirmation message will appear.

4) While holding down the [STEP] key, press
the [DEL] key again.
The buzzer will sound a "beep", and the
message indicating the deletion will
appear at the bottom line of the screen.
The position data will be deleted.

5) After finishing modifying an instruction,
press the [MENU] key to save it.

Position data deletion method

PR:1 ST:8
 LN:80
80 MVS P3
 CODE EDIT

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

Change to the position screen
+

MO.POS()
 X: +0.00
 Y: +0.00
 Z: +0.00

MO.POS(P4)
 X: +2.98
 Y: +354.10
 Z: +132.00

ADDPOS
CHAR

MO.POS(P4)
 X: +2.98
 Y: +354.10
 Z: +132.00

MO.POS(P4)
 X: +2.98
 Y: +354.10
 DELETE ?

MO.POS(P4)
 X:---------
 Y:---------
 Z:---------

Delete position data

STEP
MOVE+

DEL

MO.POS(P4)
 X: +2.98
 Y: +354.10
 DELETE ?

Confirm the position data deletion

STEP
MOVE

DEL
+

+
Input "P","4"

-X
(J1)

SPACEPQR

POS
CHAR

INP
EXE-

-Y
(J2)

4 MNO
-

 Programming 3-33

3

3Explanation of operation methods
(10) Display on the position edit screen
The XYZ coordinate values of the X, Y, and Z axes, the posture data of the A, B, and C axes, the posture
structure flags, and the multiple rotation information of each axis, are saved as the robot's position data.
Perform the following operations to display each screen.

1) When the position edit screen is dis-
played, the coordinate values of the X, Y,
and Z axes are displayed first. Press the
[RPL] key to display the data of the A, B,
and C axes.

2) Press the [RPL] key again to display the
information of structure flag 1.

3) Press the [RPL] key once again to return
to the X, Y, and Z axes display.

(11) Saving the program
When completed creating or revising a program, save the edited details with one of the following operations.
* Press the [MENU] key and display the Menu screen.
* Set the T/B [ENABLE/DISABLE] switch to "DISABLE"

Position edit screen

MO.POS:P4
 X: +2.98
 Y: +354.10
 Z: (+132.00)

MO.POS:P4
 A: (-180.000)
 B: 0.000
 C: -180.000

Change to the position screen (A,B,C axis)

MO.POS:P4
 A: -180.000
 B: 0.000
 C: (-180.000)

MO.POS:P4
STRUC.FLAG(001)
 SET 1:RAN
 FLAG 0:LBF

RPL

MO.POS:P4
STRUC.FLAG(001)
 SET 1:RAN
 FLAG 0:LBF

Return to the position screen (XYZ)

Change to the position screen (Flg 1)

RPL

RPL

MO.POS:P4
 X: +2.98
 Y: +354.10
 Z: (+132.00)

Precaution when saving the edited program/data
Please be aware that any updates to the program or data, including teaching data, will be lost if the
power is shut down while in the program edit screen. Please be aware that any updates to the program
or data, including teaching data, will be lost if the power is shut down while in the program edit screen.
Please be aware that any updates to the program or data, including teaching data, will be lost if the
power is shut down while in the program edit screen.
-34 Programming

 3Explanation of operation methods
3.6 Debugging
Debugging refers to testing that the created program operates correctly, and to correcting an errors if an
abnormality is found. These can be carried out by using the T/B's debugging function. The debugging func-
tions that can be used are shown below. Always carry out debugging after creating a program, and confirm
that the program runs without error.

(1) Step feed
The program is run one line at a time in the feed direction. The program is run in line order from the head or
the designated line.
Confirm that the program runs correctly with this process.

Using the T/B execute the program line by line (step operation), and confirm the operation.
Perform the following operations while pressing lightly on the deadman switch of the T/B after the servo has
been turned on.

1) Press the [COND] key, and display the
command editing screen.

2) While holding down the [FORWD] key or
[STEP] key, hold down the [EXE] key.
The robot will start moving.

When the execution of one line is com-
pleted, the robot will stop, and the next line
will appear on the screen. If [EXE] is
released during this step, the robot will
stop.

Take special care to the robot movements during operation. If any abnormality
occurs, such as interference with the peripheral devices, release the [EXE] key or
deadman switch, or press the deadman switch with force and stop the robot.

MO.POS(P1)
 X: +132.30
 Y: +354.10
 Z: +132.00

PR:1 ST:1
 LN:10
10 MOV P1
 CODE EDIT

Change to the command screen

PR:1 ST:1
 LN:10
10 MOV P1
 CODE EDIT

Execute step feed
+

PR:1 ST:2
 LN:20
20 MOV P2
 CODE EDIT

COND

INP
EXE

+
FORWD

STEP
MOVE.

 CAUTION

Step operation
"Step operation" executes the program line by line. The operation speed is slow, and the robot stops after
each line, so the program and operation position can be confirmed.
During execution, the lamp on the controller's [START] switch will light.

Immediately stopping the robot during operation
*Press the [EMG. STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the error, turn the servo ON, and start step operation.

*Release or forcibly press the "deadman" switch.
The servo will turn OFF, and the moving robot will immediately stop. Error 2000 will occur.
To resume operation, reset the error, lightly press the [Deadman] switch, press the [SVO ON] key to
turn ON the servo, and then start step operation.

*Release the [EXE] key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [EXE] key.
 Debugging 3-35

3

3Explanation of operation methods
3) Carry out step operation of the entire pro-
gram, and confirm the operation in the
same manner.
If the robot operation or position is incor-
rect, refer to the following operations and
make corrections.

(2) Step return
The line of a program that has been stopped with step feed or normal operation is returned one line at a
time and executed. This can be used only for the interpolation commands. Note that only up to four lines
can be returned.

1) Press the [COND] key, and display the
command editing screen. After this, carry
out step feed referring to the previous
page.

2) While holding down the [BACKWD] key,
hold down the [EXE] key. The robot will
start step return.

When the execution of one line is com-
pleted, the robot will stop, and the previ-
ous line will appear on the screen. If [EXE]
is released during this step, the robot will
stop.

(3) Step feed in another slot
When checking a multitask program, it is possible to perform step feed in the confirmation screen of the
operation menu, not in the edit screen.

1) Press the "2" key to display the operation
menu screen.

2) Press the "2" key to display the confirma-
tion screen.

3) Change the slot number to display and
allow step feed for another task slot.

4) The operations for step feed are the same
as in the edit screen. Hold down "+" (or "-
") and press the [INP/EXE] key.

Specify 0 for the slot number in order to per-
form step feed for all the task slots at the
same time.

PR:1 ST:2
 LN:20
20 MOV P2
 CODE EDIT

PR:1 ST:13
 LN:130
130 END
 CODE EDIT

Execute step feed
+

INP
EXE

+
FORWD

STEP
MOVE

MO.POS(P1)
 X: +132.30
 Y: +354.10
 Z: +132.00

PR:1 ST:2
 LN:20
20 MOV P2
 CODE EDIT

Change to the command position

PR:1 ST:1
 LN:10
10 MOV P1
 CODE EDIT

Execute step return
+

PR:1 ST:1
 LN:10
10 MOV P1
 CODE EDIT

COND

INP
EXE

-
BACKWD

-A
(J4)

2 GHI

<CHECK> ST:2
 LN:100
100 M_OUT=1

-B
(J5)

2 DEF

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<RUN>
1.SERVO 2.CHECK

<RUN>
1.SERVO 2.CHECK
-36 Debugging

 3Explanation of operation methods
(4) Step jump
It is possible to change the currently displayed step or line.

1) Use the arrow keys to move to the ST col-
umn or LN column and enter the step
number or line number you want to dis-
play, and then press the [INP] key.

2) It is possible to perform step feed from the
step after the change. However, an unde-
fined error or similar will occur if lines for
initialization of variables, etc. are skipped.

PR:1 ST:2
 LN:(20)
20 MOV P2
 CODE EDIT

PR:1 ST:13
 LN:130
130 END
 CODE EDIT

Step jump
+130+

INP
EXE

RPL RPL
 Debugging 3-37

3

3Explanation of operation methods
3.7 Automatic operation
(1) Setting the operation speed

The operation speed is set with the controller or T/B.
The actual speed during automatic operation will be the operation speed = (controller (T/B) setting value) x
(program setting value).

*Operating with the controller

1) Press the controller [CHNG DISP] switch
twice, and display the "OVERRIDE" on the
STATUS NUMBER display panel.

2) Each time the [UP] key is pressed, the
override will increase in the order of (10 -
20 - 30 - 40 - 50 - 60 - 70 - 80 - 90 - 100%).
The speed will decrease in reverse each
time the [DOWN] key is pressed.

*Operating with the T/B

1) Each time the [MOVE] + [+] keys are
pressed, the override will increase in the
order of (LOW - HIGH - 3 - 5 - 10 - 30 - 50 -
70 -100%). The speed will decrease in
reverse each time the [MOVE] + [%] keys
are pressed.
The currently set speed will appear on the
upper right of the screen.

(2) Selecting the program No.

1) Set the T/B [ENABLE/DISABLE] switch to
"DISABLE".

2) Set the controller [MODE] switch to
"AUTO (Op.)".

3) Press the [CHNG DISP] switch and dis-
play "PROGRAM NO." on the STATUS
NUMBER display.

4) When the [UP] switch is pressed, the reg-
istered program Nos. will scroll up, and
then the [DOWN] switch is pressed, the
program Nos. will scroll down.
Display the program No. to be used for
automatic operation.
*They are not displayed if a program
name consisting of five or more characters
is specified. If these are selected from an
external device, "P - - - - " is displayed.

CHNG DISP STATUS NUMBER

Display the override

UP

DOWN

Set the override

JOINT LOW
 W +34.50
 S +20.00
 E +80.00 Set the speed

+
STEP
MOVE

+
FORWD

-
BACKWD

UP

DOWN

CHNG DISP

DISABLE ENABLE

STATUS NUMBER

Display the program No.

Selecting the program No.

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

Prepare the control

T/B disable

Controller enable

Selecting the program No.
-38 Automatic operation

 3Explanation of operation methods
(3) Starting automatic operation

Before starting automatic operation, always confirm the following items. Starting
automatic operation without confirming these items could lead to property damage
or physical injury.
*Make sure that there are no operators near the robot.
*Make sure that the safety fence is locked, and operators cannot enter unintention-

ally.
*Make sure that there are no unnecessary items, such as tools, inside the robot

operation range.
*Make sure that the workpiece is correctly placed at the designated position.
*Confirm that the program operates correctly with step operation.

1) Set the T/B [ENABLE/DISABLE] switch to "DIS-
ABLE".

2) Set the controller [MODE] switch to "AUTO
(Op.)".

3) Automatic operation will start when the control-
ler [START] switch is pressed. (Continuous
operation)
If the [END] switch is pressed during the contin-
uous operation, the program will stop after one
cycle. The LED blinks during the cycle stop.
When the [END] key is pressed again during a
cycle stop in software version H8 or later, the
operation returns to continuous operation.

Before starting automatic operation, always confirm that the target program No. is
selected.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

(4) Stopping
The running program is immediately stopped, and the moving robot is decelerated to a stop.

*Operating with the controller

1) Press the [STOP] switch.

*Operating with the T/B

1) Press the [STOP] key.

 CAUTION

START END

DISABLE ENABLE

Start
(Continuous operation)

End with one cycle

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

T/B disable

Controller enable

Start automatic operation

Prepare the control

 CAUTION

 CAUTION

STOP

Stop

Stop STOP

Operation rights not required
The stopping operation is always valid regardless of the operation rights.
 Automatic operation 3-39

3

3Explanation of operation methods
(5) Resuming automatic operation from stopped state

Before starting automatic operation, always confirm the following items. Starting
automatic operation without confirming these items could lead to property dam-
age or physical injury.
*Make sure that there are no operators near the robot.
*Make sure that the safety fence is locked, and operators cannot enter uninten-
tionally.
*Make sure that there are no unnecessary items, such as tools, inside the robot
operation range.
*Make sure that the workpiece is correctly placed at the designated position.
*Confirm that the program operates correctly with step operation.

1) Set the T/B [ENABLE/DISABLE] switch to "DIS-
ABLE".

2) Set the controller [MODE] switch to "AUTO
(Op.)".

3) Automatic operation will start when the control-
ler [START] switch is pressed. (Continuous
operation)
The continuous operation/one cycle operation
state will be the same as before the operation
was stopped.

Before starting automatic operation, always confirm that the target program No. is
selected.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

Do not turn the controller's power off during the automatic operation. The memory
in the controller may be malfunctioned and programs may be destroyed. Use the
emergency stop to stop the robot immediately.

 CAUTION

START

DISABLE ENABLE

Start (Continuous operation)

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

T/B disable

Controller enable

Start automatic operation

 CAUTION

 CAUTION

 CAUTION
-40 Automatic operation

 3Explanation of operation methods
(6) Resetting the program
The program's stopped state is canceled, and the execution line is returned to the head.

*Operating with the controller

1) Set the T/B [ENABLE/DISABLE] switch to "DIS-
ABLE".

2) Set the controller [MODE] switch to "AUTO
(Op.)".

3) Press the controller [CHG DISP] switch, and
display the program No.

4) Press the controller [RESET] switch.
The STOP lamp will turn OFF, and the pro-
gram's stopped state will be canceled.

*Operating with the T/B

1) Set the [Mode selection switch] on the front of
the controller to "TEACH".

2) Set the T/B [ENABLE/DISABLE] switch to
"ENABLE".

3) Press the [EXE] key while holding down the
[ERROR RESET] key. The execution line will
return to the head, and the program will be
reset.

DISABLE ENABLE

RESET

CHNG DISP

Reset

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

T/B disable

Controller enable

Execute of program reset

Display the program No.

STATUS NUMBER

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

DISABLE ENABLE

Program reset
+

INP
EXE

ERROR

RESET

Execute of program reset

T/B enable

Controller disable

Valid only while program is stopped
The program cannot be reset while the program is running. Always carry out this step while the program is
stopped.
When resetting the program from the controller operation panel, display the "program No." on the STA-
TUS NUMBER display, and then reset.

STOP lamp turns OFF
The STOP lamp will turn OFF when the program is reset.
 Automatic operation 3-41

3

3Explanation of operation methods
3.8 Turning the servo ON/OFF
For safety purposes, the servo power can be turned ON during the teaching mode only while the deadman
switch on the back of the T/B is lightly pressed. Carry out this operation with the T/B while lightly pressing
the deadman switch.

*Turning servo ON with T/B [SVO ON] key

1) Set the [Mode selection switch] on the front of
the controller to "TEACH".

2) Set the T/B [ENABLE/DISABLE] switch to
"ENABLE".

3) The servo will turn ON when the [SVO ON] key
([STEP/MOVE] key) is pressed.

*Turning servo ON/OFF with T/B Servo screen

1) Set the [Mode selection switch] on the front of
the controller to "TEACH".

2) Set the T/B [ENABLE/DISABLE] switch to
"ENABLE".

3) Press the [2] key, and select the operation
screen.

4) Press the [1] key, and select the servo screen.

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

DISABLE ENABLE

Execute servo ON

T/B enable

Controller disable

Prepare the T/B

Servo ON operation

STEP
MOVE

SVO ON

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

DISABLE ENABLE

T/B enable

Controller disable

Prepare the T/B

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<RUN>
1.SERVO 2.CHECK

-A
(J4)

2 GHISelect the RUN screen
<RUN>
1.SERVO 2.CHECK

<SERVO>
SERVO ON()

 0:OFF 1:ON

Select the SERVO screen

-B
(J5)

1 DEF
-42 Turning the servo ON/OFF

 3Explanation of operation methods
5) To turn ON/OFF the servo, press the [0] key
when the servo is OFF or the [1] key when
the servo is ON while lightly holding the dead-
man switch, and then press the [INP] key.
(It is also possible to turn the servo on by
pressing the [STEP/MOVE] key.)

*Operating with the controller

1) Set the T/B [ENABLE/DISABLE] switch to "DIS-
ABLE".

2) Set the controller [MODE] switch to "AUTO
(Op.)".

3) When the [SVO ON] switch is pressed, the
servo will turn ON, and the SVO ON lamp will
light.

4) When the [SVO OFF] switch is pressed, the
servo will turn OFF, and the SVO OFF lamp will
light.

-C
(J6)

0 ABCSelect the SERVO screen

-B
(J5)

1 DEF

<SERVO>
SERVO ON()

 0:OFF 1:ON

<SERVO>
SERVO ON()

 0:OFF 1:ON

INP
EXE-

DISABLE ENABLE

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

SVO ON

SVO OFF

Prepare the controller

T/B disable

Controller enable

Servo ON

Execute servo ON

Servo OFF

Execute servo OFF

Brakes will activate
The brakes will automatically activate when the servo is turned OFF. Depending on the type of robot,
some axes may not have brakes.
 Turning the servo ON/OFF 3-43

3

3Explanation of operation methods
3.9 Error reset operation

*Error reset operation from the operation panel
Set the key switch to the AUTO (OP) position, and then press the reset key on the operation panel.

*Error reset operation from the T/B

1) Set the [Mode selection switch] on the front of
the controller to "TEACH".

2) Set the T/B [ENABLE/DISABLE] switch to
"ENABLE".

3) Press the [ERROR RESET] key.

3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled
Depending on the type of robot, errors that cannot be cancelled may occur when axis coordinates are out-
side the movement range, etc. In this case, it is not possible to turn the servo on and perform jog operations
with the normal operations. The following procedure can be used to cancel such errors temporarily. For
instance, if the axes are outside the movement range, perform a jog operation to adjust the axes while the
error is canceled temporarily.

*Operation to cancel errors temporarily from the T/B

1) Set the [Mode selection switch] on the front of
the controller to "TEACH".

2) Set the T/B [ENABLE/DISABLE] switch to
"ENABLE".

3) Hold the deadman switch lightly, hold down the
[SVO] key and keep on pressing the [ERROR
RESET] key.

The operation above will reset errors temporarily. Do not release the key; if it is released the error occurs
again. Perform a jog operation as well while keeping the [ERROR RESET] key pressed.

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

DISABLE ENABLE

Cancel errors

T/B enable

Controller disable

Error reset

ERROR

RESET

STEP
MOVE

SVO ON

TEACH

AUTO

(Ext.)

AUTO

(Op.)

MODE

DISABLE ENABLE

Cancel errors temporarily

T/B enable

Controller disable

Error reset

Keep on pressing
the key.+ ERROR

RESET
-44 Error reset operation

 3Explanation of operation methods
3.11 Operating the program control screen
(1) Program list display

This functions allows the status of the programs registered in the controller to be confirmed.

1) Press the [3] key, and select the program con-
trol screen.

2) When the [1] key is pressed, the program list
(date of creation) will appear. The No. of reg-
istered programs will appear at the upper
right of the screen.

3) The other registered programs can be dis-
played by pressing the [ADD] and [RPL] keys.

4) If the [HAND] key is pressed when the date of
creation is displayed, the time that the pro-
gram was created will appear. When the [DEL]
key is pressed, the display will return to the
date of creation.

5) If the [HAND] is pressed when the time of cre-
ation is displayed, the program size (unit:
byte) will appear. The currently usable mem-
ory size will appear at the upper right of the
screen. When the [DEL] key is pressed, the
display will return to the date of creation.

6) If the [HAND] key is pressed when the pro-
gram size is displayed, the program protection
state will appear. Refer to the section Page 46,
"* Program protection function" for details.

7) If the [HAND] key is pressed when the pro-
gram protection state is displayed, the variable
protection state will appear. Refer to the sec-
tion Page 46, "* Position variable protection
function" for details.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

-Z
(J3)

3 JKLSelect a program management screen
<DIR> 7
1 99-10-10
2 99-11-29
5 99-12-08

Select the list screen

-B
(J5)

1 DEF

Display other registered programs

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

<DIR> 7
1 99-10-10
2 99-11-29
5 99-12-08

<DIR> 7
10 99-12-10
13 99-08-29
17 99-09-10

ADD RPL

HAND
®

<DIR> 7
10 99-12-10
13 99-08-29
17 99-09-10

<DIR> 7
10 03:58:02
13 23:05:32
17 15:48:39

Display the time of creation
<DIR> 7
10 03:58:02
13 23:05:32
17 15:48:39

<DIR> 25639
10 348
13 1978
17 3873

HAND

Display the program size
<DIR> 7
10 348
13 1978
17 3873

<DIR> PROTECT
10 OFF(0)
13 ON(1)
 0:OFF 1:ON

HAND

Display the program protection state
<DIR> PROTECT
10 OFF(0)
13 ON(1)
 0:OFF 1:ON

<DIR>POS.PROTECT
10 ON(1)
13 ON(1)
 0:OFF 1:ON

HAND

Display the position data protection state
 Operating the program control screen 3-45

3

3Explanation of operation methods
(2) Program protection function
*Program protection function

This function protects the program from being deleted or changed inadvertently.

1) Display the "program list display" explained
on the previous page, and then display the
program protection state. Move the cursor to
the program targeted for protection with the
[RPL] and [ADD] keys.

2) The program protection function for that pro-
gram will turn ON or OFF when the [INP] key
is pressed after the following key:
Program protection function ON ... [1] key
Program protection function OFF ... [0] key

*Position variable protection function
This function protects the program from inadvertent variable deletion and changing.

1) Display the "program list display" explained
on the previous page, and then display the
variable protection state. Move the cursor to
the program targeted for protection with the
[RPL] and [ADD] keys.

2) The variable protection function for that pro-
gram will turn ON or OFF when the [INP] key
is pressed after the following key:
Variable protection function ON ... [1] key
Variable protection function OFF ... [0] key

<DIR> PROTECT
1 OFF()
2 OFF(0)
 0:OFF 1:ON

Turn program protection function ON
<DIR> PROTECT
1 OFF(0)
2 OFF(0)
 0:OFF 1:ON

Turn program protection function ON

<DIR> PROTECT
1 OFF(0)
2 OFF()
 0:OFF 1:ON

RPL

-B
(J5)

1 DEF

INP
EXE

<DIR> PROTECT
1 OFF(0)
2 ON(1)
 0:OFF 1:ON

-

Program protection
This function protects the program from inadvertent program deletion, renaming and command changing.
*The protection function is not copied with the copy operation.
*The protected information is ignored during the initialization process.

<DIR>POS.PROTECT
1 OFF()
2 OFF(0)
 0:OFF 1:ON

Turn program protection function ON
<DIR>POS.PROTECT
1 OFF(0)
2 OFF(0)
 0:OFF 1:ON

Turn position data protection function ON

<DIR>POS.PROTECT
1 OFF(0)
2 OFF()
 0:OFF 1:ON

RPL

-B
(J5)

1 DEF

INP
EXE

<DIR>POS.PROTECT
1 OFF(0)
2 ON(1)
 0:OFF 1:ON

-

Variable protectionÅûÅüÅû
This function protects the variable from inadvertent position data registration or changing, and from sub-
stitution to each variable during incorrect program execution.
ÅEThe protection function is not copied with the copy operation.
ÅEThe protected information is ignored during the initialization process.

Variable protection
This function protects the variable from inadvertent position data registration or changing, and from sub-
stitution to each variable during incorrect program execution.
*The protection function is not copied with the copy operation.
*The protected information is ignored during the initialization process.
-46 Operating the program control screen

 3Explanation of operation methods
(3) Copying programs
This function copies a registered program to another program.
If an existing program name is designated as the copy destination program, an error will occur.

An example for copying program 1 to program 5 is shown below.

1) Press the [3] key, and select the program con-
trol screen.

2) Press the [2] key, and select the program
copy screen.

3) Press the [1] key and then the [(] key to move
the cursor to the copy destination program
name input line.

4) When the [INP] key is pressed after pressing
[5], the program will be copied. The program
control screen will appear after execution.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

-Z
(J3)

3 JKLSelect a program management screen
<COPY>
FROM()
TO()
INPUT SOURCE

Select copy screen

-A
(J4)

2 GHI

Designate copy source

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

RPL

Designate copy destination, and execute

<COPY>
FROM()
TO()
INPUT SOURCE

<COPY>
FROM(1)
TO()
INPUT DEST.

-B
(J5)

1 DEF

<COPY>
FROM(1)
TO COPY()
INPUT DEST.

<COPY>
FROM(1)
TO(5)
INPUT DEST.

-B
(J5)

1 DEF

INP
EXE

-

-

Protected information is not copied
The program protection information and variable protection information is not copied with the copy opera-
tion.
Reset this information as necessary.
 Operating the program control screen 3-47

3

3Explanation of operation methods
(4) Changing the program name (Renaming)
This function renames a registered program's name.
If an existing program name is designated as the rename destination program, an error will occur.

An example for renaming program 1 to program 5 is shown below.

1) Press the [3] key, and select the program con-
trol screen.

2) Press the [3] key, and select the program
rename screen.

3) Press the [1] key and then the [RPL] key to
move the cursor to the rename destination
program name input line.

4) When the [INP] key is pressed after pressing
[5], the program will be renamed. The program
control screen will appear after execution.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

-Z
(J3)

3 JKLSelect a program management screen
<RENAME>
FROM()
TO()
INPUT DEST.

Select rename screen

Designate rename source program

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

RPL

Designate rename destination program,
and execute

<RENAME>
FROM()
TO()
INPUT DEST.

<RENAME>
FROM(1)
TO()
INPUT DEST.

+C
(J6)

5 STU

<RENAME>
FROM(1)
TO()
INPUT DEST.

<RENAME>
FROM(1)
TO(5)
INPUT DEST.

-B
(J5)

1 DEF

INP
EXE

-Z
(J3)

3 JKL

-

-

Renaming is not possible when protected
If either the program protection or variable protection is ON, the program cannot be renamed.
In this case, turn the protection OFF before renaming.
-48 Operating the program control screen

 3Explanation of operation methods
(5) Deleting a program
This function deletes a registered program.

The case for deleting program 1 is shown below.

1) Press the [3] key, and select the program con-
trol screen.

2) Press the [4] key, and select the program
rename screen.

3) When the [INP] key is pressed after pressing
[1], a deletion confirmation message will
appear.

4) When the [INP] key is pressed after pressing
[1], the program will be deleted. The program
control screen will appear after execution.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

-Z
(J3)

3 JKLSelect a program management screen
<DELETE>
DELETE()

INPUT DEL.FILE

Select the delete screen

Designate delete program

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

Execute a program delete

<DELETE>
DELETE(1)

INPUT DEL.FILE

<DELETE>
DELETE 1
OK ? ()
 1:EXECUTE

<DELETE>
DELETE 1
OK ? (1)
 1:EXECUTE

<FILE>
1.DIR 2.COPY
3.RENAME 4.DELETE

-B
(J5)

1 DEF

INP
EXE

-Y
(J2)

4 MNO

INP
EXE

-B
(J5)

1 DEF

-

-

Deletion not possible when protected
If either the program protection or variable protection is ON, the program cannot be deleted.
In this case, turn the protection OFF before deleted.
 Operating the program control screen 3-49

3

3Explanation of operation methods
3.12 Operating the monitor screen
(1) Input signal monitor

This function allows the state of the input signals from an external source to be confirmed at real-time.

An example for confirming the states of the input signal bits 8 to 15 is shown below.

1) Press the [4] key, and select the monitor
screen.

2) Press the [1] key, and select the input signal
screen.

3) When the [INP] key is pressed after pressing
the [8] key, the states of the input signal bits 8
to 15 will appear.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

Select the monitor screen

<INPUT>
NUMBER (0)
BIT: 76543210
DATA(00000000)

Select the input signal monitor

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

-Y
(J2)

4 MNO

INP
EXE

-B
(J5)

1 DEF

<INPUT>
NUMBER (0)
BIT: 76543210
DATA(00000000)

<INPUT>
NUMBER (8)
BIT: 54321098
DATA(01001011)

Display the input signal state

+Z
(J3)

8 ,@\
-

Operation rights not required
This operation can be carried out even if the T/B does not have the operation rights.
-50 Operating the monitor screen

 3Explanation of operation methods
(2) Output signal monitor
This function allows the state of the signals output to an external source to be confirmed and set.

An example for turning the input signal bit 8 ON is shown below.

1) Press the [4] key, and select the monitor
screen.

2) Press the [2] key, and select the output signal
screen.

3) When the [INP] key is pressed after pressing
the [8] key, the states of the output signal bits
8 to 15 will appear.

4) Press the [RPL] key and then the [DEL] key to
move the cursor below bit 8.

5) When the [INP] key is pressed after pressing
the [1] key, the output signal bit 8 will be set to
ON.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

Select the monitor screen

<OUTPUT>
NUMBER (0)
BIT: 76543210
DATA(00000000)

Select the output signal monitor

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

-Y
(J2)

4

INP
EXE

-A
(J4)

2 GHI

<OUTPUT>
NUMBER (0)
BIT: 76543210
DATA(00000000)

<OUTPUT>
NUMBER (8)
BIT: 54321098
DATA(01101000)

Display the output signal state
<OUTPUT>
NUMBER ()
BIT: 54321098
DATA(01101000)

<OUTPUT>
NUMBER (8)
BIT: 54321098
DATA(0110100)

Move the cursor to the
output signal setting position

+Z
(J3)

8 ,@\

INP
EXE

<OUTPUT>
NUMBER (8)
BIT: 76543210
DATA(01101001)

<OUTPUT>
NUMBER (8)
BIT: 54321098
DATA(01101001)

Display the output signal state

RPL
´

DEL

-B
(J5)

1 DEF

-

-

-

 Operating the monitor screen 3-51

3

3Explanation of operation methods
(3) Variable monitor
This function allows the details of the numeric variables used in the program to be displayed and changed.

An example for changing the program 1 numeric variable M8 value from 2 to 5 is shown below.

1) Press the [4] key, and select the monitor
screen.

2) When the [3] key is pressed, the program
selection screen for displaying the variables
will appear. Input the name of the program for
monitoring the variables.

3) When the [INP] key is pressed after pressing
[1], the variable display and setting screen will
appear.

4) When the [-Y/MNO] key, [8] key and then
[INP] key are pressed, the current value +2 of
the program 1 numeric variable M8 will
appear.

5) When the [HAND] key, [5] key and then [INP]
key are pressed, the current value +2 of the
program 1 numeric variable M8 will change to
+5.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

Select the monitor screen

<VAR>
()

SELECT PROGRAM

Select the variable monitor

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

-Y
(J2)

4 MNO

INP
EXE

-Z
(J3)

3 JKL

<VAR>
(1)

SELECT PROGRAM

<VAR>
V.NAME()
DATA()
 SET V.NAME

Set the target program

<VAR>
V.NAME(M8)
DATA()
 SET V.NAME

<VAR>
V.NAME(M8)
DATA(+2)
 SET V.NAME

Display the current value
of the numeric variable

INP
EXE

<VAR>
V.NAME(M8)
DATA(+2)
 SET V.NAME

<VAR>
V.NAME(M8)
DATA(+5)
 SET V.NAME

Set the numeric variable value

+C
(J6)

5 STU

-B
(J5)

1 DEF

-Y
(J2)

4 MNO

+Z
(J3)

8 ,@\

INP
EXE

HAND

-

- -

- -

Operation rights not required for only display
If this function is used to only display the values, the T/B does not require the operation rights.
The robot status variables cannot be directly monitored. In this case, the variable must be substituted in
the program variables once, and then monitored with the program variable.
-52 Operating the monitor screen

 3Explanation of operation methods
(4) Error history
This function displays the history of the errors that have occurred in the robot. Use this as reference when
trouble occurs.

1) Press the [4] key, and select the monitor
screen.

2) When the [4] key is pressed, the error history
will appear.

3) The error history can be viewed by pressing
the following keys:
[ADD] key ... Previous errors
[RPL] key ... Following errors

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

Select the monitor screen

<ERROR> -1
99-08-10 10:20
2000 SERVO OFF

Select the error history screen

<MONI>
1.INPUT 2.OUTPUT
3.VAR 4.ERROR

-Y
(J2)

4 MNO

Display the error history

-Y
(J2)

4 MNO

<ERROR> -1
99-08-10 10:20
2000 SERVO OFF

<ERROR> -2
99-08-10 10:12
3110 Argument value
range over

RPL ADD

Operation rights not required
This operation can be carried out even if the T/B does not have the operation rights.
 Operating the monitor screen 3-53

3

3Explanation of operation methods
3.13 Operation of maintenance screen
(1) Setting the parameters

The parallel I/O designated input/output settings and settings for the tool length, etc., are registered as
parameters. The robot moves based on the values set in each parameter. This function allows each param-
eter setting value to be displayed and registered.
An example of changing the parameter "MEXTL (tool data)" Z axis (3rd element) setting value from 0 to
100mm is shown below.

1) Press the [5] key, and select the maintenance
screen.

2) Press the [1] key, and select the parameter
setting screen.

3) Input "MEXTL" and press the [RPL] key to
move the cursor to the element No. input line.

4) Press the [3] key to designate the 3rd element
(Z axis), and press the [INP] key. The param-
eter MEXTL Z axis current value will appear
as +0.00.

5) Input "+100.00" here, and then press the
[INP] key. The parameter MEXTL Z axis set-
ting value will be changed from 0 to 100.

6) Turn the controller's power off and on again;
otherwise the changed parameters will not
become valid.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

Select the maintenance screen

Select the parameter setting screen

+C
(J6)

5 STU

Designate
 the parameter RPL

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<PARAM>
()()
()
 SET PARAM.NAME

-B
(J5)

1 DEF

<PARAM>
()()
()
 SET PARAM.NAME

<PARAM>
(MEXTL)()
()
SET ELEMENT NO.

+B
(J5)

6 VWX

-Z
(J3)

3 JKL

+C
(J6)

5 STU

Designate the element number

<PARAM>
(MEXTL)()
()
SET ELEMENT NO.

<PARAM>
(MEXTL)(3)
(+0.00)
 SET DATA

-Z
(J3)

3 JKL

-B
(J5)

1 DEF

-Y
(J2)

4 MNO

POS
CHAR

INP
EXE

Change
 the setting value

<PARAM>
(MEXTL)()
(+0.00)
 SET DATA

<PARAM>
(MEXTL)(3)
(+100.00)
SET PARAM.NAME

INP
EXE

HAND -B
(J5)

1 DEF

-C
(J6)

0 ABC

+X
(J1)
. ’;^

+

-

-

- - -

-

-C
(J6)

0 ABC-

Power must be turned ON again
The changed parameter will be validated only after the controller power has been turned OFF and ON
once.
-54 Operation of maintenance screen

 3Explanation of operation methods
(2) Initializing the program
This function erases all programs.

1) Press the [5] key, and select the maintenance
screen.

2) Press the [2] key, and select the initialization
screen.

3) Press [1] and then [INP] to select the program
initialization screen.

4) When the [INP] key is pressed after pressing
[1], the program initialization will start. The ini-
tialization screen will appear after the execu-
tion.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM2.INIT
3.BRAKE 4.ORIGIN
5.POWER

Select the maintenance

Select the program initialization screen

+C
(J6)

5 STU

Execute program initialization

<INIT>
PROGRAM
OK ? ()
 1.EXECUTE

-B
(J5)

1 DEF

<INIT>
PROGRAM
OK ? (1)
 1.EXECUTE

<INIT>
INIT ()
1.PROGRAM 2.BATT.

Select the initialization screen

<MAINT>
1.PARAM2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<INIT>
INIT ()
1.PROGRAM 2.BATT.

-A
(J4)

2 GHI

<INIT>
INIT (1)
1.PROGRAM 2.BATT.

-B
(J5)

1 DEF

INP
EXE

INP
EXE

-

-

Executed even when protected
The program will be initialized even if the program protection or variable protection is set to ON.
 Operation of maintenance screen 3-55

3

3Explanation of operation methods
(3) Initializing the battery consumption time
The usage time of the battery built into the controller and robot arm is calculated to indicate battery replace-
ment on the caution message screen when the battery is spent. Thus, always initialize this setting after
replacing the battery.

1) Press the [5] key, and select the maintenance
screen.

2) Press the [1] key, and select the initialization
screen.

3) Press [2] and then [INP] to select the battery
consumption time initialization screen.

4) When the [INP] key is pressed after pressing
[1], the battery consumption time initialization
will start. The initialization screen will appear
after the execution.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

Select the maintenance screen

Select the battery consumption
time initialization screen.

+C
(J6)

5 STU

Execute the battery consumption
time initialization

<INIT>
BATT.
OK ? ()
 1.EXECUTE

-B
(J5)

1 DEF

<INIT>
BATT.
OK ? (1)
 1.EXECUTE

<INIT>
INIT ()
1.PROGRAM 2.BATT.

Select the initialization screen

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<INIT>
INIT ()
1.PROGRAM 2.BATT.

-A
(J4)

2 GHI

<INIT>
INIT (2)
1.PROGRAM 2.BATT.

INP
EXE

-A
(J4)

2 GHI

INP
EXE

-

-

Always initialize after battery replacement
The battery usage time is calculated in the controller, and a caution message is displayed when the bat-
tery is spent. Always initialize the battery consumption time after replacing the battery to ensure that the
caution message is displayed correctly.
If this initialization is carried out when the battery has not been replaced, the display timing of the caution
message will deviate. Thus, carry this step out only when the battery has been replaced.
-56 Operation of maintenance screen

 3Explanation of operation methods
(4) Releasing the brakes
This function releases the servomotor brakes when the servo is OFF. Refer to Page 42, "3.8 Turning the
servo ON/OFF" for details on turning the servo OFF.
This function is used to directly move the robot arm by hand, etc.

Due to the robot configuration, when the brakes are released, the robot arm will
drop with its own weight depending on the released axis.
Always assign an operator other than the T/B operator to prevent the arm from
dropping. This operation must be carried out with the T/B operator giving signals.
Refer to Table 3-5 and accurately designate the axis for which the brakes are to be
released.

Note that the minimum axis unit for which the brakes can be released at once will differ according to the
model of the robot in use. Table 3-5 shows the minimum axis unit for which the brake release operation can
be performed at once for each model.
The minimum axis units can be combined to release the brakes form multiple axes at the same time.

Table 3-5:Brake release axis unit per mode

Note) The symbol [*=*] means that it is necessary to set two axes at the same time to release the brake.
The symbol [*] means that it is possible to release the brake for an independent axis.

Model
AXIS

Remarks
1 2 3 4 5 6 7 8

RP-1AH/3AH/5AH
RH-5AH/10AH/15AH
RH-6SH/12SH/18SH
RH-15UHC
RV-100THL

* * * * The three axes (Z axes) of the RH-10AH/15AH and RH-
12SH/18SH are in the intermittent brake mode.
The brake release operation repeatedly applies and releases
the brake in order to prevent the arm from dropping sud-
denly.

RV-1A/2A/4A/3AL
RV-3S/3SB/6S/6SL/12S/12SL/18S

* * * * * *

RV-2AJ/3AJ/5AJ/4AJL/3SJ/3SJB * * * * *

RH-1000GHLC
RC-1000GHWLC/1000GHWDC

* = * * * Axes 1 and 2 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously. RH-1000GHLC-RL * = * * * *

RH-1000GJLC
RH-1500GJC

* = * * * = *

Axes 1 and 2, and 4 and 5 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

RH-1000GJLC-RL
RH-1500GJC-RL

* = * * * = * *

RH-1500GC * = * * * = * *

RH-1500GC-RL
RH1500GVC-RL

* = * * * = * * = = * Axes 1 and 2, and 4 and 5, and 6 and 8 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

RC-1000GHWLC-RL
RC-1000GHWDC-RL

* = * * * = = = = * Axes 1 and 2, and 4 and 8 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

RV-100TH/150TH/150THL
RH-1000GHDC
RS-30AG/30FG

* = * * = *

Axes 1 and 2, and 3 and 4 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

RH-1000GHDC-RL * = * * = * *

RH-1000GJDC * = * * = * *

RH-1000GJDC-RL * = * * = * * *

RV-20A * = * * = * * = * Axes 1 and 2, and 3 and 4, and 5 and 6 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

RC-1300G * *
* ========== *
 * ========*

Axes 1 and 5, and 3 and 6 are paired.
It is not possible to release the brake if both axes are not set
to 1 simultaneously.

 CAUTION
 Operation of maintenance screen 3-57

3

3Explanation of operation methods
The operation method is shown below. The following operations are carried out while lightly pressing the
deadman switch on the T/B.

1) Press the [5] key, and select the maintenance
screen.

2) Press the [3] key, and select the brake
release screen.

3) Press the [1] key to change the number corre-
sponding to the axis for which the brakes are
to be released to 1. Refer to Table 3-5 and set
the axis designation.
In the example on the left, the J1 axis brake
release is designated for the RP-1AH.

4) Hold the deadman switch (on the back of the
T/B). Then hold down the [MOVE] key and
press the [+X] key continuously to release the
brake of the specified axis only while the keys
are pressed.
The brakes will activate when the [MOVE] key
or [+X] key is released.

(5) Setting the origin
If the origin position has been lost or deviated when the parameters are lost or due to robot interference,
etc., the robot origin must be set again using this function.
Refer to the separate manual: "Robot arm setup & maintenance" for details on the operation.

(6) Displaying the clock data for maintenance
The controller's cumulative power ON time and remaining battery time are displayed.(Unit:hour)

1) Press the [5] key, and select the maintenance
screen.

2) When the [5] key is pressed, the clock data for
maintenance will appear.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

Select the maintenance screen

Select the brake release axis

+C
(J6)

5 STU

<BRAKE>12345678
BRAKE (10000000)

 0:LOCK 1:FREE

Select the brake release screen

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<BRAKE>12345678
BRAKE (00000000)

 0:LOCK 1:FREE

-Z
(J3)

3 JKL

<BRAKE>12345678
BRAKE (00000000)

 0:LOCK 1:FREE

-B
(J5)

1 DEF

Execute the brake release

STEP
MOVE

+X
(J1)

. ';^
+deadman

switch +

<BRAKE>12345678
BRAKE (10000000)

 0:LOCK 1:FREE

<BRAKE>12345678
BRAKE (10000000)

 0:LOCK 1:FREE

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

Select the maintenance screen

+C
(J6)

5 STU

Select the clock data screen

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

<HOUR DATA> Hr
POWER ON: 1258
BATTERY: 4649

+C
(J6)

5 STU
-58 Operation of maintenance screen

 3Explanation of operation methods
3.14 Operation of the setting screen
(1) Setting the time

A clock function, used when registering the program, and displaying the change time or error time, etc., is
provided in the controller. If the times are deviated from the current date and time, change the date and time
to the correct values.

1) Press the [6] key, and select the setting
screen.

2) Press the [1] key, and select the clock screen.

3) Set the correct date and press the [INP] key.
The date will be changed. If the date does not
need to be changed, press the [RPL] key. The
cursor will move to the time setting section.

4) Set the time with the same operations as for
setting the date.

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<SET>
1.CLOCK

Select the setting screen

+B
(J5)

6 VWX

Select the clock screen

<SET>
1.CLOCK

<CLOCK>
DATE(99-12-07)
TIME(23:58:17)
 INPUT DATE

-B
(J5)

1 DEF

Set the clock. All number keys

<CLOCK>
DATE(99-12-07)
TIME (23:58:17)
 INPUT DATE

<CLOCK>
DATE(99-10-25)
TIME (23:58:17)
 INPUT DATE

<CLOCK>
DATE(99-12-07)
TIME (23:58:17)
 INPUT DATE

<CLOCK>
DATE(99-10-25)
TIME (23:58:17)
 INPUT DATE

RPL INP
EXE

Set the time. All number keys.

RPL INP
EXE

-

-

 Operation of the setting screen 3-59

4

4MELFA-BASIC IV
4 MELFA-BASIC IV

In this chapter, the functions and the detailed language specification of the programming language "MELFA-
BASIC IV" are explained.

4.1 MELFA-BASIC IV functions
The outline of the programming language "MELFA-BASIC IV" is explained in this section. The basic move-
ment of the robot, signal input/output, and conditional branching methods are described.

Table 4-1:List of items described

For the detailed description of each instruction, please refer to Page 118, "4.11 Detailed explanation of com-
mand words".

Item Details Related instructions, etc.

1 4.1.1Robot operation control (1)Joint interpolation movement MOV

2 (2)Linear interpolation movement MVS

3 (3)Circular interpolation movement MVR, MVR2, MVR3, MVC

4 (4)Continuous movement CNT

5 (5)Acceleration/deceleration time and speed control ACCEL, OADL

6 (6)Confirming that the target position is reached FINE, MOV and DLY

7 (7)High path accuracy control PREC

8 (8)Hand and tool control HOPEN, HCLOSE, TOOL

9 4.1.2Pallet operation -------------- DEF PLT, PLT

10 4.1.3Program control (1)Unconditional branching, conditional branching,
waiting

GOTO, IF THEN ELSE, WAIT, etc

11 (2)Repetition FOR NEXT, WHILE WEND

12 (3)Interrupt DEF ACT, ACT

13 (4)Subroutine GOSUB, CALLP, ON GOSUB, etc

14 (5)Timer DLY

15 (6)Stopping END(Pause for one cycle), HLT

16 4.1.4Inputting and outputting
external signals

(1)Input signals M_IN, M_INB, M_INW, etc

17 (2)Output signals M_OUT, M_OUTB, M_OUTW, etc

18 4.1.5Communication -------------- OPEN, CLOSE, PRINT, INPUT, etc

19 4.1.6Expressions and operations (1)List of operator +, -, *, / , <>, <, >, etc

20 (2)Relative calculation of position data (multiplication) P1 * P2

21 (3)Relative calculation of position data (Addition) P1 + P2

22 4.1.7Appended statement -------------- WTH, WTHIF
-60 MELFA-BASIC IV functions

4MELFA-BASIC IV
4.1.1 Robot operation control
(1) Joint interpolation movement

The robot moves with joint axis unit interpolation to the designated position. (The robot interpolates with a
joint axis unit, so the end path is irrelevant.)
*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

MOV The robot moves to the designated position with joint interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement WTH or WTHIF can be
designated

Statement example Explanation
MOV P1 ' Moves to P1.

MOV P1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page 84.

MOV P1*P2 ' Moves to the position relatively converted from P1 to P2. Refer to Page 84.

MOV P1,-50 *1) ' Moves from P1 to a position retracted 50mm in the hand direction.

MOV P1 WTH M_OUT(17)=1 ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MOV P1 WTHIF M_IN(20)=1, SKIP ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and the
program proceeds to the next stop.

MOV P1 TYPE 1, 0
(Default value: Long way around)

' Specify either roundabout (or shortcut) when the operation angle of each axis exceeds 180 deg..

Program Explanation
10 MOV P1 ’(1) Moves to P1.

20 MOV P2, -50 *1) ’(2) Moves from P2 to a position retracted 50mm in the hand direction.

30 MOV P2 ’(3) Moves to P2

40 MOV P3, -100 WTH M_OUT (17) = 1 ’(4) Starts movement from P3 to a position retracted 100mm in the hand direction, and turns ON output
signal bit 17.

50 MOV P3 ’(5) Moves to P3

60 MOV P3, -100 *1) ’(6) Returns from P3 to a position retracted 100mm in the hand direction.

70 END ’Ends the program.

Function Explanation page
Designate the movement speed.. Page 66, "(5) Acceleration/deceleration time and speed control"

Designate the acceleration/deceleration time. Page 66, "(5) Acceleration/deceleration time and speed control"

Confirm that the target position is reached. Page 68, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target posi-
tion... Page 65, "(4) Continuous movement"

Move linearly. ... Page 62, "(2) Linear interpolation movement"

Move while drawing a circle or arc. ... Page 63, "(3) Circular interpolation movement"

Add a movement command to the process....................................... Page 221, " WTH (With)"

Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION

(1)

(2)

P1

(3)

(4) Turn output
 signal bit 17 ON.

(5)

(6)

5
0m

m

100mm

P2
P3

Hand

：Movement position

：Robot movement
Robot movement
 MELFA-BASIC IV functions 4-61

4

4MELFA-BASIC IV
(2) Linear interpolation movement
The end of the hand is moved with linear interpolation to the designated position.
*Command word

*Statement example

*Program example

•Program example

*Related functions

Command
word Explanation

MVS The robot moves to the designated position with linear interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement WTH or WTHIF can be
designated.

Statement example Explanation
MVS P1 ' Moves to P1

MVS P1+P2 ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page 84.

MVS P1*P2 ' Moves to the position relatively converted from P1 to P2.

MVS P1, -50 *1) ' Moves from P1 to a position retracted 50mm in the hand direction.

MVS ,-50 *1) ' Moves from the current position to a position retracted 50mm in the hand direction.

MVS P1 WTH M_OUT(17)=1 ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

MVS P1 WTHIF M_IN(20)=1, SKIP ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and
the program proceeds to the next stop.

MVS P1 TYPE 0, 0 ' Moves to P1 with equivalent rotation

MVS P1 TYPE 9, 1 ' Moves to P1 with 3-axis orthogonal interpolation.

Program Explanation
10 MVS P1, -50 *1) ' (1) Moves with linear interpolation from P1 to a position retracted 50mm in the hand

direction.
20 MVS P1 ' (2) Moves to P1 with linear interpolation.
30 MVS ,-50 *1) ' (3) Moves with linear interpolation from the current position (P1) to a position retracted

50mm in the hand direction.
40 MVS P2, -100 WTH M_OUT(17)=1 *1) (4) Output signal bit 17 is turned on at the same time as the robot starts moving.
50 MVS P2 (5) Moves with linear interpolation to P2.
60 MVS , -100 *1) (6) Moves with linear interpolation from the current position (P2) to a position retracted

50mm in the hand direction.
70 END ’Ends the program.

Function Explanation page
Designate the movement speed. .. Page 66, "(5) Acceleration/deceleration time and

speed control"
Designate the acceleration/deceleration time. ... Page 66, "(5) Acceleration/deceleration time and speed

control"
Confirm that the target position is reached. ... Page 68, "(6) Confirming that the target position is reached"
Continuously move to next position without stopping at target position. Page 65, "(4) Continuous movement"
Move with joint interpolation.. Page 61, "(1) Joint interpolation movement"
Move while drawing a circle or arc. ... Page 63, "(3) Circular interpolation movement"
Add a movement command to the process... Page 221, " WTH (With)"

Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION

(1)

(2)
(3)

(4)Turn output
 signal bit 17 ON.

(5)
(6)

5
0
m

m

100m
m

P1
P2

Hand

：Movement position

：Robot movement
Robot movement
-62 MELFA-BASIC IV functions

4MELFA-BASIC IV
(3) Circular interpolation movement
The robot moves along an arc designated with three points using three-dimensional circular interpolation.
If the current position is separated from the start point when starting circular movement, the robot will move
to the start point with linear operation and then begin circular interpolation.
*Command word

*Statement example

*Program example

Command
word Explanation

MVR Designates the start point, transit point and end point, and moves the robot with circular interpolation in
order of the start point - transit point - end point. It is possible to specify the interpolation form using the
TYPE instruction. An appended statement WTH or WTHIF can be designated.

MVR2 Designates the start point, end point and reference point, and moves the robot with circular interpolation
from the start point - end point without passing through the reference point. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement WTH or WTHIF can be
designated.

MVR3 Designates the start point, end point and center point, and moves the robot with circular interpolation from
the start point to the end point. The fan angle from the start point to the end point is 0 deg. < fan angle <
180 deg. It is possible to specify the interpolation form using the TYPE instruction. An appended
statement WTH or WTHIF can be designated.

MVC Designates the start point (end point), transit point 1 and transit point 2, and moves the robot with circular
interpolation in order of the start point - transit point 1 - transit point 2 - end point. An appended statement
WTH or WTHIF can be designated.

Statement example Explanation
MVR P1, P2, P3 ... ' Moves with circular interpolation between P1 - P2 - P3.

MVR P1, P2, P3 WTH M_OUT (17) = 1.......................... ' Circular interpolation between P1 - P2 - P3 starts, and the output signal bit 17 turns ON.

MVR P1, P2, P3 WTHIF M_IN (20) = 1, SKIP................. ' If the input signal bit 20 turns ON during circular interpolation between P1 - P2 - P3,
circular interpolation to P1 is stopped, and the program proceeds to the next step.

MVR P1, P2, P3 TYPE 0, 1.. ' Moves with circular interpolation between P1 - P2 - P3.

MVR2 P1, P3, P11 ... ' Circular interpolation is carried out from P1 to P3 in the direction that P11 is not passed.
P11 is the reference point.

MVR3 P1, P3, P10 ... ' Moves with circular interpolation from P1 to P3 in the direction with the smallest fan
angle. P10 is the center point.

MVC P1, P2, P3 ... ' Moves with circular movement from P1 - P2 - P3 - P1.

(1)

(2)

(3)

(4)

(5)
P1

P2

P3

P4

P5

P7

P6

(Reference
 point)

P10

P9

P11

P8

(Center point)

Hand

：Movement position

：Robot movement

Turn output
signal bit 18
ON.

Robot movement
 MELFA-BASIC IV functions 4-63

4

4MELFA-BASIC IV
•Program example

*Related functions

Program Explanation
10 MVR P1, P2, P3 WTH M_OUT(18)

= 1
' (1) Moves between P1 - P2 - P3 as an arc. The robot current position before movement is separated from
the start point, so first the robot will move with linear operation to the start point. (P1) output signal bit 18
turns ON simultaneously with the start of circular movement.

20 MVR P3, P4, P5 ' (2) Moves between P3 - P4 - P5 as an arc.
30 MVR2 P5, P7, P6 ' (3) Moves as an arc over the circumference on which the start point (P5), reference point (P6) and end

point (P7) in the direction that the reference point is not passed between the start point and end point.
40 MVR3 P7, P9, P8 ' (4) Moves as an arc from the start point to the end point along the circumference on which the center point

(P8), start point (P7) and end point (P9) are designated.
50 MVC P9, P10, P11 ' (5) Moves between P9 - P10 - P11 - P9 as an arc. The robot current position before movement is

separated from the start point, so first the robot will move with linear operation to the start point.(1 cycle
operation)

60 END ' Ends the program.

Function Explanation page

Designate the movement speed. .. Page 66, "(5) Acceleration/deceleration time and speed
control"

Designate the acceleration/deceleration time. ... Page 66, "(5) Acceleration/deceleration time and speed
control"

Confirm that the target position is reached. ... Page 68, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target position. Page 65, "(4) Continuous movement"

Move with joint interpolation.. Page 61, "(1) Joint interpolation movement"

Move linearly. .. Page 62, "(2) Linear interpolation movement"

Add a movement command to the process... Page 221, " WTH (With)"
-64 MELFA-BASIC IV functions

4MELFA-BASIC IV
(4) Continuous movement
The robot continuously moves to multiple movement positions without stopping at each movement position.
The start and end of the continuous movement are designated with the command statement. The speed can
be changed even during continuous movement.
*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

CNT Designates the start and end of the continuous movement.

Statement example Explanation
CNT 1... Designates the start of the continuous movement.

CNT 1, 100, 200... Designates the start of the continuous movement, and designates that the start point
neighborhood distance is 100mm, and the end point neighborhood distance is 200mm.

CNT 0... Designates the end of the continuous movement.

Program Explanation
10 MOV P1 ' (1) Moves with joint interpolation to P1.

20 CNT 1 ' Validates continuous movement. (Following movement is continuous movement.)

30 MVR P2, P3, P4 ' (2) Moves linearly to P2, and continuously moves to P4 with arc movement.

40 MVS P5 ' After arc movement, moves linearly to P5.

50 CNT 1, 200, 100 ' (3) Sets the continuous movement's start point neighborhood distance to 200mm,
and the end point neighborhood distance to 100mm.

60 MVS P6 ' (4) After moving to previous P5, moves in succession linearly to P6.

70 MVS P1 ' (5) Continuously moves to P1 with linear movement.

80 CNT 0 ' Invalidates the continuous movement.

90 END ' Ends the program.

Function Explanation page
Designate the movement speed. .. Page 66, "(5) Acceleration/deceleration time and speed control"
Designate the acceleration/deceleration time. Page 66, "(5) Acceleration/deceleration time and speed control"
Confirm that the target position is reached. Page 68, "(6) Confirming that the target position is reached"
Move with joint interpolation.. Page 61, "(1) Joint interpolation movement"
Move linearly. .. Page 62, "(2) Linear interpolation movement"
Move while drawing a circle or arc.. Page 63, "(3) Circular interpolation movement"

Specification of forward/backward move-
ment of the hand

*1) The statement examples and pro-
gram examples are for a vertical 6-axis
robot (e.g., RV-20A).The hand
advance/retrace direction relies on
the Z axis direction (+/- direction) of
the tool coordinate set for each
model.
Refer to the tool coordinate system
shown in "Confirmation of move-
ment" in the separate "From Robot
unit setup to maintenance", and
designate the correct direction.

CAUTION

(1)

(2)

(3)

(4)

(5)

Hand

：Movement position

：Robot movement

P1

P2

P3

P4 P5

The robot moves continuously
for less than the smaller distance
of either the proximity distance
when moving toward P6 (200 mm)
or the proximity distance to the
starting point of the path to P1
(100 mm).

The robot moves continuously for less than the smaller distance of either
the proximity distance when moving toward P5 (default value) or the proximity
distance to the starting point of the path to P6 (200 mm).

Robot movement
 MELFA-BASIC IV functions 4-65

4

4MELFA-BASIC IV
(5) Acceleration/deceleration time and speed control
The percentage of the acceleration/deceleration in respect to the maximum acceleration/deceleration, and
the movement speed can be designated.
*Command word

*Statement example

*Movement speed during joint interpolationController (T/B) setting value x OVRD command setting value x
JOVRD command setting value.

*Movement speed during linear and circular interpolationController (T/B) setting value x OVRD command
setting value x SPD command setting value.

*Program example

Command word Explanation

ACCEL Designates the acceleration during movement and the deceleration as a percentage (%) in
respect to the maximum acceleration/deceleration speed.

OVRD Designates the movement speed applied on the entire program as a percentage (%) in respect
to the maximum speed.

JOVRD Designates the joint interpolation speed as a percentage (%) in respect to the maximum speed.

SPD Designate the linear and circular interpolation speed with the hand end speed (mm/s).

OADL This instruction specifies whether the optimum acceleration/deceleration function should be
enabled or disabled.

Statement example Explanation
ACCEL.. Sets both the acceleration and deceleration to 100%.

ACCEL 60, 80... Sets the acceleration to 60% and the deceleration to 80%.
(For maximum acceleration/deceleration is 0.2 sec. acceleration 0.2/0.6=0.33 sec.
 deceleration 0.2/0.8=0.25 sec.)

OVRD 50 .. Sets the joint interpolation, linear interpolation and circular interpolation to 50% of the
maximum speed.

JOVRD 70 .. Set the joint interpolation operation to 70% of the maximum speed.

SPD 30 ... Sets the linear interpolation and circular interpolation speed to 30mm/s.

OADL ON ... This instruction enables the optimum acceleration/deceleration function.

Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION

(1)･･･Maximum speed

(2)･････Maximum speed

P1

(3)･･･50%

(4)･･･120mm/s

(5)･･･Maximum speed

(6)･･･70%

5
0
m

m

P3

Hand
：Movement position
：Robot movement

Robot movement
-66 MELFA-BASIC IV functions

4MELFA-BASIC IV
•Program example

*Related functions

Program Explanation
10 OVRD 100 ' Sets the movement speed applied on the entire program to the maximum speed.
20 MVS P1 ' (1) Moves at maximum speed to P1.
30 MVS P2, -50 *1) ' (2) Moves at maximum speed from P2 to position retracted 50mm in hand direction.
40 OVRD 50 ' Sets the movement speed applied on the entire program to half of the maximum speed.
50 MVS P2 ' (3) Moves linearly to P2 with a speed half of the default speed.
60 SPD 120 ' Sets the end speed to 120mm/s. (Since the override is 50%, it actually moves at 60 mm/s.)
70 OVRD 100 ' Sets the movement speed percentage to 100% to obtain the actual end speed of 120mm/s.
80 ACCEL 70, 70 ' Sets the acceleration and deceleration to 70% of the maximum speed.
90 MVS P3 ' (4) Moves linearly to P3 with the end speed 120mm/s.

100 SPD M_NSPD ' Returns the end speed to the default value.
110 JOVRD 70 ' Sets the speed for joint interpolation to 70%.
120 ACCEL ' Returns both the acceleration and deceleration to the maximum speed.
130 MVS , -50 *1) ' (5) Moves linearly with the default speed for linear movement from the current position (P3) to a position

retracted 50mm in the hand direction.
140 MVS P1 ' (6) Moves to P1 at 70% of the maximum speed.
150 END ' Ends the program.

Function Explanation page

Move with joint interpolation.. Page 61, "(1) Joint interpolation movement"

Move linearly. .. Page 62, "(2) Linear interpolation movement"

Move while drawing a circle or arc.. Page 63, "(3) Circular interpolation movement"

Continuously move to next position without stopping at target position.......... Page 65, "(4) Continuous movement"
 MELFA-BASIC IV functions 4-67

4

4MELFA-BASIC IV
(6) Confirming that the target position is reached
The positioning finish conditions can be designated with as No. of pulses. (FINE instruction) This designa-
tion is invalid when using continuous movement.
*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

FINE Designates the positioning finish conditions with a No. of pulses. Specify a small number of
pulses to allow more accurate positioning.

MOV and DLY After the MOV movement command, command the DLY instruction (timer) to complete
positioning . (this is effective for belt-driven robots, e.g., RP-1AH, 3AH, and 5AH).

Statement example Explanation
FINE100 ... Sets the positioning finish conditions to 100 pulses.

MOV P1 .. Moves with joint interpolation to P1. (The movement completes at the command value
level.)

DLY 0.1... Positioning after the movement instruction is performed by the timer.
(this is effective for belt-driven robots, e.g., RP-1AH, 3AH, and 5AH).

Program Explanation
10 CNT 0 ' The FINE instruction is valid only when the CNT instruction is OFF.

20 MVS P1 ' (1) Moves with joint interpolation to P1.

30 MVS P2, -50 *1) ' (2) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.

40 FINE 50 ' Sets positioning finish pulse to 50.

50 MVS P2 ' (3) Moves with linear interpolation to P2
(MVS completes if the positioning complete pulse count is 50 or less.)

60 M_OUT(17)=1 ' (4) Turns output signal 17 ON when positioning finish pulse reaches 50 pulses.

70 FINE 1000 ' Sets positioning finish pulse to 1000.

80 MVS P3, -100 *1) ' (5) Moves linearly from P3 to position retracted 100mm in hand direction.

90 MVS P3 ' (6) Moves with linear interpolation to P3.

100 DLY 0.1 ' Performs the positioning by the timer.
110 M_OUT(17)=0 ' (7) Turns output signal 17 off.

120 MVS , -100 *1) ' (8) Moves linearly from current position (P3) to position retracted 100mm in hand direction.

130 END ' Ends the program.

Function Explanation page
Move with joint interpolation.. Page 63, "(3) Circular interpolation movement"
Move linearly. .. Page 62, "(2) Linear interpolation movement"
Continuously move to next position without stopping at target position. Page 65, "(4) Continuous movement"

(1)

(2)

(5)

P1

(3)

(6)
(8)

5
0m

m

100mm

P2

Hand

：Movement position

：Robot movement

P3

(7) Turns output signal bit 17
OFF at finish of positioning to
P3.

(4) Turns output signal bit 17
ON at finish of positioning to
P2.

Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
-68 MELFA-BASIC IV functions

4MELFA-BASIC IV
(7) High path accuracy control
It is possible to improve the motion path tracking when moving the robot. This function is limited to certain
types of robot. Currently, the PREC instruction is available for vertical multi-joint type 5-axis and 6-axis
robots, RV-1A/ 2AJ, RV-2A/ 3AJ, RV-4A/ 5AJ/ 3AL/ 4AJL, RV-20A, RV-3S/ 3SJ/3SB/3SJB, RV-6S/ 6SL/12S/
12SL and RV-18S series.
*Command word

*Statement example

*Program example

•Program example

The PREC instruction improves the tracking accuracy of the robot's hand tip, but low-
ers the acceleration/deceleration of the robot movement, which means that the cycle
time may become longer. The tracking accuracy will be further improved if the CNT
instruction is not included. However, the hand tip speed cannot be guaranteed in this
case.

Command word Explanation

PREC This instruction specifies whether the high path accuracy mode should be enabled or disabled.

Statement example Explanation
PRECON Enables the high path accuracy mode.

PRECOFF Disables the high path accuracy mode.

Program Explanation
10 MOV P1, -50 *1) ' (1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.

20 OVRD 50 ' Sets the movement speed to half of the maximum speed.

30 MVS P1 ' (2) Moves with linear interpolation to P1.

40 PREC ON ' The high path accuracy mode is enabled.

50 MVS P2 ' (3) Moves the robot from P1 to P2 with high path accuracy.

60 MVS P3 ' (4) Moves the robot from P2 to P3 with high path accuracy.

70 MVS P4 ' (5) Moves the robot from P3 to P4 with high path accuracy.

80 MVS P1 ' (6) Moves the robot from P4 to P1 with high path accuracy.

90 PREC OFF ' The high path accuracy mode is ÇÑisableÇÑ.

100 MVS P1, -50 ' (7) Returns the robot to the position 50 mm behind P1 in the hand direction using linear
interpolation.

110 END ' Ends the program.

P1 P2

P3 P4

(1)

(2)

(3)

(4)

(5)

(6)
(7)

:Robot m ovem ent

Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

CAUTION
 MELFA-BASIC IV functions 4-69

4

4MELFA-BASIC IV
(8) Hand and tool control
The hand open/close state and tool shape can be designated.
*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

HOPEN Opens the designated hand.

HCLOSE Closes the designated hand.

TOOL Sets the shape of the tool being used, and sets the control point.

Statement example Explanation
HOPEN 1.. Opens hand 1.

HOPEN 2.. Opens hand 2.

HCLOSE 1.. Closes hand 1.

HCLOSE 2.. Closes hand 2.

TOOL (0, 0, 95, 0, 0, 0) Sets the robot control point to the position 95 mm from the flange plane in the
extension direction.

Program Explanation
10 TOOL(0, 0, 95, 0, 0, 0) ’Sets the hand length to 95 mm.
20 MVS P1, -50 *1) ’(1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.
30 OVRD 50 ’Sets the movement speed to half of the maximum speed.
40 MVS P1 ’(2) Moves with linear interpolation to P1. (Goes to grasp workpiece.)
50 DLY 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.
60 HCLOSE 1 ’(3) Closes hand 1. (Grasps workpiece.)
70 DLY 0.5 ’Waits 0.5 seconds.
80 OVRD 100 ’Sets movement speed to maximum speed.
90 MVS , -50 *1) ’(4) Moves linearly from current position (P1) to position retracted 50mm in hand direction. (Lifts up

workpiece.)
100 MVS P2, -50 *1) ’(5) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.
110 OVRD 50 ’Sets movement speed to half of the maximum speed.
120 MVS P2 ’(6) Moves with linear interpolation to P2. (Goes to place workpiece.)
130 DLY 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.
140 HOPEN 1 ’(7) Opens hand 1. (Releases workpiece.)
150 DLY 0.5 ’Waits 0.5 seconds.
160 OVRD 100 ’ Sets movement speed to maximum speed.
170 MVS , -50 *1) ’(8) Moves linearly from current position (P2) to position retracted 50mm in hand direction.

(Separates from workpiece.)
180 END ’Ends the program.

Function Explanation page
Appended statement ... Page 221, " WTH (With)"

(1)

(2)
(4)

(3) Grasps
 workpiece

(5)

(6)
(8)

(7) Releases
 workpiece

P2

Hand

 Workpiece

P1

：Movement position

：Robot movement
Specification of forward/
backward movement of the
hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
20A).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
-70 MELFA-BASIC IV functions

4MELFA-BASIC IV
4.1.2 Pallet operation
When carrying out operations with the workpieces neatly arranged (palletizing), or when removing work-
pieces that are neatly arranged (depalletizing), the pallet function can be used to teach only the position of
the reference workpiece, and obtain the other positions with operations.
*Command word

*Statement example

Note 1) The relation of the position designation and assignment direction is shown below

 Assignment direction = 1 (zigzag) Assignment direction = 2 (same direction) Assignment direction = 3 (arc pallet)

<About the posture of position data defining a pallet>
The signs of the posture data (A, B, and C) at four points, the starting point, endpoint A, endpoint B, and the
diagonal point, must match. In the case of a vertical multi-joint robot, if the mechanical interface plane
(flange plane) is facing downward, the A, B, and C axis coordinates (especially the A and C axes) may
reach 180 degrees. In this case, the sign can be either + or -. Each position of the pallet is calculated from
the position data of the starting point and endpoints; if the signs do not match, the hand rotates as a result.
+180 and -180 result in the same position. Use + or - consistently when the signs are different, and perform
this correction only when the values are exactly 180 degrees.

Command word Explanation

DEF PLT Defines the pallet to be used.

PLT Obtains the designated position on the pallet with operations.

Statement example Explanation
DEF PLT 1, P1, P2, P3, P4, 4, 3, 1 Defines to operate pallet No. 1 with a start point = P1, end point A = P2, end point B =

P3 and diagonal point = P4, a total of 12 work positions (quantity A = 4, quantity B = 3),
and an assignment direction = 1(Zigzag).

DEF PLT 2, P1, P2, P3, , 8, 5, 2....................................... Defines to operate pallet No. 2 with a start point = P1, end point A = P2, and end point
B = P3, a total of 40 work positions (quantity A = 8, quantity B = 5), and an assignment
direction = 2 (Same direction).

DEF PLT 3, P1, P2, P3, , 5, 1, 3....................................... Define that pallet No. 3 is an arc pallet having give five work positions on an arc
designated with start point = P1, transit point = P2, end point = P3 (total three points).

(PLT1, 5)... Operate the 5th position on pallet No. 1.

(PLT1, M1).. Operate position in pallet No. 1 indicated with the numeric variable M1.

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet
 MELFA-BASIC IV functions 4-71

4

4MELFA-BASIC IV
*Program example

•Program example

*Related functions

Program Explanation
10 DEF PLT 1, P2, P3, P4, P5, 3, 5, 2 ’GDefines the pallet. Pallet No. = 1, start point = P2, end point A = P3, end point B = P4,

diagonal point = P5, quantity A = 3, quantity B = 5, assignment direction = 2 (Same
direction).

20 M1=1 ’GSubstitutes value 1 in numeric variable M1. (M1 is used as a counter.

30 *LOOP ’GDesignates label LOOP at the jump destination.

40 MOV P1, -50 *1) ’GMoves with joint interpolation from P1 to a position retracted 50mm in hand direction.

50 OVRD 50 ’GSets movement speed to half of the maximum speed.

60 MVS P1 ’GMoves linearly to P1. (Goes to grasp workpiece.)

70 HCLOSE 1 ’GCloses hand 1. (Grasps workpiece.)

80 DLY 0.5 ’GWaits 0.5 seconds.

90 OVRD 100 ’GSets movement speed to maximum speed.

100 MVS , -50 *1) ’GMoves linearly from current position (P1) to a position retracted 50mm in hand
direction. (Lifts up workpiece.)

110 P10=(PLT1,M1) ’GOperates the position in pallet No. 1 indicated by the numeric variable M1, and
substitutes the results in P10.

120 MOV P10, -50 *1) ’GMoves with joint interpolation from P10 to a position retracted 50mm in hand direction.

130 OVRD 50 ’GSets movement speed to half of the maximum speed.

140 MVS P10 ’GMoves linearly to P10. (Goes to place workpiece.)

150 HOPEN 1 ’GOpens hand 1. (Places workpiece.)

160 DLY 0.5 ’GWaits 0.5 seconds.

170 OVRD 100 ’GSets movement speed to maximum speed.

180 MVS , -50 ’GMoves linearly from current position (P10) to a position retracted 50mm in hand
direction. (Separates from workpiece.)

190 M1=M1+1 ’GIncrements numeric variable M1 by 1. (Advances the pallet counter.)

200 IF M1<=15 THEN *LOOP ’GIf numeric variable M1 value is less than 15, jumps to label LOOP and repeat process.
If more than 15, goes to next step.

210 END ’GEnds the program.

Function Explanation page

Substitute, operation .. Page 82, "4.1.6 Expressions and operations"

Condition branching ... Page 73, "(1) Unconditional branching, conditional branching, waiting"

13

10

7

4

1

14

11

8

5

2

15

12

9

6

3

P1
(workpiece supply position)

Palletize

3 pcs.
5
 p

c
s.

P4

(End point B)

P2

(Start point)

P3

(End point A)

P5

(Diagonal point)

Assignment direction
 = 2(same direction)

Robot movement
-72 MELFA-BASIC IV functions

4MELFA-BASIC IV
4.1.3 Program control
The program flow can be controlled with branching, interrupting, subroutine call, and stopping, etc.

(1) Unconditional branching, conditional branching, waiting
The flow of the program to a specified line can be set as unconditional or conditional branching.
*Command word

*Statement example

Command word Explanation
GOTO Jumps unconditionally to the designated line.

ON GOTO Jumps according to the value of the designated variable. The value conditions follow the
integer value order.

IF THEN ELSE
(Instructions written in one

line)

Executes the command corresponding to the designated conditions.. The value conditions
can be designated randomly. There is only one type of condition per command statement.
If the conditions are met, the instruction after THEN is executed. If the conditions are not
met, the instruction after ELSE is executed. They are written in one line.

IF THEN
ELSE

END IF
(Instructions written in

several lines)

Several lines can be processed according to the specified variables and specified
conditions of the values. It is possible to specify any conditions for values. Only one type
of condition is allowed for one instruction. If the conditions are met, the lines following
THEN until the ELSE line are executed. If the conditions are not met, the lines after ELSE
until END IF are executed.

Note) This function is available for controller version G1 or later.

SELECT
CASE

END SELECT

Jumps according to the designated variable and the designated conditions of that value.
The value conditions can be designated randomly.
Multiple types of conditions can be designated per command statement.

WAIT Waits for the variable to reach the designated value.

Statement example Explanation
GOTO 200 Jumps unconditionally to line 200.

GOTO *FN Jumps unconditionally to the label FIN line.

ON M1 GOTO 100, 200, 300 If the numeric variable M1 value is 1, jumps to line 100, if 2 jumps to line 200, and if 3 jumps to line 300.
If the value does not correspond, proceeds to next step.

IF M1=1 THEN 100 If the numeric variable M1 value is 1, branches to line 100. If not, proceeds to the next step.

IF M1=1 THEN 100 ELSE 200 If the numeric variable M1 value is 1, branches to line 100. If not, branches to line 200.

IF M1=1 THEN
 M2=1
 M3=2
ELSE
 M2=-1
 M3=-2
ENDIF

If the numerical variable of M1 is 1, the instructions M2 = 1 and M3 = 2 are executed. If the value of M1
is different from 1, the instructions M2 = -1 and M3 = -2 are executed.

SELECT M1
 CASE 10
 :
 BRAKE
 CASE IS 11
 :
 BRAKE
 CASE IS <5
 :
 BRAKE
 CASE 6 TO 9
 :
 BRAKE
DEFAULT
 :
 BRAKE
END SELECT

Branches to the CASE statement corresponding to the value of numeric variable M1.
 If the value is 10, executes only between CASE 10 and the next CASE 11.

 If the value is 11, executes only between CASE 11 and the next CASE IS <5.

 If the value is smaller than 5, executes only between CASE IS <5 and next CASE 6 TO 9.

 If value is between 6 and 9, executes only between CASE 6 TO 9 and next DEFAULT.

 If value does not correspond to any of the above, executes only between DEFAULT and next END
SELECT.
Ends the SELECT CASE statement.

WAIT M_IN(1)=1 Waits for the input signal bit 1 to turn ON.
 MELFA-BASIC IV functions 4-73

4

4MELFA-BASIC IV
*Related functions
Function Explanation page

Repetition ... Page 75, "(2) Repetition"

Interrupt.. Page 76, "(3) Interrupt"

Subroutine.. Page 77, "(4) Subroutine"

External signal input... Page 80, "(1) Input signals"
-74 MELFA-BASIC IV functions

4MELFA-BASIC IV
(2) Repetition
Multiple command statements can be repeatedly executed according to the designated conditions.
*Command word

*Statement example

*Related functions

Command word Explanation

FOR NEXT Repeat between FOR statement and NEXT statement until designated conditions are satisfied.

 WHILE WEND Repeat between WHILE statement and WEND statement while designated conditions are
satisfied.

Statement example Explanation
FOR M1=1 TO 10
 :
NEXT

Repeat between FOR statement and NEXT statement 10 times.
The initial numeric variable M1 value is 1, and is incremented by one with each
repetition.

FOR M1=0 TO 10 STEP 2
 :
NEXT

Repeat between FOR statement and NEXT statement 6 times.
The initial numeric variable M1 value is 0, and is incremented by two with each
repetition.

WHILE (M1 >= 1) AND (M1 <= 10)
 :
WEND

Repeat between WHILE statement and WEND statement while the value of the numeric
variable M1 is 1 or more and less than 10.

Function Explanation page

Unconditional branching, branching... Page 73, "(1) Unconditional branching, conditional branching,
waiting"

Interrupt.. Page 76, "(3) Interrupt"

Input signal wait ... Page 80, "(1) Input signals"
 MELFA-BASIC IV functions 4-75

4

4MELFA-BASIC IV
(3) Interrupt
Once the designated conditions are established, the command statement being executed can be interrupted
and a designated line branched to.
*Command word

*Statement example

*Related functions

Command word Explanation

DEF ACT Defines the interrupt conditions and process for generating interrupt.

ACT Designates the validity of the interrupt.

RETURN If a subroutine is called for the interrupt process, returns to the interrupt source line.

Statement example Explanation
DEF ACT 1, M_IN(10)=1 GOSUB 100 If input signal bit 10 is turned on for interrupt number 1, the subroutine on line 100 is

defined to be called after the robot decelerates and stops. The deceleration time
depends on the ACCEL and OVRD instructions.

DEF ACT 2, M_IN(11)=1 GOSUB 200, L If input signal bit 11 is turned on for interrupt number 2, the subroutine on line 200 is
defined to be called after the statement currently being executed is completed.

DEF ACT 3, M_IN(12)=1 GOSUB 300, S If input signal bit 12 is turned on for interrupt number 3, the subroutine on line 300 is
defined to be called after the robot decelerates and stops in the shortest time and
distance possible.

ACT 1=1 Enables the priority No. 1 interrupt.

ACT 2=0 Disables the priority No. 1 interrupt.

RETURN 0 Returns to the line where the interrupt occurred.

RETURN 1 Returns to the line following the line where the interrupt occurred.

Function Explanation page

Unconditional branching, branching... Page 73, "(1) Unconditional branching, conditional branching,
waiting"

Subroutine.. Page 77, "(4) Subroutine"

Communication .. Page 81, "4.1.5 Communication"
-76 MELFA-BASIC IV functions

4MELFA-BASIC IV
(4) Subroutine
Subroutine and subprograms can be used.
By using this function, the program can be shared to reduce the No. of steps, and the program can be cre-
ated in a hierarchical structure to make it easy to understand.
*Command word

*Statement example

*Related functions

Command word Explanation

GOSUB Calls the subroutine at the designated line or designated label.

ON GOSUB Calls the subroutine according to the designated variable number. The value conditions follow
the integer value order. (1,2,3,4,.......)

RETURN Returns to the line following the line called with the GOSUB command.

CALLP Calls the designated program. The next line in the source program is returned to at the END
statement in the called program. Data can be transferred to the called program as an argument.

FPRM An argument is transferred with the program called with the CALLP command.

Statement example Explanation
GOSUB Calls the subroutine from line 100.

ON GOSUB Calls the subroutine from label GET.

ON M1 GOSUB 100, 200, 300 If the numeric variable M1 value is 1, calls the subroutine at line 100, if 2 calls the subroutine at line
200, and if 3 calls the subroutine at line 300. If the value does not correspond, proceeds to next
step.

RETURN Returns to the line following the line called with the GOSUB command.

CALLP "10" Calls the No. 10 program.

CALLP "20", M1, P1 Transfers the numeric variable M1 and position variable P1 to the No. 20 program, and calls the
program.

FPRM M10, P10 Receives the numeric variable transferred with the CALLP in M10 of the subprogram, and the
position variable in P10.

Function Explanation page

Interrupt... Page 76, "(3) Interrupt"

Communication ... Page 81, "4.1.5 Communication"

Unconditional branching ... Page 73, "(1) Unconditional branching, conditional branching, waiting"
 MELFA-BASIC IV functions 4-77

4

4MELFA-BASIC IV
(5) Timer
The program can be delayed by the designated time, and the output signal can be output with pulses at a
designated time width.
*Command word

*Statement example

*Related functions

Command word Explanation

DLY Functions as a designated-time timer.

Statement example Explanation
DLY 0.05 Waits for only 0.05 seconds.

M_OUT(10)=1 DLY 0.5 Turns on output signal bit 10 for only 0.5 seconds.

Function Explanation page
Pulse signal output... Page 80, "(1) Input signals"
-78 MELFA-BASIC IV functions

4MELFA-BASIC IV
(6) Stopping
The program execution can be stopped. The moving robot will decelerate to a stop.
*Command word

*Statement example

*Related functions

Command word Explanation

HLT This instruction stops the robot and pauses the execution of the program. When the program is
started, it is executed from the next line.

END This instruction defines the end of one cycle of a program. In continuous operation, the program
is executed again from the start line upon the execution of the END instruction. In cycle
operation, the program ends upon the execution of the END instruction when the cycle is
stopped.

Statement example Explanation
HLT Interrupt execution of the program.

IF M_IN(20)=1 THEN HLT Pauses the program if input signal bit 20 is turned on.

MOV P1 WTHIF M_IN(18)=1, HLT Pauses the program if input signal bit 18 is turned on while moving toward P1.

END Terminates the program even in the middle of the execution.

Function Explanation page

Appended statement .. Page 221, " WTH (With)"
 MELFA-BASIC IV functions 4-79

4

4MELFA-BASIC IV
4.1.4 Inputting and outputting external signals
This section explains the general methods for signal control when controlling the robot via an external
device (e.g., PLC).

(1) Input signals
Signals can be retrieved from an external device, such as a programmable logic controller.
The input signal is confirmed with a robot status variable (M_IN(), etc.) Refer to Page 106, "4.3.26 Robot
status variables" for details on the robot status variables.
*Command word

*System variables
M_IN, M_INB, M_INW, M_DIN

*Statement example

*Related functions

(2) Output signals
Signals can be output to an external device, such as a programmable logic controller.
The signal is output with the robot status variable (M_OUT(), etc.). Refer to Page 106, "4.3.26 Robot status
variables" for details on the robot status variables.
*Command word

*System variables
M_OUT, M_OUTB, M_OUTW, M_DOUT

*Statement example

*Related functions

Command word Explanation

WAIT Waits for the input signal to reach the designated state.

Statement example Explanation
WAIT M_IN(1)=1... Waits for the input signal bit 1 to turn ON.

M1=M_INB(20) ... Substitutes the input signal bit 20 to 27, as an 8-bit state, in numeric variable M1.

M1=M_INW(5) .. Substitutes the input signal bit 5 to 20, as an 16-bit state, in numeric variable M1.

Function Explanation page

Signal output .. Page 80, "(2) Output signals"
Branching with input signal .. Page 73, "(1) Unconditional branching, conditional branching, waiting"
Interrupting with input signal .. Page 76, "(3) Interrupt"

Command word Explanation

CLR Clears the general-purpose output signal according to the output signal reset pattern in the
parameter.

Statement example Explanation
CLR 1 Clears based on the output reset pattern.

M_OUT(1)=1 Turns the output signal bit 1 ON.

M_OUTB (8)=0 Turns the 8 bits, from output signal bit 8 to 15, OFF.

M_OUTW (20)=0 Turns the 16 bits, from output signal bit 20 to 35, OFF.

M_OUT(1)=1 DLY 0.5 Turns the output signal bit 1 ON for 0.5 seconds. (Pulse output)

M_OUTB (10)=&H0F Turns the 4 bits, from output signal bit 10 to 13 ON, and turns the four bits from 14 to 17 OFF.

Function Explanation page

Signal input .. Page 80, "(1) Input signals"

Timer .. Page 78, "(5) Timer"
-80 MELFA-BASIC IV functions

4MELFA-BASIC IV
4.1.5 Communication
Data can be exchanged with an external device, such as a personal computer.
*Command word

*Statement example

*Related functions

Command word Explanation

OPEN Opens the communication line.

CLOSE Closes the communication line.

PRINT# Outputs the data in the ASCII format. CR is output as the end code.

INPUT# Inputs the data in the ASCII format. The end code is CR.

ON COM GOSUB Defines the subroutine to be called when an interrupt is generated from the communication line.
The interrupt is generated when data is input from an external device.

COM ON Enables the interrupt process from the communication line.

COM OFF Disables the interrupt process from the communication line. The interrupt will be invalid even if it
occurs.

COM STOP Stops the interrupt process from the communication line. If there is an interrupt, it is saved, and
is executed after enabled.

Statement example Explanation
OPEN "COM1:" AS #1 Opens the communication line COM1 as file No. 1.

CLOSE #1 Closes file No. 1.

CLOSE Closes all files that are open.

PRINT#1,"TEST" Outputs the character string "TEST" to file No. 1.

PRINT#2,"M1=";M1 Output the character string "M1=" and then the M1 value to file No. 2.
Output data example: "M1 = 1" + CR (When M1 value is 1)

PRINT#3,P1 Outputs the position variable P1 coordinate value to file No. 3.
Output data example: "(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)" +CR
(When X = 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

PRINT#1,M5,P5 Outputs the numeric variable M5 value and position variable coordinate value to file No. 1.
M5 and P5 are separated with a comma (hexadecimal, 2C).
Output data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(When M5=8, P5 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

INPUT#1,M3 Converts the input data into a value, and substitutes it in numeric variable M3.
Input data example: "8" + CR (when value 8 is to be substituted)

INPUT#1,P10 Converts the input data into a value, and substitutes it in position variable P10.
Input data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(P5 will be X= 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

INPUT#1,M8,P6 Converts the first data input into a value, and substitutes it in numeric variable M8. Converts the data
following the command into a coordinate value, and substitutes it in position variable P6. M8 and P6 are
separated with a comma (hexadecimal, 2C)
Input data example: "7,(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(The data will be M8 = 7, P6 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

ON COM(1) GOSUB 300 Defines to call line 300 subroutine when data is input in communication line COM1.

ON COM(2) GOSUB *RECV Defines to call subroutine at label RECV line when data is input in communication line COM2.

COM(1) ON Enables the interrupt from communication line COM1.

COM(2) OFF Disables (prohibits) the interrupt from communication line COM2.

COM(1) STOP Stops (holds) the interrupt from communication line COM1.

Function Explanation page
Subroutine.. Page 77, "(4) Subroutine"
Interrupt.. Page 76, "(3) Interrupt"
 MELFA-BASIC IV functions 4-81

4

4MELFA-BASIC IV
4.1.6 Expressions and operations
The following table shows the operators that can be used, their meanings, and statement examples.

(1) List of operator
Class Operato

r Meaning Statement example

Substituti
on

= The right side is
substituted in the left
side.

P1=P2
P5=P_CURR
P10.Z=100.0
M1=1
STS$="OK"

’Substitute P2 in position variable P1.
’Substitute the current coordinate value in current position variable P5.
’Set the position variable P10 Z coordinate value to 100.0.
’Substitute value 1 in numeric variable M1.
’Substitute the character string OK in the character string variable
STS$.

Numeric
value
operation

+ Add P10=P1+P2
MOV P8+P9
M1=M1+1
STS$="ERR"+"001"

’GSubstitute the results obtained by adding the P1 and P2 coordinate
elements to position variable P10.
’Move to the position obtained by adding the position variable P8 and
P9 coordinate elements.
’Add 1 to the numeric variable M1.
’Add the character string 001 to the character string ERR and
substitute in character string variable STS$.

- Subtract P10=P1-P2
MOV P8-P9
M1=M1-1

’Substitute the results obtained by subtracting the P2 coordinate
element from P1 in position variable P10.
’ Move to the position obtained by subtracting the P9 coordinate
element from the position variable P8.
’Subtract 1 from the numeric variable M1.

* Multiply P1=P10*P3
M1=M1*5

’Substitute the relative conversion results from P10 to P3 in position
variable P1.
’Multiple the numeric variable M1 value by 5.

/ Divide P1=P10/P3
M1=M1/2

’Substitute the reverse relative conversion results from P10 to P3 in
position variable P1.
’Divide the numeric variable M1 value by 2.

^ Exponential operation M1=M1^2 ’Square the numeric variable M1 value.

\ Integer division M1=M1\3 ’Divide the numeric variable M1 value by 3 and make an integer
(round down).

MOD Remainder operation M1=M1 MOD 3 ’Divide the numeric variable M1 value by 3 and leave redundant.

- Sign reversal P1=-P1
M1=-M1

’Reverse the sign for each coordinate element in position variable P1.
’Reverse the sign for the numeric variable M1 value.

Comparis
on
operation

= Compare whether
equal

IF M1=1 THEN 200
IF STS$="OK" THEN 100

’Branch to line 200 if numeric variable M1 value is 1.
’Branch to line 100 if character string in character string variable STS$ is
OK.

<>
or
><

Compare whether not
equal

IF M1<>2 THEN 300
IF STS$<>"OK" THEN 100

’Branch to line 300 if numeric variable M1 value is 2.
’Branch to line 900 if character string in character string variable STS$
is not OK.

< Compare whether
smaller

IF M1< 10 THEN 300
IF LEN(STS$)<3 THEN 100

’Branch to line 300 if numeric variable M1 value is less than 10.
’Branch to line 100 if No. of characters in character string STS$
variable is less than 3.

> Compare whether
larger

IF M1>9 THEN 200
IF LEN(STS$)>2 THEN 300

’Branch to line 200 if numeric variable M1 value is more than 9.
’Branch to line 300 if No. of characters in character string variable
STS$ is more than 2.

=<
or
<=

Compare whether
equal to or less than

IF M1<=10 THEN 200
IF LEN(STS$)<=5 THEN 300

’Branch to line 200 if numeric variable M1 value is equal to or less than
10.
’Branch to line 300 if No. of characters in character string variable
STS$ is equal to or less then 5.

=>
or
>=

Compare whether
equal to or more than

IF M1=>11 THEN 200
IF LEN(STS$)>=6 THEN 300

’Branch to line 200 if numeric variable M1 value is equal to or more
than 11.
’Branch to line 300 if No. of characters in character string variable
STS$ is equal to or more than 6.
-82 MELFA-BASIC IV functions

4MELFA-BASIC IV
Note1) Please refer to Page 84, "Relative calculation of position data (multiplication)".
Note2) Please refer to Page 84, "Relative calculation of position data (Addition)".

Logical
operation

AND Logical AND operation M1=M_INB(1) AND &H0F ’Convert the input signal bit 1 to 4 status and substitute in numeric
variable M1. (Input signal bits 5 to 8 remain OFF.)

OR Logical OR operation M_OUTB(20)=M1 OR &H80 ’Output the numeric variable M1 value to output signal bit 20 to 27.
Output bit signal 27 is always ON at this time.

NOT NOT operation M1=NOT M_INW(1) ’Reverse the status of input signal bit 1 to 16 to create a value, and
substitute in numeric variable M1.

XOR Exclusive OR
operation

N2=M1 XOR M_INW(1) ’Obtain the exclusive OR of the states of M1 and the input signal bits 1
to 16, convert into a value and substitute in numeric variable M2.

<< Logical left shift
operation

M1=M1<<2 ’Shift numeric variable M1 two bits to the left.

>> Logical right shift
operation.

M1=M1>>1 ’Shift numeric variable M1 bit to the right.

Class Operato
r Meaning Statement example
 MELFA-BASIC IV functions 4-83

4

4MELFA-BASIC IV
(2) Relative calculation of position data (multiplication)
Numerical variables are calculated by the usual four arithmetic operations. The calculation of position vari-
ables involves coordinate conversions, however, not just the four basic arithmetic operations. This is
explained using simple examples.

An example of relative calculation (multiplication)
10 P2=(10,5,0,0,0,0)(0,0)
20 P100=P1*P2
30 MOV P1
40 MVS P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand tip is moved relatively within the
P1 tool coordinate system at teaching position P1. The
values of the X and Y coordinates of P2 become the
amount of movement within the tool coordinate system.
The relative calculation is given by multiplication of the P
variables. Be aware that the result becomes different if the
order of multiplication is different. The variable that speci-
fies the amount of relative movement (P2) should be
entered lastly.
If the posture axis parts of P2 (A, B, and C) are 0, the pos-
ture of P1 is used as is. If there are non-zero values avail-
able, the new posture is determined by rotating the hand
around the Z, Y, and X axes (in the order of C, B, and A)
relative to the posture of P1. Multiplication corresponds to
addition within the tool coordinate system, while division
corresponds to subtraction within the tool coordinate sys-
tem.

(3) Relative calculation of position data (Addition)
An example of relative calculation(Addition)
10 P2=(5,10,0,0,0,0)(0,0)
20 P100=P1+P2
30 MOV P1
40 MVS P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand is moved relatively within the
robot coordinate system at teaching position P1. The val-
ues of the X and Y coordinates of P2 become the amount
of movement within the robot coordinate system. The rela-
tive calculation is given by addition of the P variables.
If a value is entered for the C-axis coordinate of P2, it is
possible to change the C-axis coordinate of P100. The
resulting value will be the sum of the C-axis coordinate of
P1 and the C-axis coordinate of P2.

CAUTION)
In the example above, the explanation is made in two dimensions for the sake of simplicity. In actuality, the
calculation is made in three dimensions. In addition, the tool coordinate system changes depending on the
posture.

X

Y

X1

Y1

P1

5mm

10mm
P100

Multip lication between P variab les
(relative calculation in the tool coord inate system)

Tool coord inate system at P1

Robot coord inate system

X

Y

P1

P100

10mm

5mm

Add ition of P variab les
(relative calculation in the robot coord inate system)

Robot coord inate system
-84 MELFA-BASIC IV functions

4MELFA-BASIC IV
4.1.7 Appended statement
A process can be added to a movement command.
*Appended statement

*Statement example

*Related functions

Appended statement Explanation

WTH Unconditionally adds a process to the movement command.

WTHIF Conditionally adds a process to the movement command.

Statement example Explanation
MOV P1 WTH M_OUT(20)=1... Turns output signal bit 20 ON simultaneously with the start of movement to P1.

MOV P1 WITHIF M_IN(20)=1, HLT.................................. Stops if the input signal bit 20 turns ON during movement to P1.

MOV P1 WTHIF M_IN(19)=1, SKIP Stops movement to P1 if the input signal bit 19 turns ON during movement to P1, and
then proceeds to the next step.

Function Explanation page
Joint interpolation movement ... Page 61, "(1) Joint interpolation movement"

Linear interpolation movement... Page 62, "(2) Linear interpolation movement"

Circular interpolation movement .. Page 63, "(3) Circular interpolation movement"

Stopping ... Page 79, "(6) Stopping"
 MELFA-BASIC IV functions 4-85

4

4MELFA-BASIC IV
4.2 Multitask function
4.2.1 What is multitasking?

The multitask function is explained in this section.
Multitasking is a function that runs several programs as parallel, to shorten the tact time and enable control
of peripheral devices with the robot program.
Multitasking is executed by placing the programs, to be run in parallel, in the items called "slots" (There is a
total of 32 task slots. The maximum factory default setting is 8.) .

The execution of multitask operation is started by activating it from the operation panel or by a dedicated
input signal, or by executing an instruction related to multitask operation.

The execution environment for multitasking is shown in Fig. 4-1.

Fig.4-1:Multitask slot environment

User base program

Multitask slot environment

External variables, user-defined external variables

Slot 1

XRUN
XLOAD
XRST
XSTP

：：：：：
P

ro
gr

am

Slot 2 Slot n

P
ro

gr
am

P
ro

gr
am

XCLR

Execution of a program
A program is executed by placing it in an item called a "slot" and running it. For example, when running
one program (when normally selecting and running the program with the controller's operation panel), the
controller system unconditionally places the program selected with the operation panel in slot 1.
-86 Multitask function

4MELFA-BASIC IV
4.2.2 Executing a multitask
Table 4-2:The multitask can be executed with the following three methods.

4.2.3 Operation state of each slot
The operation state of each slot changes as shown in Fig. 4-2 according to the operations and commands.
Each state can be confirmed with the robot status variable or external output signal.

Fig.4-2:Operation state of each slot

Types of execution Explanation

1 Execution from a program This method starts parallel operation of the programs from a random
position in the program using a MELFA-BASIC IV command. The pro-
grams to be run in parallel can be designated, and a program running in
parallel can be stopped.
This method is effective when selecting the programs to be run in paral-
lel according to the program flow.
The related commands include the XLOAD, XRUN, XSTP and XRST
commands. Refer to "4.11 Detailed explanation of command words" on
page 118 in this manual for details.

2 Execution from controller
operation panel or external
input/output signa

In this execution type, depending on the setting of the information of the
"SLT*" parameter, the start operation starts concurrent execution or con-
stant concurrent execution, or starts concurrent execution at error occur-
rence. It is necessary to set the "SLT*" parameter in advance.
This method does not rely on the program flow, and is effective for carry-
ing out simultaneous execution with a preset format, or for sequential
execution.

3 Executing automatically
when the power is turned
on

It is possible to start constant execution immediately after turning the
controller's power on. If ALWAYS is specified for the start condition of
the SLT* parameter, the program is executed in constant execution
mode immediately after the controller's power is turned on.
This eliminates the trouble of starting the programs in task slots used for
monitoring input/output signals from the PLC side.
In addition, it is possible to execute a program from within another pro-
gram that controls movement continuously. In this case, set the value of
the "ALWENA" parameter to 7 in order to execute X** instructions such
as XRUN and XLOAD, the SERVO instruction, and the RESET instruc-
tion.

Program
selection state

(PSA)

Waiting
(WAI)

Start

XRUN

Program reset

XRST

XRUN

Cycle stop

Stop

XSTP

Running
(RUN)

Start
Multitask function 4-87

4MELFA-BASIC IV
<About parameters related to task slots>
The parameters SLT1 to SLT32 contain information about the name of the program to be executed, operation
mode, start condition, and priority for each of the 32 task slots (set to 8 slots at the factory default setting).
Please refer to "5 Functions set with parameters" on page 306 for details.

*Designation format
Parameter name = 1. program name, 2. operation format, 3. starting conditions, 4. order of priority

*Various setting values and meanings

*Setting example
An example of the parameter settings for designating the following items in slot 2 is shown below.
Designation details) Program name : 5

Operation format : Continuous operation
Starting conditions : Always
Order of priority : 10
SLT2=5, REP, ALWAYS, 10

Item of parameter Default value Setting value Explanation
1. Program name SLT1: Program

selected on the
operation panel.
SLT2 to 32: Name
of the program to
be specified with a
parameter.

Possible to set a registered
program

Use the parameter to specify the execution of predeter-
mined programs in multitask operation. If the programs to
be executed vary depending on conditions, it is possible to
specify the program using the XLOAD and XRUN instruc-
tions in another program. The programs selected on the
operation panel are set if SLT1 is specified.

2. Operation format REP REP : Continuous operation If REP is specified, the program is executed again from the
top after the program ends when the final line of the pro-
gram is reached, or by execution of the END instruction.

CYC : One cycle operation If CYC is specified, the program ends after being executed
for one cycle and the selected status is canceled. Change
the SLOTON setting of the parameter if it is desired to keep
the program in the selected status. Please refer to the sec-
tion for SLOTON in "5 Functions set with parameters" on
page 306 for details.

 3. Starting conditions START START : Execution of a pro-
gram using the START but-
ton on the operation panel
or the I/O START signal

Select START when it is desired to start normally. Note1)

Note1) The start operation conducted from the operation panel or by sending the dedicated input signal
START will start the execution of programs of all the task slots whose start conditions are set to
"START" at the same time.
To start the program independently, start in slot units with the dedicated input signal (S1 START to
S32START). In this case, the line No. is preassigned to the same dedicated input/output parameter.
Refer to "6.3 Dedicated input/output" on page 371 in this manual for details on the assignment of the
dedicated input/output.

ALWAYS : Execution of a
program when the control-
ler's power is turned on

Use ALWAYS when it is desired to execute the program in
constant execution mode. Note, however, that it is not pos-
sible to execute movement instructions such as MOV dur-
ing constant execution of a program. Programs in constant
execution mode can be stopped via the XSTP instruction.
They cannot be stopped via the operation panel and exter-
nal input signals, or emergency stop. The operation mode
(REP/CYC) is ignored.

ERROR : Execution of a
program when the controller
is in error status

Specify ERROR when it is desired to execute a program in
case an error occurs. It is not possible to execute instruc-
tions for moving the robot, such as the MOV instruction.
The operation mode (REP/CYC) is one-cycle operation
(CYC) regardless of the setting value.

4. Order of priority
(number of lines exe-
cuted in priority)

1 1 to 31: Number of lines
executed at one time at mul-
titask operation

If this number is increased, the number of lines executed at
one time for the task slot is increased. For example, if 10 is
specified for SLT1, 5 for SLT2, and 1 for SLT3, then after 10
lines of the program specified in SLT1 have been executed,
five lines of the program specified in SLT2 are executed,
and then one line of the program specified in SLT3 is exe-
cuted. Afterward this cycle will be repeated.
4-88 Multitask function

4MELFA-BASIC IV
4.2.4 Precautions for creating multitask program
(1) Relationship between number of tasks and processing time

During multitask operation, it appears as if several robot programs are being processed concurrently. How-
ever, in reality, only one line is executed at any one time, and the processing switches from program to pro-
gram (it is possible to change the number of lines being executed at a time. See the section for the "SLTn"
parameter in "Setting Functions by Parameters" on page 247). This means that if the number of tasks
increases, the overall program execution time becomes longer. Therefore, when using multitask operation,
the number of tasks should be kept to a minimum. However, programs of other tasks executing movement
instructions (the MOV and MVS instructions) are processed at any time.

(2) Specification of the maximum number of programs executed concurrently
The number of programs to be run in parallel is set with parameter TASKMAX. (The default value is 8.) To
run more than 8 programs in parallel, change this parameter.

(3) How to pass data between programs via external variables
Data is passed between programs being executed in multitask operation via program external variables
such as M_00 and P_00 (refer to "4.3.22 External variables" on page 104) and the user-defined external
variables (refer to "4.3.24 User-defined external variables" on page 105). An example is shown below. In
this example, the on/off status of input signal 8 is judged by the program specified in task slot 2. Then this
program notifies the program specified in task slot 1 that the signal is turned on by means of the external
variable M_00.

(4) Confirmation of operating status of programs via robot status variables
The status of the program running with multitask can be referred to from any slot using the robot status vari-
ables (M_RUN, M_WAI, M-ERR).
 Example) M1 = M_RUN (2) The operation status of slot 2 is obtained.
Refer to "4.3.26 Robot status variables" on page 106 for details on the robot status variables.

(5) The program that operates the robot is basically executed in slot 1.
The program that describes the robot arm's movement, such as with the MOV commands, is basically set
and executed in slot 1. To run the program in a slot other than slot 1, the robot arm acquisition and release
command (GETM, RELM) must be used. Refer to "4.11 Detailed explanation of command words" on page
118 in this manual for details on the commands.

(6) How to perform the initialization processing via constantly executed programs
Programs specified in task slots whose start condition is set to ALWAYS are executed continuously even if
the operation mode is set to CYC. Therefore, in order to perform the initialization processing, they should be
programmed in such a way that the initialization processing is not executed more than once by jumping
within the program using the GOTO instruction, etc.

<Slot 1>
10 M_00=0 ; Substitute 0 in M_00
20 IF M_00=0 THEN 20 ; Wait for M_00 value to change from 0.
30 M_00=0 ; Substitute 0 in M_00
40 MOV P1 ; Proceed with the target work.
50 MOV P2
 :
100 GOTO 20 ; Repeat from line 20.

<Slot 2> (Program of signals and variables)
10 IF M_IN(8) <> 1 THEN 30 ; Branch to line 30 if input signal 8 is not ON.
20 M_00=1 ; Substitute 1 in M_00
30 MOV P1 ; Proceed with the target work.

 :
Multitask function 4-89

4

4MELFA-BASIC IV

4.2.5 Precautions for using a multitask program
(1) Starting the multitask

When starting from the operation panel or with the dedicated input signal START, the programs in all slots
for which the "start request execution" is set in the slot parameter start conditions will start simultaneously.
When starting with the dedicated input signals S1START to S32START, the program can be started in each
slot. In this case, the line No. is preassigned to the same dedicated input/output parameter. Refer to "6.3
Dedicated input/output" on page 371 for details on the assignment of the dedicated input/output.

(2) Display of operation status
The LEDs of the [START] and [STOP] switches on the operation panel and the dedicated input/output sig-
nals START and STOP display the operation conditions of programs specified in task slots for which the
start conditions are set to "START" in the corresponding "SLT*" parameter. If at least one program is operat-
ing, the LED of the [START] switch lights up and the dedicated output signal START turns on. If all the pro-
grams stop, the LED of the [STOP] switch is lit and the dedicated output signal STOP turns on.
The dedicated output signals S1START to S32START and S1STOP to S32STOP output the operation sta-
tus for each of the task slots. If it is necessary to know the individual operation status, signal numbers can
be assigned to the dedicated input/output parameters and their status checked with the status of the exter-
nal signals.
For a detailed description of assignment of dedicated input/output, please refer to "6.3 Dedicated input/out-
put" on page 371 of this manual.
The status of programs whose start condition is set to ALWAYS or ERROR does not affect the LEDs of the
[START] and [STOP] switches. The operation status of programs in constant execution mode can be
checked using the monitoring tool of the PC support software (optional).

Mechanism 1 is assigned to slot 1
In the default state, mechanism 1 (robot arm of standard system) is automatically assigned to slot 1.
Because of this, slot 1 can execute the movement command even without acquiring mechanism 1 (with-
out executing GETM command). However, when executing the movement command in a slot other than
slot 1, the slot 1 mechanism acquisition state must be released (RELM command executed), and the
mechanism must be acquired with the slot that is to execute the movement command (execute the GETM
command).
-90 Multitask function

4MELFA-BASIC IV
4.2.6 Example of using multitask
An example of the multitask execution is given in this section.

(1) Robot work details.
The robot programs are the "movement program" and "position data lead-in program".
The "movement program" is executed with slot 1, and the "position data lead-in program" is executed with
slot 2. If a start command is output to the sensor while the robot is moving, a request for data will be made to
the personal computer via the position data lead-in program. The personal computer sends the position data
to the robot based on the data request. The robot side leads in the compensation data via the position data
lead-in program.

<Process flow>

P1: Workpiece pickup position (Vacuum timer DLY 0.05)
P2: Workpiece placing position (Release timer DLY 0.05)
P3: Vision pre-position (Do not stop at penetration point CNT)
P4: Vision shutter position (Do not stop at penetration point CNT)
P_01: Vision compensation data
P20: Position obtained by adding P2 to vision compensation data (relative operation)

Workpiece pickup

Sensor start

Sensor recognition

Workpiece mounting

Operation program Position data lead
-in program

Data confirmation

Start

Sensor start

Personal computer

Position data
setting

Data reception

Background execution

P1

P4

P2

P20

RS-
232C

StartStart

Data reception

Data reception

Position data
transmission

Above mounting
position

<Slot1> <Slot2> <Sensor>

P1

X

Y

0

P2

P3 :No acceleration/deceleration

P4 : No acceleration/deceleration
Position to move vision
Multitask function 4-91

4

4MELFA-BASIC IV
(2) Procedures to multitask execution

*Procedure 1: Program creation
<1> Movement program (Program name: 1)
100 CNT 1 'Validate path connected movement
110 MOV P2,10 'Move to +10mm above P2
120 MOV P1,10 'Move to +10mm above P1
130 MOV P1 'Move to P1 workpiece pickup position
135 M_OUT(10)=0 'Pickup workpiece
140 DLY 0.05 'Timer 0.05 second
150 MOV P1,10 'Move to +10mm above P1
160 MOV P3 'Move to vision pre-position P3
165 SPD 500 'Set linear speed to 500mm/sec.
170 MVS P4 'Start vision lead-in with P4 passage
180 M_02#=0 'Start data lead-in with background process at interlock variable

 (M_01=1/M_02=0)
190 M_01#=1 'Start data load-in with background process
200 MVS P2,10 'Move to +10mm above P2
210 IF M_02#=0 THEN GOTO 210 'Wait for interlock variable M_02 to reach 1
220 P20=P2*P_01 'Add vision compensation P_01 to P20, and move to +10mm above
230 MOV P20,10 'Move to +10mm above P20
240 MOV P20 'Go to P20 workpiece placing position
245 M_OUT(10)=1 'Place workpiece
250 DLY 0.05 'Timer 0.05 second
260 MOV P20,10 'Move to +10mm above P20
270 CNT 0 'Invalidate path connected movement
280 END 'End one cycle

<2> Position data lead-in program (Program name: 2)
100 IF M_01#=0 THEN GOTO 100 'Wait for interlock variable M_01 to reach 1
105 OPEN "COM1:" AS #1 'Open RS-232-C line
110 DLY M_03# 'Hypothetical process timer (0.05 second)
115 PRINT #1,"SENS" 'Transmit character string "SENS" to RS-232-C (vision side)
117 INPUT #1,M1,M2,M3 'Wait to lead-in vision compensation value (relative data)
120 P_01.X=M1 'Substitute delta X coordinate
130 P_01.Y=M2 'Substitute delta Y coordinate
140 P_01.Z=0.0 '
150 P_01.A=0.0 '
160 P_01.B=0.0 '
170 P_01.C=RAD(M3) 'Substitute delta C coordinate
175 CLOSE 'Close RS-232-C line
180 M_01#=0 'Interlock variable M_01 = 0
190 M_02#=1 'Interlock variable M_02 = 0
200 END 'End process

*Procedure 2: Setting the slot parameters
Set the slot parameters as shown below.

*Procedure 3: Reflecting the slot parameters
 Turn the power OFF and ON to validate the slot parameters.

*Procedure 4: Starting
 Start the program 1 and program 2 operation by starting from the operation panel.

Parameters Program name Operation mode Operation format Number of executed lines
SLT1 1 REP START 1
SLT2 2 REP START 1
-92 Multitask function

 4MELFA-BASIC IV
4.3 Detailed specifications of MELFA-BASIC IV
In this section, detailed explanations of the MELFA-BASIC IV format and syntax such as configuration are
given, as well as details on the functions of each command word. The following explains the components
that constitute a statement.

(1) Program name
A program name can be specified using up to 12 characters. However, the operation panel display can dis-
play only up to four characters; it is therefore recommended to specify the program name using up to four
characters. Moreover, the characters that may be used are as follows.

If a program name is specified using more than four characters, the program cannot be selected from the
operation panel. In addition, if it is desired to use an external output signal to select a program to be exe-
cuted, the program name should be specified using the numbers. If a program is executed as a sub-pro-
gram via the CALLP instruction, more than four alphabetic characters may be used. However, such
programs may not be selected from the operation panel.

(2) Command statement
Example of constructing a statement
 10 MOV P1 WTH M_OUT(17)=1
 1) 2) 3) 4)

1) Line No. : Numbers for determining the order of execution within the program. Lines are exe-
cuted in ascending order.

2) Command word : Instructions for specifying the robot's movement and tasks
3) Data : Variables and numerical data necessary for each instruction
4) Appended statement: Specify these as necessary when adding robot tasks.

Class Usable characters
Alphabetic charac-

ters
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(Use uppercase characters only. If a program name is registered using lowercase characters, the program
may not be executed normally.)

Numerals 0 1 2 3 4 5 6 7 8 9
 Detailed specifications of MELFA-BASIC IV 4-93

4

4MELFA-BASIC IV
(3) Variable
The following types of variables can be used in a program.

Variable

System variable

System control variable

User control variable

User variable

Position type
variable

････Required data can be saved.

････This is predetermined by the variable name and saved data.

････This is determined by the variable name and usage purpose.

････The robot's orthogonal coordinate value is saved. The variable name starts with "P".

　　Example) MOV P1: The robot moves to the position saved in variable name P1.

････The robot's joint angle is saved. The variable name starts with "J".

　　Example) MOV J1: The robot moves to the position saved in variable name J1.

････A numeric value (integer, real value, etc.) is saved. The variable name starts with "M".

　　Example) M1 = 1: The value 1 is substituted in variable name M1.

････A character string is saved. A "$" is added to the end of the variable name.

　　Example) C1$ = "ERROR": the character string "ERROR" is substituted in variable name C1$.

Note 1) Each variable is categorized into the following classes.

････This can only be referred to with the program.

　　Example) P_CURR: The robot's current position is
 always saved.

････This can be referred to and substituted in the program.

　　Note that the input signals can only be referred to.

Example) M_OUT(17) = 1: Turns ON output signal bit 17.
 M1=M_IN(20): Substitutes input signal bit 20 in the
 arithmetic variable M1.

Note 1)

Note 1)

Note 1)

Joint type variable

Numeric value type
variable

Character type
variable
-94 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.1 Statement
A statement is the minimum unit that configures a program, and is configured of a command word and data
issued to the word.
Example) MOV P1
 Command word Data
 Command statement

4.3.2 Appended statement
Command words can be connected with an appended statement, but this is limited to movement com-
mands.
This allows some commands to be executed in parallel with a movement command.
Example) MOV P1 WTH M_OUT (17) = 1
 Command statement Appended statement Command statement
Please refer to Page 221, " WTH (With)" or Page 222, " WTHIF (With If)", as well as each of the movement
instructions (MOV, MVS, MVR, MVR2, MVR3, MVC, MVA) for detailed descriptions.

4.3.3 Line
A line is consisted of a line No. and one command statement. Note that if an appended statement is used,
there will be two command statements.
One line can have up to 127 characters. (This does not include the last character of the line.)

4.3.4 Line No.
Line Nos. should be in ascending order, starting from the first line, in order for the program to run properly.
When a program is stored in the memory, it is stored in the order of the line Nos.
Line Nos. can be any integer from 1 to 32767.

4.3.5 Label
A label is a user-defined name used as a marker for branching.
A label can be created by inserting an asterisk (*) followed by uppercase or lowercase alphanumeric char-
acters after the line No. The head of the label must be an alphabetic character, and the entire label must be
within eight characters long. If a label starting with the alphabetic character L is described after the asterisk,
an underscore (_) can be used immediately after the character.
* Characters that cannot be used in labels:
•Reserved words (DLY, HOPEN, etc.)
•Any name that begins with a symbol or numeral
•Any name that is already used for a variable name or function name

Example) 10 GOTO *LBL
 100 *LBL

Only one command statement per line
Multiple command statements cannot be separated with a semicolon and described on one line as done
with the general BASIC.

Direct execution if line No. is not assigned
If an instruction statement is described without a line number on the instruction screen of the T/B, the
statement is executed as soon as it is input. This is called direct execution. In this case, the command
statement will not be saved in the memory, but the value substitution to the variable will be saved.
 Detailed specifications of MELFA-BASIC IV 4-95

4

4MELFA-BASIC IV
4.3.6 Types of characters that can be used in program
The character which can be used within the program is shown in Table 4-3. However, there are restrictions
on the characters that can be used in the program name, variable name and label name. The characters
that can be used are indicated by O, those that cannot be used are indicated by X, and those that can be
used with restrictions are indicated by @.

Table 4-3:List of characters that can be used

Refer to Page 93, "(1) Program name" for detail of program names, refer to Page 101, "4.3.15 Variables" for
detail of variable names, and refer to Page 95, "4.3.5 Label" for detail of label names.

Class Available characters Program name Variable name Label name

Alphabetic
characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z O O O

a b c d e f g h i j k l m n o p q r s t u v w x y z X @Note1)

Note1) Alphanumerics in variable names and label names in the program are automatically converted into
uppercase characters.

@Note 1)

Numerals 0 1 2 3 4 5 6 7 8 9 O @Note2)

Note2) Only alphabetical characters can be used as the first character of the variable name. Numerals can
be used as the second and succeeding characters.

O

Symbols " ’ & () * + - . , / : ; = < > ? @ ` [\] ^ { } ~ | X X X

! # $ % X Available for
type
specification

X

_(Underscore) X @Note3)

Note3) They can be used as the second and succeeding characters. Any variable having an underscore
(_) as the second character becomes an external variable.

@Note4)

Note4) If an underscore (_) is used in a label name, start with an asterisk (*) followed by alphabetic
character "L."

Spaces Space character X X X
-96 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.7 Characters having special meanings
(1) Uppercase and lowercase identification

Lowercase characters will be resigned as lowercase characters when they are used in comments or in char-
acter string data. In all other cases, they will be converted to uppercase letters when the program is read.

(2) Underscore (_)
The underscore is used for the second character of an identifier (variable name) to identify the variable as
an external variable between programs. Refer to Page 104, "4.3.22 External variables" for details.
Example) P_CURR, M_01, M_ABC

(3) Apostrophe (')
The apostrophe (') is used at the head of all comments lines. When assigned at the head of a character it
is a substitute for the REM statement.
Example) 100 MOV P1 'GET ;GET will be set as the comment.

 150 'GET PARTS ;This is the same as 150 REM GET PARTS.

(4) Asterisk (*)
The asterisk is placed in front of label names used as the branch destination.
Example) 200 *CHECK

(5) Comma (,)
The comma is used as a delimiter when there are several parameters or suffixes.
Example) P1=(200, 150,)

(6) Period (.)
The period is used for obtaining certain components out of multiple data such as decimal points, position
variables and joint variables.
Example) M1 = P2.X ; Substitute the position variable P2.X coordinate element in numeric variable M1.

(7) Space
The space character, when used as part of a character string constant or within a comments line, is inter-
preted as a character. The space character is required as a delimiter immediately after a line No. or a com-
mand word, and between data items. In the [Format] given in section Page 118, "4.11 Detailed explanation
of command words", the space is indicated with a "[] " where required.
 Detailed specifications of MELFA-BASIC IV 4-97

4

4MELFA-BASIC IV
4.3.8 Data type
In MELFA BASIC IV it is possible to use four data types: numerical values, positions, joints, and character
strings. Each of these is called a "data type." The numerical value data type is further classified into real
numbers and integers. There can be variables and constants of each data type.

Example)
Numeric value type M1 [Numeric value variables],1 [Numeric value constants] (Integer),

1.5 [Numeric value constants](Real number)
Position type P1 [Position variables], (0,0,0,0,0,0) (0,0) [Position constants]
Joint type J1 [Joint variables], (0,0,0,0,0,0) [Joint constants]
Character type C1$ [Character string variables], "ABC" [Character string constants]

4.3.9 Constants
The constant types include the numeric value constant, character string constant, position constant, joint
constant and angle constant.

4.3.10 Numeric value constants
The syntax for numeric value constants is as follows. Numerical constants have the following characteris-
tics.

(1) Decimal number
Example) 1, 1.7, -10.5, +1.2E+5 (Exponential notation)
Valid range -1.7976931348623157e+308 to 1.7976931348623157e+308

(2) Hexadecimal number
Example) &H0001, &HFFFF
Valid range &H0000 to &HFFFF

(3) Binary number
Example) &B0010, &B1111
Valid range &B0000000000000000 to &B1111111111111111

(4) Types of constant
The types of constants are specified by putting symbols after constant characters.
Example) 10% (Integer), 1.0005! (Single-precision real number), 10.000000003# (Double-precision real
number)

4.3.11 Character string constants
String constants are strings of characters enclosed by double quotation marks (").
Example) "ABCDEFGHIJKLMN" "123"

Data type
Position type

Joint type

Character type

Real number type

Integer typeNumeric value type

Constants

Numeric value constants

Character string constants

Position constants

Joint constants

Angle constants

Up to 127 characters for character string
The character string can have up to 127 characters, including the line No. and double quotations.
Enter two double quotation marks successively in order to include the double quotation mark itself in a
character string. For the character string AB"CD, input "AB""CD".
-98 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.12 Position constants
The syntax for position constants is as shown below. Variables cannot be described within position con-
stants.

Example)
 P1=(300, 100, 400, 180, 0, 180, 0, 0) (7, 0)
 P2=(0, 0, -5, 0, 0, 0) (0, 0) [A case where there is no traveling axis data]
 P3=(100, 200, 300, 0, 0, 90) (4, 0) [A case of a 4-axis horizontal multi-joint robot]

(1) Coordinate, posture and additional axis data types and meanings
[Format] X, Y, Z, A, B, C , L1, L2
[Meaning] X, Y, Z: coordinate data. The position of the tip of the robot's hand in the XYZ coordinates.

 (The unit is mm.)
A, B, C: posture data. This is the angle of the posture. (The unit is deg.) Note1)

L1, L2: additional axis data. These are the coordinates for additional axis 1 and additional axis 2,
respectively. (The unit is mm or deg.)
Note1) The T/B and Personal computer support software display the unit in deg; however, the unit

of radian is used for substitution and calculation in the program.

(2) Meaning of structure flag data type and meanings
[Format] FL1, FL2
[Meaning] FL1: Posture data

FL2: Multi-rotation data information - Default value = 0 (The range is 0 to +4294967295 ... Infor-
mation for eight axes is held with a 1-axis 4-bit configuration.)Two types of screens are avail-
able for the PC: screens that display the number of rotations for each axis (-8 to 7) in
decimal and those that display the number of rotations for each axis in hexadecimal..

(100, 100, 300, 180, 0, 180, 0, 0) (7, 0)

C axis
B axis Posture axes of the robot (degree)
A axis
Z axis
Y axis Coordinate values of the hand tip (mm)
X axis

structure flag 2 (multi-rotation data)
structure flag 1 (posture data)
L2 axis (additional axis 2)
L1 axis (additional axis 1)

 7 = & B 0 0 0 0 0 1 1 1 (Binary number)
 1/0=NonFlip/Flip
 1/0=Above/Below
 1/0=Right/Left

 0 = & H 0 0 0 0 0 0 0 0 (Hexadecimal number)
 1 axis
 2 axis
 3 axis

 4 axis
 5 axis
 6 axis (Most frequently used)
 7 axis
 8 axis

-900 -540 -180 0 180 540 900

・・・
-2
（E）

-1
（F） 0 1 2 ・・・

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data
 Detailed specifications of MELFA-BASIC IV 4-99

4

4MELFA-BASIC IV
4.3.13 Joint constants
The syntax for the joint constants is as shown below

Example)
6 axis robot J1 = (0, 10, 80, 10, 90, 0)
6 axis + Additional axis J1 = (0, 10, 80, 10, 90, 0, 10, 10)
5 axis robot J1 = (0, 10, 80, 0, 90, 0)
5 axis + Additional axis J1 = (0, 10, 80, 0, 90, 0, 10, 10)
4 axis robot J1 = (10, 20, 90, 0)
4 axis + Additional axis J1 = (10, 20, 90, 0, , , 10, 10)

(1) Axis data format and meanings
[Format] J1,J2,J3,J4,J5,J6,J7,J8
[Meaning] J1 to J6: Robot axis data (Unit is mm or deg.)

J7, J8: Additional axis data, and may be omitted (optional).
(Unit is mm or deg. Depending on the parameter setting.
The unit is mm, not degrees, if the J3 axis of a horizontal multi-joint type robot is a direct-driven
axis.

4.3.14 Angle value
The angle value is used to express the angle in "degrees" and not in "radian".

If written as 100DEG, this value becomes an angle and can be used as an argument of trigonometric func-
tions.

Example) SIN(90DEG)----A 90 degree sine is indicated.

Designation of axis No.
1. There is no need to describe the coordinate and posture data for all eight axes. However, if omitted, the

following axis data will be processed as undefined.
For a 4-axis robot (X,Y,Z,C axis configuration), describe as (X, Y, Z, , , C) or (X,Y,Z,0,0,C).

2. To omit all axes,insert at least one ","(comma), such as (,).

Use of variables in position element data
The coordinate, position, additional axis data and structure flag data are called the position element data.
A variable cannot be contained in the position element data that configures the position constant.

Omitting the structure flag data
If the structure flag data is omitted, the default value will be applied.((7,0) Varies depending on the
machine model.)

 (10, -20, 90, 0, 90, 0, 0, 0)

J8 axis (additional axis 2)
J7 axis (additional axis 1)
J6 axis
J5 axis

J3 axis
J2 axis
J1 axis

J4 axis

Use of variables in joint element data
The axis data is called the joint element data.
A variable cannot be contained in the joint constant data that configures the joint constant.
-100 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.15 Variables
A variable name should be specified using up to eight characters.
The variable types include the numeric value type, character string type, position type, joint type and I/O
type. Each is called a "variable type". The variable type is determined by the head character of the identifier
(variable name).
The numeric value type can be further classified as integer type, single-precision real number type, or dou-
ble-precision real number type.
The following two types of data valid ranges are used.
1. Local variable valid only in one program
2. Robot status variable, program external variable and user-defined external variable valid over programs.

(The user-defined external variable has a _ for the second character of the variable name. Refer to Page
104, "4.3.22 External variables" for details.)

Note 1)

Numeric value type Integer type

Single-precision real number typeCharacter string type

Double-precision real number typePosition type

I/O type

Joint type

(Start with a characters
other than C, P, or J.)

(Starts with C)

(Starts with P)

(Starts with J)

Variables

External variables

Types of variable

Local variable (valid only within the program)

System status variables

Program External Variables

User-defined External Variables

P_CURR, M_IN , etc.

P_00, M_00 , etc.

P1, M1 , etc.

P_100, M_100 , etc.

Note 1) The identifiers include those determined by the robot status variable
 (M_IN,M_OUT, etc.), and those declared in the program with the DEFIO command.

Variables are not initialized
The variables will not be cleared to zero when generated, when the program is loaded, or when reset.
 Detailed specifications of MELFA-BASIC IV 4-101

4

4MELFA-BASIC IV
4.3.16 Numeric value variables
Variables whose names begin with a character other than P, J, or C are considered numeric value variables.
In MELFA-BASIC IV, it is often specified that a variable is an numeric value variable by placing an M at the
head. M is the initial letter of mathematics.
Example) M1 = 100
 M2! = -1.73E+10
 M3# = 0.123
 ABC = 1

1) It is possible to define the type of variable by attaching an numeric value type indicator at the end of
the variable name. If it is omitted, the variable type is assumed to be of the single-precision real num-
ber type.

2) Once the type of a variable is registered, it can only be converted from integer to single-precision real
number. For example, it is not possible to convert the type of a variable from integer to double-preci-
sion real number, or from single-precision real number to double-precision real number.

3) It is not possible to add an numeric value type indicator to an already registered variable. Include the
type indicator at the end of the variable name at the declaration when creating a new program.

4) If the value is exceeded during a single precision = double precision execution, an error will occur.

Table 4-4:Range of numeric value variable data

4.3.17 Character string variables
A character string variable should start with C and end with "$." If it is defined by the DEF CHAR instruction,
it is possible to specify a name beginning with a character other than C.

Example) C1$ = "ABC"
CS$ = C1$
DEF CHAR MOJI
MOJI = "MOJIMOJI"

4.3.18 Position variables
Variables whose names begin with character P are considered position variables. If it is defined by the DEF
POS instruction, it is possible to specify a name beginning with a character other than P. It is possible to ref-
erence individual coordinate data of position variables. In this case, add "." and the name of a coordinate
axis, e.g. "X," after the variable name.

P1.X, P1.Y, P1.Z, P1.A, P1.B P1.C, P1.L1, P1.L2

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG function to convert it to
degrees.

Example) P1 = PORG
DIM P3(10)
M1 = P1. X (Unit : mm)
M2 = DEG(P1. A) (Unit : degree)
DEG POS L10
MOV L10

Numeric value type suffix Meaning

% Integer

! Single-precsion real number type

Double-precsion real number type

Type Range

Integer type -32768 to 32767

Single-precision real number type -3.40282347e+38 to 3.40282347e+38 Note)
E expresses a power of 10.Double-precision real number

type
 -1.7976931348623157e+308 to 1.7976931348623157e+308
-102 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.19 Joint variables
A character string variable should start with J. If it is defined by the DEF JNT instruction, it is possible to
specify a name beginning with a character other than J.
It is possible to reference individual coordinate data of joint variables.
In this case, add "." and the name of a coordinate axis, e.g. "J1," after the variable name.

JDATA.J1, JDATA.J2, JDATA.J3, JDATA.J4, JDATA.J5, JDATA.J6, JDATA.J7, JDATA.J8

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG function to convert it to
degrees.

Example) JSTARAT = (0, 0, 90, 0, 90, 0, 0, 0)
 JDATA = JSTART
 DIM J3 (10)
 M1 = J1.J1 (Unit : radian)
 M2 = DEG (J1.J2)
 DEF JNT K10
 MOV K 10

4.3.20 Input/output variables
The following types of input/output variables are available. They are provided beforehand by the robot sta-
tus variables.

Please refer to the robot status variables Page 248, " M_IN/M_INB/M_INW", Page 254, " M_OUT/M_OUTB/
M_OUTW", and Page 244, " M_DIN/M_DOUT".

4.3.21 Array variables
Numeric value variables, character string variables, position variables, and joint variables can all be used in
arrays. Designate the array elements at the subscript section of the variables. Array variables should be
declared with the DIM instruction. It is possible to use arrays of up to three dimensions.

Example) Example of definition of an array variable
DIM M1 (10) Single-precision real number type
DIM M2% (10) Integer type
DIM M3 ! (10) Single-precision real number type
DIM M4# (10) Double-precsion real number type
DIM P1 (20)
DIM J1 (5)
DIM ABC (10, 10, 10)

The subscript of an array starts from 1.
However, among the robot status variables, the subscript starts from 0 for individual input/output signal vari-
ables (M_IN, M_OUT, etc.) only.
 Whether it is possible to secure sufficient memory for the variable is determined by the free memory size.

Input/output variables name Explanation

M_IN For referencing input signal bits

M_INB For referencing input signal bytes (8-bit signals)

M_INW For referencing input signal words (16-bit signals)

M_OUT For referencing/assigning output signal bits

M_OUTB For referencing/assigning output signal bytes (8-bit signals)

M_OUTW For referencing/assigning output signal words (16-bit signals)

M_DIN For referencing input registers for CC-Link

M_DOUT For referencing output registers for CC-Link
 Detailed specifications of MELFA-BASIC IV 4-103

4

4MELFA-BASIC IV
4.3.22 External variables
External variables have a "_" (underscore' for the second character of the identifier (variable name). (It is
necessary to register user-defined external variables in the user base program.) The value is valid over mul-
tiple programs. Thus, these can be used effectively to transfer data between programs.
There are four types of external variables, numeric value, position, joint and character, in the same manner
as the Page 98, "4.3.8 Data type". The following three types of external variables are available.

Table 4-5:Types of external variables

4.3.23 Program external variables
Table 4-6 lists the program external variables that have been prepared for the controller in advance.As
shown in the table, the variable name is determined, but the application can be determined by the user.

Table 4-6:Program external variables

Note) The software version of the controller is J1 or later, the program external variable was extended.
When you use the extension, change the following parameter.

External variables Explanation Example

Program external variables Types of external variables P_01,M_01,P_100(1), etc.

User-defined external variables The user can determine the name freely. Declare the vari-
ables using the DEF POS, DEF JNT, DEF CHAR, or DEF
INTE/FLOAT/DOUBLE instructions in the user base program.

P_GENTEN,M_MACHI

Robot status variables
(System status variables)

The robot status variables are controlled by the system, and
their usage is determined in advance.

M_IN,M_OUT,P_CURR,M_PI,
etc.

Data type Variable name Qty. Remarks

Position P_00 to P_19
P_20 to P_39 Note)

20
20

Position array (No. of elements 10) P_100() to P_104()
P_105() to P_109()
Note)

5
5

Use the array element in the first dimensions.

Joint J_00 to J_19
J_20 to J_39 Note)

20
20

Joint array (No. of elements 10) J_100() to J_104()
J_105() to J_109()
Note)

5
5

Use the array element in the first dimensions.

Numeric value M_00 to M_19
M_20 to M_39 Note)

20
20

The data type of the variables is double-precision real
numbers.

Numeric value array
(No. of elements 10)

M_100() to M_104()
M_105() to M_109()
Note)

5
5

Use the array element in the first dimensions. The data
type of the variables is double-precision real numbers.

Character string C_00 to C_19
C_20 to C_39 Note)

20
20

Character string array
(No. of elements 10)

C_100() to C_104()
C_105() to C_109()
Note)

5
5

Use the array element in the first dimensions.

Parameter Value Means

PRGGBL 0:Standard (default)
1:Extension

Sets "1" to this parameter, and turns on the controller power again, then the capacity
of each program external variable will double.
However, if a variable with the same name is being used as a user-defined external
variable, an error will occur when the power is turned ON, and it is not possible to
expand. It is necessary to correct the user definition external variable.
-104 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
4.3.24 User-defined external variables
If the number of program external variables listed above is insufficient or it is desired to define variables with
unique names, the user can define program external variables using a user base program.

(1) By defining a variable having an underscore (_) for the second character of the identifier with the DEF
statement in the base program (Note), that variable will be handled as an external variable.

(2) It is not necessary to execute the user base program.
(3) Write only the lines necessary for declaring variables in the user base program.
(4) If it is desired to define array variables in a user base program and use them as external variables, it

is necessary to declare them using the DIM instruction again in the program in which they will be
used. It is not necessary to declare single variables again.

Example) Example of using user-defined external variables

On the main program (program name 1) side

On the user base program (program name UBP) side

4.3.25 Creating User Base Programs

User base programs can be created by using either the teaching box or Personal Computer Support Soft-
ware, in the same way as the normal programs. To create user base programs using the Personal Computer
Support Software, please follow the procedure below:

1) Store a program created as a user base program on your personal computer.
2) Start Program Manager from Program Editor of the Personal Computer Support Software.
3) Specify the program created in step 1) above as the transfer source and the robot as the transfer des-

tination in Program Manager, and perform a "copy" operation. At this point, uncheck the "Position
Variables" check box so that only the "Instructions" check box is checked.

4) When the copy operation is complete, perform the operation in step 3) above again. Uncheck the
"Instructions" check box and check the "Position Variables" check box this time, and then execute.

Procedure before using user-defined external variables
1) First, write a user base program. Use "_" for the second character of the variables.
2) Register the program name in the "PRGUSR" parameter and turn the power off and on again.
3) Write a normal program using the user-defined external variables.

10 DIM P_100(10) ' Re-declaration of external variables
20 DIM M_200(10) ' Re-declaration of external variables
30 MOV P_100(1)
40 IF M_200(1) =1 THEN HLT

10 DEF POS P_900, P_901, P_902, P_903
20 DIM P_100(10) ' It is necessary to declare this variable again in the program in which they

will be used.
30 DEF INTE M_100
40 DIM M_200(10) ' It is necessary to declare this variable again in the program in which they will

be used.

Parameter name Value

PRGUSR UBP

Note) What is a user base program?
A user base program is written when user-defined external variables are to be used, but it is not neces-
sary to execute the program. Simply create a program containing the necessary declaration lines and reg-
ister it in the "PRGUSR" parameter. After changing the parameter, turn the power off and on again.

How to register a new user base program using the Personal Computer Support Software
Using the Personal Computer Support Software, write only instructions to the robot controller first, and
write only position data next.
 Detailed specifications of MELFA-BASIC IV 4-105

4

4MELFA-BASIC IV
4.3.26 Robot status variables
The available robot status variables are shown in Table 4-7. As shown in the table, the variable name and
application are predetermined.
The robot status can be checked and changed by using these variables.

Table 4-7:Robot status variables

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

1 P_CURR Mechanism No.(1 to 3) Current position (XYZ) R Position type 268

2 J_CURR Mechanism No.(1 to 3) Current position (joint) R Joint type 234

3 J_ECURR Mechanism No.(1 to 3) Current encoder pulse position R Joint type 236

4 J_FBC Mechanism No.(1 to 3) Joint position generated based on the feedback
value from the servo

R Joint type 237

5 J_AMPFBC Mechanism No.(1 to 3) Current feedback value R Joint type 237

6 P_FBC Mechanism No.(1 to 3) XYZ position generated based on the feedback
value from the servo

R Position type 269

7 M_FBD Mechanism No.(1 to 3) Distance between commanded position and
feedback position

R Position type 246

8 M_CMPDST Mechanism No.(1 to 3) Amount of difference between a command value
and the actual position when the compliance
function is being performed

R Single-precision
real number type,

mm

239

9 M_CMPLMT Mechanism No.(1 to 3) This is used to recover from the error status by
using interrupt processing when an error has
occurred while the command value in the
compliance mode attempted to exceed the limit.

R Integer type 241

10 P_TOOL Mechanism No.(1 to 3) Currently designated tool conversion data R Position type 270

11 P_BASE Mechanism No.(1 to 3) Currently designated base conversion data R Position type 266

12 P_NTOOL Mechanism No.(1 to 3) System default value (tool conversion data) R Position type 270

13 P_NBASE Mechanism No.(1 to 3) System default value (base conversion data) R Position type 266

14 M_TOOL Mechanism No.(1 to 3) Tool No. (1 to 4) RW Integer type 261

15 J_COLMXL Mechanism No.(1 to 3) Difference between estimated torque and actual
torque

R Joint type, % 235

16 M_COLSTS Mechanism No.(1 to 3) Impact detection status (1: Colliding, 0: Others) R Integer type 242

17 P_COLDIR Mechanism No.(1 to 3) Movement direction at collision R Position type 267

18 M_OPOVRD None Speed override on the operation panel (0 to 100%) R Integer type, % 249

19 M_OVRD Slot No.(1to 32) Override in currently designated program (0 to
100%)

R Integer type, % 249

20 M_JOVRD Slot No.(1to 32) Currently designated joint override (0 to 100%) R Integer type, % 249

21 M_NOVRD Slot No.(1to 32) System default value (default value of M_OVRD)
(%)

R Single-precision
real number type, %

249

22 M_NJOVRD Slot No.(1to 32) System default value (default value of M_JOVRD)
(%)

R Single-precision
real number type, %

249

23 M_WUPOV Mechanism No.(1 to 3) Warm-up operation override (50 to 100%) R Single-precision
real number type, %

263

24 M_WUPRT Mechanism No.(1 to 3) Time until the warm-up operation status is
canceled (sec.)

R Single-precision
real number type,

sec

264

25 M_WUPST Mechanism No.(1 to 3) Time until the warm-up operation status is set
again (sec.)

R Single-precision
real number type,

sec

265

26 M_RATIO Slot No.(1to 32) Fraction of the current movement left before
reaching the target position (%)

R Integer type, % 255

27 M_RDST Slot No.(1to 32) Remaining distance left of the current movement
(only the three dimensions of X, Y, and Z are taken
into consideration: mm)

R Single-precision
real number type,

mm

256
-106 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
28 M_SPD Slot No.(1to 32) Current specified speed (valid only for linear/
circular interpolation)

R Single-precision
real number type,

mm/s

259

29 M_NSPD Slot No.(1to 32) System default value (default value of M_SPD)
(mm/s)

R Single-precision
real number type,

mm/s

259

30 M_RSPD Slot No.(1to 32) Current directive speed (mm/s) R Single-precision
real number
type,mm/s

259

31 M_ACL Slot No.(1to 32) Current specified acceleration rate (%) R Single-precision
real number type, %

238

32 M_DACL Slot No.(1to 32) Current specified deceleration rate (%) R Single-precision
real number type, %

238

33 M_NACL Slot No.(1to 32) System default value (default value of M_ACL) (%) R Single-precision
real number type, %

238

34 M_NDACL Slot No.(1to 32) System default value (default value of M_DACL)
(%)

R Single-precision
real number type, %

238

35 M_ACLSTS Slot No.(1to 32) Current acceleration/deceleration status
0 = Stopped, 1 = Accelerating, 2 = Constant
speed, 3=Decelerating

R Integer type 238

36 M_SETADL Axis No.(1 to 8) Specify the acceleration/deceleration time ratio
(%) of each axis. Software version J1 or later

RW Single-precision
real number type, %

257

37 M_LDFACT Axis No.(1 to 8) The load factor of the servo motor of each axis.
(%)
Software version J1 or later

R Single-precision
real number type, %

250

38 M_RUN Slot No.(1to 32) Operation status (1: Operating, 0: Not operating) R Integer type 256

39 M_WAI Slot No.(1to 32) Pause status (1: Pausing, 0: Not pausing) R Integer type 262

40 M_PSA Slot No.(1to 32) Specifies whether or not the program selection is
possible in the specified task slot. (1: Selection
possible, 0: Selection not possible, in pause
status)

R Integer type 255

41 M_CYS Slot No.(1to 32) Cycle operation status (1: Cycle operation, 0: Non-
cycle operation)

R Integer type 243

42 M_CSTP None Cycle stop operation status (1: Cycle stop, 0: Not
cycle stop)

R Integer type 243

43 C_PRG Slot No.(1to 32) Execution program name R Character string
type

232

44 M_LINE Slot No.(1to 32) Currently executed line No. R Integer type 250

45 M_SKIPCQ Slot No.(1to 32) A value of 1 is input if execution of an instruction is
skipped as a result of executing the line that
includes the last executed SKIP command,
otherwise a value of 0 is input.

R Integer type 257

46 M_BRKCQ None Result of the BREAK instruction
(1: BREAK, 0: None)

R Integer type 239

47 M_ERR None Error occurring (1: An error has occurred, 0: No
errors have occurred)

R Integer type 245

48 M_ERRLVL None Reads an error level.
caution/low/high1/high2ÅÅ1/2/3/4

R Integer type 245

49 M_ERRNO None Reads an error number. R Integer type 245

50 M_SVO Mechanism No.(1 to 3) Servo motor power on (1: Servo power on, 0:
Servo power off)

R Integer type 259

51 M_UAR Mechanism No.(1 to 3) Bit data.
(1: Within user specified area, 0: Outside user
specified area)
(Bit 0:area 1 to Bit 7:area 8)

R Integer type 262

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
 Detailed specifications of MELFA-BASIC IV 4-107

4

4MELFA-BASIC IV
52 M_IN Input No.(0 to 32767) Use this variable when inputting external input
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

R Integer type 248

53 M_INB Input No.(0 to 32767) Use this variable when inputting external input
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

R Integer type 248

54 M_INW Input No.(0 to 32767) Use this variable when inputting external input
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

R Integer type 248

55 M_OUT Output No.(0 to 32767) Use this variable when outputting external output
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

RW Integer type 254

56 M_OUTB Output No.(0 to 32767) Use this variable when outputting external output
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 254

57 M_OUTW Output No.(0 to 32767) Use this variable when outputting external output
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 254

58 M_DIN Input No.(from 6000) CC-Link's remote register: Input register R Integer type 244

59 M_DOUT Output No.(from 6000) CC-Link's remote register: output register RW Integer type 244

60 M_HNDCQ Input No.(1 to 8) Returns a hand check input signal. R Integer type 247

61 P_SAFE Mechanism No.(1 to 3) Returns an safe point position. R Position type 269

62 J_ORIGIN Mechanism No.(1 to 3) Returns the joint coordinate data when setting the
origin.

R Joint type 237

63 M_OPEN File No.(1 to 8) Returns the open status of the specified file
or the communication line.

R Integer type 253

64 C_MECHA Slot No.(1 to 32) Returns the type name of the robot. R Character string
type

232

65 C_MAKER None Shows manufacturer information (a string of up to
64 characters).

R Character string
type

231

66 C_USER None Returns the content of the parameter
"USERMSG."(a string of up to 64 characters).

R Character string
type

233

67 C_DATE None Current date expressed as "year/month/date". R Character string
type

231

68 C_TIME None Current time expressed as "time/minute/second". R Character string
type

233

69 M_BTIME None Returns the remaining battery capacity time
(hours).

R Integer type, Time 239

70 M_TIMER Timer No. (1 to 8) Constantly counting. Value can be set. [ms]
It is possible to measure the precise execution
time by using this variable in a program.

RW Single-precision
real number type

260

71 P_ZERO None A variable whose position coordinate values (X, Y,
Z, A, B, C, FL1, FL2) are all 0

R Position type 270

72 M_PI None Circumference rate (3.1415...) R Double-precision
real number type

254

73 M_EXP None Base of natural logarithm (2.71828...) R Double-precision
real number type

245

74 M_G None Specific gravity constant (9.80665) R Double-precision
real number type

246

75 M_ON None 1 is always set R Integer type 252

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
-108 Detailed specifications of MELFA-BASIC IV

 4MELFA-BASIC IV
76 M_OFF None 0 is always set R Integer type 252

77 M_MODE None Contains the status of the key switch of the
operation panel TEACH/AUTO(OP)/AUTO(Ext.)(1/
2/3)

R Integer type 251

Note1) Mechanism No.1 to 3, Specifies a mechanism number corresponding to the multitask processing function.
Slot No..........................1 to 32, Specifies a slot number corresponding to the multitask function.
Input No........................0 to 32767: (theoretical values). Specifies a bit number of an input signal.
Output No.0 to 32767: (theoretical values). Specifies a bit number of an output signal.

Note2) R Only reading is possible.
RW................................ Both reading and writing are possible.

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
 Detailed specifications of MELFA-BASIC IV 4-109

4

4MELFA-BASIC IV
4.4 Logic numbers
Logic numbers indicate the results of such things as comparison and input/output.
If not 0 when evaluated with an Integer, then it is true, and if 0, it is false. When substituted, if true, 1 is
assigned. The processes that can use logic numbers are shown in Table 4-8.

Table 4-8:Values corresponding to true or false logic number

4.5 Functions
A function carries out a specific operation for an assigned argument, and returns the result as a numeric
value type or character string type. There are built-in functions, that are preassembled, and user-defined
functions, defined by the user.

(1) User-defined functions
The function is defined with the DEF FN statement.

Example) DEF FNMADD(MA, MB)=MA+MB
...........The function to obtain the total of two values is defined with FNMADD.

The function name starts with FN, and the data type identification character (C: character string, M: numeric
value, P: position, J: joint) is described at the third character. The function is designated with up to eight
characters.

(2) Built-in functions
A list of assembled functions is given in Table 4-9.

Table 4-9:List of built-in functions

Items expressed with logic number "1" Items expressed with logic number "0"
*Result of cmparison operation (if true)
*Result of logic operation (if true)
*Switch ON
*Input/output signal ON
*Hand open (supply current to the hand)
*Settings for enable/valid such as for interrupts

*Result of comparison operation (if false)
*Result of logic operation (if false)
*Switch OFF
*Input/output signal OFF
*Hand close (do not supply current to the hand)
*Settings for disable/invalid such as for interrupts

Class Function name (format) Functions Page Result
Numeric func-
tions

ABS (<Numeric expression>) Produces the absolute value 272 Numeric
valueCINT (<Numeric expression>) Rounds off the decimal value and converts into an integer. 277

DEG (<Numeric expression:radian>) Converts the angle unit from radian (rad) to degree (deg). 280
EXP (<Numeric expression>) Calculates the value of the expression's exponential function 281
FIX (<Numeric expression>) Produces an integer section 282
INT (<Numeric expression>) Produces the largest integer that does not exceed the value in the

expression.
284

LEN(<Character string expression>) Produces the length of the character string. 286
LN (<Numeric expression>) Produces the logarithm. 287
LOG (<Numeric expression>) Produces the common logarithm. 287
MAX (<Numeric expression>...) Obtains the max. value from a random number of arguments. 288
MIN (<Numeric expression>...) Obtains the min. value from a random number of arguments. 289
RAD (<Numeric expression: deg.>) Converts the angle unit from radian (rad) to degree (deg). 293
SGN (<Numeric expression>) Checks the sign of the number in the expression 300
SQR (<Numeric expression>) Calculates the square root 301
STRPOS(<Character string expres-
sion>, <Character string expres-
sion>)

Obtains the 2nd argument character string position in the 1st argu-
ment character string.

301

RND (<Numeric expression>) Produces the random numbers. 295
ASC(<Character string expression>) Provides a character code for the first character of the character

string in the expression.
274

CVI(<Character string expression>) Converts a 2-byte character string into integers. 279
CVS(<Character string expression>) Converts a 4-byte character string into a single-precision real number. 279
CVD(<Character string expression>) Converts an 8-byte character string into a double-precision real number. 280
VAL(<Character string expression>) Converts a character string into a numeric value. 303

Trigonometric
functions

ATN(<Numeric expression>) Calculates the arc tangent. Unit: radian
Definition range: Numeric value, Value range: -PI/2 to +PI/2

274 Numeric
value

ATN2(<Numeric expres-
sion>,<Numeric expression>)

Calculates the arc tangent. Unit: radian
 THETA=ATN2(delta y, deltax)
 Definition range: Numeric value of delta y or delta x that is not 0
 Value range: -PI to +PI

274
-110 Logic numbers

 4MELFA-BASIC IV
Trigonometric
functions

COS(<Numeric expression>) Calculates the cosine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

278 Numeric
value

SIN(<Numeric expression>) Calculates the sine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

300

TAN(<Numeric expression>) Calculates the tangent. Unit: radian
 Definition range: Numeric value range, Value range: Range of numeric
value

302

Character
string func-
tions

BIN$(<Numeric expression>) Converts numeric expression value into binary character string. 275 Character
stringCHR$(<Numeric expression>) Provides character having numeric expression value character

code.
277

HEX$(<Numeric expression>) Converts numeric expression value into hexadecimal character
string.

284

LEFT$(<Character string expres-
sion>,<Numeric expression>)

Obtains character string having length designated with 2nd argu-
ment from left side of 1st argument character string.

286

MID$(<Character string expression>,
<Numeric expression>
<Numeric expression>)

Obtains character string having length designated with 3rd argu-
ment from the position designated with the 2nd argument in the 1st
argument character string.

288

MIRROR$(<Character string expres-
sion>)

Mirror reversal of the character string binary bit is carried out. 289

MKI$(<Numeric expression>) Converts numeric expression value into 2-byte character string. 290
MKS$(<Numeric expression>) Converts numeric expression value into 4-byte character string. 290
MKD$(<Numeric expression>) Converts numeric expression value into 8-byte character string. 291
RIGHT$(<Character string expres-
sion>,<Numeric expression>)

Obtains character string having length designated with 2nd argu-
ment from right side of 1st argument character string.

295

STR$(<Numeric expression>) Converts the numeric expression value into a decimal character string. 302
CKSUM(<Character string expres-
sion>,<Numeric expression>,
<Numeric expression>)

Creates the checksum of a character string.
Returns the value of the lower byte obtained by adding the character
value of the second argument position to that of the third argument
position, in the first argument character string.

278 Numeric
value

Position vari-
ables

DIST(<Position>,<Position>) Obtains the distance between two points. 281 Position
FRAM
(<Position 1>,<Position 2>,
<Position 3>)

Calculates the coordinate system designated with three points. Position
1 is the plane origin, position 2 is the point on the +X axis, and position
3 is the point on the +Y axis direction plane. The plane origin point and
posture are obtained from the XYZ coordinates of the three position,
and is returned with a return value (position). This is operated with 6-
axis three dimensions regardless of the mechanism structure.
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

283

RDFL1(<Position>,<Numeric value>) Returns the structure flag of the designated position as character data.
Argument <numeric value>) 0 = R/L, 1 = A/B , 2 = F/N is returned.

293 Character

SETFL1(<Position>,<Character>) Changes the structure flag of the designated position. The data to
be changed is designated with characters.(R/L/A/B/F/N)

296

RDFL2(<Position>,<Numeric value>) Returns the multi-rotation data of the designated position as a
numeric value (-2 to 1).
The argument <numeric expression> returns the axis No. (1 to 8).

294 Numeric
value

SETFL2
(<Position>>,<Numeric value>,
<Numeric value>)

Changes the multi-rotation data of the designated position as a
numeric value (-2 to 1). The left side of the expression is the axis
No. to be changed; the right side is the value to be set.

297

ALIGN(<Position>) Returns the value of the XYZ position (0,+/-90, +/-180) closest to the
position 1 posture axis (A, B, C).
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

273

INV(<Position>) Obtains the reverse matrix. 285 Position
PTOJ(<Position>) Converts the position data into joint data. 292 Joint
JTOP(<Position>) Converts the joint data into position data. 285 Position
ZONE
(<Position 1>,<Position 2>,<Position 3>)

Checks whether position 1 is within the space (Cube) created by the
position 2 and position 3 points.
 Outside the range=0, Within the range=1
For position coordinates that are not checked or non-existent, the
following values should be assigned to the corresponding position
coordinates:
If the unit is degrees, assign -360 to position 2 and 360 to position 3
If the unit is mm, assign -10000 to position 2 and 10000 to position 3

304 Numeric
value

Class Function name (format) Functions Page Result
 Functions 4-111

4

4MELFA-BASIC IV
Position vari-
ables

ZONE2
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Checks whether position 1 is within the space (cylinder) created by
the position 2 and position 3 points.
 Outside the range=0, Within the range=1
Only the X, Y, and Z coordinate values are considered; the A, B, and
C posture data is ignored.

305 Numeric
value

POSCQ(<Position>) Checks whether <position> is within the movement range. 291 Numeric
value

POSMID
(<Position1>,<Position2>,
<Numeric value1>, <Numeric value2>)

Calculates the middle position between <position 1> and <position
2>.

292 Position

CALARC
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Returns information of an arc created from <position 1>, <position
2>, and <position 3>.

276 Numeric
value

SETJNT
(<J1 axis>,<J2 axis>,<J3 axis>,<J4 axis>
<J5 axis>,<J6 axis>,<J7 axis>,<J8 axis>)

Sets values in joint variables. 298 Joint

SETPOS
(<X axis>,<Y axis>,<Z axis>,<A axis>
<B axis>,<C axis>,<L1 axis>,<L2 axis>)

Sets values in position variables. 299 Position

Class Function name (format) Functions Page Result
-112 Functions

 4MELFA-BASIC IV
4.6 List of Instructions
A list of pages with description of each instruction is shown below. They are listed in the order of presumed
usage frequency.

(1) Instructions related to movement control

(2) Instructions related to program control

Command Explanation Page

Page 180, "MOV (Move)" Joint interpolation 180

Page 190, "MVS (Move S)" Linear interpolation 190

Page 184, "MVR (Move R)" Circular interpolation 184

Page 186, "MVR2 (Move R2)" Circular interpolation 2 186

Page 188, "MVR3 (Move R 3)" Circular interpolation 3 188

Page 183, "MVC (Move C)" Circular interpolation 183

Page 181, "MVA (Move Arch)" Arch motion interpolation 181

Page 199, "OVRD (Override)" Overall speed specification 199

Page 213, "SPD (Speed)" Speed specification during linear or circular interpolation move-
ment

213

Page 176, "JOVRD (J Override)" Speed specification during joint interpolation movement 176

Page 138, "CNT (Continuous)" Continuous path mode specification 138

Page 119, "ACCEL (Accelerate)" Acceleration/deceleration rate specification 119

Page 130, "CMP JNT (Comp Joint)" Specification of compliance in the JOINT coordinate system 130

Page 132, "CMP POS (Composition Posture)" Specification of compliance in the XYZ coordinate system 132

Page 134, "CMP TOOL (Composition Tool)" Specification of compliance in the TOOL coordinate system 134

Page 136, "CMP OFF (Composition OFF)" Compliance setting invalid 136

Page 137, "CMPG (Composition Gain)" Compliance gain specification 137

Page 193, "OADL (Optimal Acceleration)" Optimum acceleration/deceleration rate specification 193

Page 179, "LOADSET (Load Set)" Hand's optional condition specification 179

Page 201, "PREC (Precision)" High accuracy mode specification 201

Page 218, "TORQ (Torque)" Torque specification of each axis 218

Page 177, "JRC (Joint Roll Change)" Enables multiple rotation of the tip axis 177

Page 164, "FINE (Fine)" Robot's positioning range specification 164

Page 211, "SERVO (Servo)" Servo motor power ON/OFF 211

Page 214, "SPDOPT (Speed Optimize)" Optimize the speed during linear interpolation movement. 214

Page 221, "WTH (With)" Addition instruction of movement instruction 221

Page 222, "WTHIF (With If)" Additional conditional instruction of movement instruction 222

Command Explanation Page

Page 205, "REM (Remarks)" Comment(') 205

Page 173, "IF...THEN...ELSE...ENDIF (If Then
Else)"

Conditional branching 173

Page 209, "SELECT CASE (Select Case)" Enables multiple branching 209

Page 169, "GOTO (Go To)" Jump 169

Page 168, "GOSUB (RETURN)(Go Subroutine)" Subroutine jump 168

Page 206, "RESET ERR (Reset Error)" Resets an error (use of default is not allowed) 206

Page 125, "CALLP (Call P)" Program call 125

Page 166, "FPRM (FPRM)" Program call argument definition 166

Page 160, "DLY (Delay)" Timer 160

Page 170, "HLT (Halt)" Suspends a program 170

Page 163, "END (End)" End a program 163

Page 196, "ON ... GOSUB (ON Go Subroutine)" Subroutine jump according to the value 196

Page 197, "ON ... GOTO (On Go To)" Jump according to the value 197
 List of Instructions 4-113

4

4MELFA-BASIC IV
(3) Definition instructions

(4) Multi-task related

Page 165, "FOR - NEXT (For-next)" Repeat 165

Page 220, "WHILE-WEND (While End)" Conditional repeat 220

Page 198, "OPEN (Open)" Opens a file or communication line 198

Page 202, "PRINT (Print)" Outputs data 202

Page 175, "INPUT (Input)" Inputs data 175

Page 128, "CLOSE (Close)" Closes a file or communication line 128

Page 141, "COLCHK (Col Check)" Enables or disables the impact detection function 141

Page 195, "ON COM GOSUB (ON Communication
Go Subroutine)"

Communication interrupt subroutine jump 195

Page 145, "COM ON/COM OFF/COM STOP (Com-
munication ON/OFF/STOP)"

Allows/prohibits/stops communication interrupts 145

Page 171, "HOPEN / HCLOSE (Hand Open/Hand
Close)"

Hand's open/close 171

Page 162, "ERROR (error)" User error 162

Page 212, "SKIP (Skip)" Skip while moving 212

Page 219, "WAIT (Wait)" Waiting for conditions 219

Page 129, "CLR (Clear)" Signal clear 129

Command Explanation Page

Page 159, "DIM (Dim)" Array variable declaration 159

Page 157, "DEF PLT (Define pallet)" Pallet declaration 157

Page 200, "PLT (Pallet)" Pallet position calculation 200

Page 146, "DEF ACT (Define act)" Interrupt definition 146

Page 121, "ACT (Act)" Starts or ends interrupt monitoring 121

Page 149, "DEF ARCH (Define arch)" Definition of arch shape for arch motion 149

Page 156, "DEF JNT (Define Joint)" Joint type position variable definition 156

Page 158, "DEF POS (Define Position)" XYZ type position variable definition 158

Page 153, "DEF INTE/DEF FLOAT/DEF DOUBLE
(Define Integer/Float/Double)"

Integer or real number variable definition 153

Page 151, "DEF CHAR (Define Character)" Character variable definition 151

Page 154, "DEF IO (Define IO)" Signal variable definition 154

Page 152, "DEF FN (Define function)" User function definition 152

Page 217, "TOOL (Tool)" Hand length setting 217

Page 123, "BASE (Base)" Robot base position setting 123

Page 217, "TOOL (Tool)" Tool length setting 217

Command Explanation Page

Page 224, "XLOAD (X Load)" Loads a program to another task slot 224

Page 226, "XRUN (X Run)" Execute the program in another task slot 226

Page 227, "XSTP (X Stop)" Stop the program in another task slot 227

Page 225, "XRST (X Reset)" Resets the program in another task slot being suspended 225

Page 223, "XCLR (X Clear)" Cancels the loading of the program from the specified task slot 223

Page 167, "GETM (Get Mechanism)" Obtains mechanical control right 167

Page 204, "RELM (Release Mechanism)" Releases mechanical control right 204

Page 203, "PRIORITY (Priority)" Changes the task slot priority 203

Page 206, "RESET ERR (Reset Error)" Resets an error (use of default is not allowed) 206

Command Explanation Page
-114 List of Instructions

 4MELFA-BASIC IV
(5) Others
Command Explanation Page

Page 127, "CHRSRCH (Character search)" Searches the character string out of the character array. 127

GET POS (Get Position) Reserved. -
 List of Instructions 4-115

4

4MELFA-BASIC IV
4.7 Operators
The value's real number or integer type do not need to be declared. Instead, the type may be forcibly con-
verted according to the operation type. (Refer to Table 4-10.) The operation result data type is as follows
according to the combination of the left argument and right argument data types.

Example) Left argument Operation Right argument Operation results
 15 AND 256 15
(Numeric value type) (Numeric value type) (Numeric value type)
 P1 * M1 P2
 (Position type) (Numeric value type) (Position type)
 M1 * P1
(Numeric value type) (Position type) Description error

Table 4-10:Table of data conversions according to operations

Reversal: Sign reversal, Negate: Logical negate, Substitute: Substitute operation, Remainder: Remainder
operation, Comparison: Comparison operation, Logic: Logical Operation (excluding logical negate).

Left argument
type Operation

Left argument type

Character string
Numeric value

Position Joint
Integer Real number

Character
string

Substitution=
Addition +
Comparison (Compari-
son operators)

Character string
Character string

Integer

-
-
-

-
-
-

-
-
-

-
-
-

Integer

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-
-

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Real number
Real number
Real number
Real number

Integer
Integer
Integer
Integer
Integer
Integer

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Real number

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

Real number
Real number
Real number
Real number

Integer
Integer
Integer
Integer
Integer
Integer

Real number
Real number
Real number
Real number

Integer
Integer

Real number
Real number

Integer
Integer

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Position

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

-
-

Position
Position

-
-
-
-
-
-

-
-

Position
Position

-
-
-
-
-
-

Position
Position
Position
Position

-
-
-

Position
-
-

-
-
-
-
-
-
-
-
-
-

Joint

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

-
-

Joint
Joint

-
-
-
-
-
-

-
-

Joint
Joint

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Joint
Joint

-
Joint

-
-
-

Joint
-
-

Right argument
only (Single
arugument)

eversal -
Negate NOT

-
-

Integer
Integer

Integer
Integer

Position
-

Joint
-

-116 Operators

 4MELFA-BASIC IV
[Caution]
•The operation of the section described with a "-" is not defined.
•The results of the integer and the interger multiplication/division is an integer type for multiplication, and a

real number type for division.
•If the right argument is a 0 divisor (divide by 0), an operation will not be possible.
•During exponential operation, remainder operation or logical operation (including negate), all real numbers

will be forcibly converted into integers (rounded off), and operated.

4.8 Priority level of operations
In the event there are many operators within an expression being calculated, the order of operations is as
shown in Table 4-11.
Table 4-11:Priority level of operations

4.9 Depth of program's control structure
When creating a program, the depth of the control structure must be considered.
When using the commands in the table below, the program's level of control structure becomes one level
deeper. Each command has a limit to the depth of the control structure. Exceeding these limits will cause an
error.
Table 4-12:Limit to control structure depth

4.10 Reserved words
Reserved words are those that are already used for the system.
A name that is the same as one of the reserved words cannot be used in the program.
Instructions, functions, and system status variables, etc. are considered reserved words.

Operations, (operators) Type of operation Priority level

1) Operations inside parentheses ()
2) Functions
3) Exponents
4) Single argument operator (+, -)
5) * /
6) \
7)MOD
8) + -
9)<< >>
10) Comparison operator
 (=,<>,><,<,<=,=<,>=,=>)
11)NOT
12)AND
13)OR
14)XOR

Functions
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Logic operation
Comparison operation

Logic operation
Logic operation
Logic operation
Logic operation

High
:
:
:
:
:
:
:
:
:
:
:
:
:

Low

No. of levels Applicable commands

User stack in program 16 levels Repeated controls (FOR-NEXT,WHILE-WEND)

8 levels Function calling (CALLP)

800 levels max. Subroutine calling (GOSUB)
The number decreases by usage frequency of FOR-NEXT, WHILE-WEND, and
CALLP instructions.
 Priority level of operations 4-117

4

4MELFA-BASIC IV
4.11 Detailed explanation of command words
4.11.1 How to read the described items

[Function] : Indicates the command word functions.
[Format] : Indicates how to input the command word argument.

The argument is shown in <>.
[] indicates that the argument can be omitted.
[] indicates that a space is required.

[Terminology] : Indicates the meaning and range, etc. of the argument.
[Reference Program] : Indicates a program example.
[Explanation] : Indicates detailed functions and cautions, etc.
[The available robot type] : Indicates the available robot type.
[Related parameter] : Indicates the related parameter.
[Related system variables] : Indicates the related system variables.
[Related instructions] : Indicates the related instructions.

4.11.2 Explanation of each command word
Each instruction is explained below in alphabetical order.
-118 Detailed explanation of command words

 4MELFA-BASIC IV
ACCEL (Accelerate)

[Function]
Designate the robot's acceleration and deceleration speeds as a percentage (%).
It is valid during optimum acceleration/deceleration.

* The acceleration/deceleration time during optimum acceleration/deceleration refers to the optimum time
calculated when using an OADL instruction, which takes account of the value of the M_SETADL variable.

[Format]

Controller software version G2 or later

[Terminology]
<Acceleration/Deceleration>

1 to 100(%). Designate the acceleration/deceleration to reach the maximum speed from
speed 0 as a percentage. This can be described as a constant or variable. A default value
of 100 is set if the argument is omitted. A value of 100 corresponds to the maximum rate
of acceleration/deceleration. Unit: %

<Acceleration/Deceleration rate when moving upward>
Specify the acceleration/deceleration rate when moving upward in an arch motion due
to the MVA instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

<Acceleration/Deceleration rate when moving downward>
Specify the acceleration/deceleration rate when moving downward in an arch motion due
to the MVA instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

[Reference Program]
 10 ACCEL 50,100 ' Heavy load designation (when acceleration/deceleration is 0.2 sec-

onds, the acceleration will be 0.4, and the deceleration will be 0.2 sec-
onds).

 20 MOV P1
 30 ACCEL 100,100 ' Standard load designation.
 40 MOV P2
 50 DEF ARCH 1,10,10,25,25,1,0,0
 60 ACCEL 100,100,20,20,20,20 ' Specify the override value to 20 when moving upward or downward due

to the MVA instruction.
 70 MVA P3,1

ACCEL[] [<Acceleration rate>] [, <Deceleration rate>]

ACCEL[] [<Acceleration rate>] [, <Deceleration rate>]
,[<Acceleration rate when moving upward>], [<Deceleration rate when moving upward>]
,[<Acceleration rate when moving downward>], [<Deceleration rate when moving down-
ward>]
 Detailed explanation of command words 4-119

4

4MELFA-BASIC IV
[Explanation]
(1) The maximum acceleration/deceleration is determined according to the robot being used. Set the corre-

sponding percentage(%). The system default value is 100,100.
(2) The acceleration percentage changed with this command is reset to the system default value when the

program is reset or the END statement executed.
(3) Although it is possible to describe the acceleration/deceleration time to more than 100%, some models

internally set its upper limit to 100%. If the acceleration/deceleration time is set to more than 100%, it
may affect the lifespan of the machine. In addition, speed-over errors and overload errors may tend to
occur. Therefore, be extra careful when you are setting it to more than 100%.

(4) The smooth operation when CNT is valid will have a different locus according to the acceleration speed
or operation speed. To move smoothly at a constant speed, set the acceleration and deceleration to the
same value. CNT is invalid in the default state.

(5) It is also valid during optimum acceleration/deceleration control (OADL ON).

[Related instructions]
OADL (Optimal Acceleration), LOADSET (Load Set)

[Related system variables]
M_ACL/M_DACL/M_NACL/M_NDACL/M_ACLSTS, M_SETADL

[Related parameter]
JADL
-120 Detailed explanation of command words

 4MELFA-BASIC IV
ACT (Act)

[Function]
This instruction specifies whether to allow or prohibit interrupt processing caused by signals, etc. during
operation.

[Format]

[Terminology]
<Priority No.> 0: Either enables or disables the entire interrupt.

1 to 8: Designate the priority No. for the interrupt defined in the DEF ACT statement.
When entering the priority No., always leave a space (character) after the ACT command.
If described as ACT1, it will be a variable name declaration statement.

<1/0> 1: Allows interrupts, 0:Prohibits interrupts.

[Reference Program]
(1) When the input signal 1 turns on (set to 1) while moving from P1 to P2, it loops until that signal is set to 0.

 10 DEF ACT 1,M_IN(1)=1 GOSUB *INTR ' Assign input signal 1 to the interrupt 1 condition
 20 MOV P1
 30 ACT 1=1 ' Enable interrupt 1.
 40 MOV P2
 50 ACT 1=0 ' Disable interrupt 1.
 :
100 *INTR '
110 IF M_IN(1)=1 GOTO 110 ' Loops until the M_IN(1) signal becomes 0.
120 RETURN 0 '

(2) When the input signal 1 turns on (set to 1)while moving from P1 to P2, Operation is interrupted and the
output signal 10 turns on.

10 DEF ACT 1,M_IN(1)=1 GOSUB *INTR 'Assign input signal 1 to the interrupt 1 condition
20 MOV P1
30 ACT 1=1 ' Enable interrupt 1.
40 MOV P2
 :
100 *INTR
110 ACT 1=0 ' Disable interrupt 1.
120 M_OUT(10)=1 ' Turn on the output signal 10
130 RETURN 1 ' Returns to the next line which interrupted

ACT[]<Priority No.> = <1/0>
 Detailed explanation of command words 4-121

4

4MELFA-BASIC IV
[Explanation]
(1) When the program starts, the status of <Priority No.> 0 is "enabled." When <Priority No.> 0 is "disabled,"

even if <Priority No.> 1 to 8 are set to "enabled," no interrupt will be enabled.
(2) The statuses of <Priority No.> 1 to 8 are all "disabled" when the program starts.
(3) An interrupt will occur only when all of the following conditions have been satisfied:

*<Priority No.> 0 is set to "enabled."
*The status of the DEF ACT statement has been defined.
*When the <Priority No.> designated by DEF ACT is made valid by an ACT statement.

(4) The return from an interrupt process should be done by describing either RETURN 0 or RETURN 1. How-
ever when returning from interruption processing to the next line by RETURN1, execute the statement to
disable the interrupt. When that is not so, if interruption conditions have been satisfied, because interrup-
tion processing will be executed again and it will return to the next line, the line may be skipped.

(5) Even if the robot is in the middle of interpolation, an interrupt defined by a DEF ACT statement will be exe-
cuted.

(6) During an interrupt process, that <Priority No.> will be executed with the status as "disable."
(7) A communications interrupt (COM) has a higher priority than an interrupt defined by a DEF ACT state-

ment.
(8) The relationship of priority rankings is as shown below:

 COM>ACT>WTHIF(WTH)>Pulse substitution

[Related instructions] DEF ACT (Define act), RETURN (Return)
-122 Detailed explanation of command words

 4MELFA-BASIC IV
BASE (Base)

[Function]
With this instruction, it is possible to move or rotate the robot coordinate system. Specify the base conver-
sion data for this instruction. Pay extra attention when making changes in a program, as it may be mistaken
in jog operations, etc.

[Format]

[Terminology]
<Base conversion data> Specify with position constants or position variables.

[Reference Program]
 10 BASE (50,100,0,0,0,90) ' Input the conversion data as a constant.
 20 MVS P1
 30 BASE P2 ' Input the conversion data as a variable.
 40 MVS P1
 50 BASE P_NBASE ' Reset the conversion data to the default values.

[Explanation]
(1) The X, Y, and Z components of the position data represent the amount of parallel movement from the ori-

gin of the world coordinate system to the origin of the base coordinate system. The base conversion
data can be changed only with the BASE command. The components A, B, and C of the position data
represent the amount that the base coordinate system is tilted in relation to the world coordinate system.

X.............Distance to move parallel to X axis
Y.............Distance to move parallel to Y axis
Z.............Distance to move parallel to Z axis
A............Angle to turn toward the X axis
B............Angle to turn toward the Y axis
C............Angle to turn toward the Z axis
L1..........Movement amount of additional axis 1
L2..........Movement amount of additional axis 2

(2) For A, B and C, the clockwise direction looking from the front of the origin of the coordinate, used as the
center of rotation, is the forward rotation direction.

(3) The contents of the structural flag have no meaning.
(4) The system's default value for this data is P_NBASE=(0,0,0,0,0,0) (0,0). This is calculated with the 6-

axis three dimensional regardless of the mechanism structure.
(5) The valid axis element of base conversion data is different depending on the type of robot. Set up the

appropriate data referring to the Page 327, "Table 5-7: Valid axis elements of the base conversion data
depending on the robot model".

Fig.4-3:Conceptual diagram of the base coordinate system

BASE[]<Base conversion data>

Z

X
YX

Z

Y5 1

9

BASE (50,100,0,0,0,90)
 Detailed explanation of command words 4-123

4

4MELFA-BASIC IV
[Related parameter]
After it has been changed by the MEXBS BASE instruction, the base coordinate system is stored in the
MEXBS parameter and maintained even after the controller's power is turned off. Refer to Page 327, "About
Standard Base Coordinates".

[Related system variables]
P_BASE/P_NBASE
-124 Detailed explanation of command words

 4MELFA-BASIC IV
CALLP (Call P)

[Function]
This instruction executes the specified program (by calling the program in a manner similar to using GOSUB
to call a subroutine). The execution returns to the main program when the END instruction or the final line in
the sub program is reached.

[Format]

[Terminology]
<Program name> Designate the program name with a character string constant or character string variable.

For the standards for program names, please refer to Page 93, "(1) Program name".
<Argument> Designate the variable to be transferred to the program when the program is called. Up

to 16 variables can be transferred.

[Reference Program]
(1) When passing the argument to the program to call.
Main program
10 M1=0
 20 CALLP "10" ,M1,P1,P2
 30 M1=1
 40 CALLP "10" ,M1,P1,P2
 :
100 CALLP "10", M2,P3,P4
 :
150 END
"10" sub program side
 10 FPRM M01, P01,P02
 20 IF M01<>0 THEN GOTO *LBL1
 30 MOV P01
 40 *LBL1
 50 MVS P02
 60 END 'Return to the main program at this point.

* When lines 20 and 40 of the main program are executed, M1, P1 and P2 are set in M01, P01 and P02 of
the sub program, respectively. When line 100 of the main program is executed, M2, P3 and P4 are set in
M01, P01 and P02 of the sub program, respectively.

(2) When not passing the argument to the program to call.
Main program
 10 MOV P1
 20 CALLP "20"
 30 MOV P2
 40 CALLP "20"
 50 END

"20" sub program side
 10 MOV P1 'P1 of the sub program differs from P1 of the main program.
 20 MVS P002
 30 M_OUT(17)=1
 40 END 'Return to the main program at this point.

CALLP[] "<Program name> " [, <Argument> [, <Argument>
 Detailed explanation of command words 4-125

4

4MELFA-BASIC IV
[Explanation]
(1) A program (sub program) called by the CALLP instruction will return to the parent program (main pro-

gram) when the END instruction (equivalent to the RETURN instruction of GOSUB) is reached. If there
is no END instruction, the execution is returned to the main program when the final line of the sub pro-
gram is reached.

(2) If arguments need to be passed to the sub program, they should be defined using the FPRM instruction
at the beginning of the sub program.

(3) If the type or the number of arguments passed to the sub program is different from those defined (by the
FPRM instruction) in the sub program, an error occurs at execution.

(4) If a program is reset, the control returns to the beginning of the top main program.
(5) Definition statements (DEF ACT, DEF FN, DEF PLT, and DIM instructions) executed in the main

program are invalid in a program called by the CALLP instruction. They become valid when the control
is returned to the main program from the program called by the CALLP instruction again.

(6) Speed and tool data are all valid in a sub program. Values of ACCEL and SPD are invalid. The mode of
OADL is valid.

(7) Another sub program can be executed by calling CALLP in a sub program. However, a main program or
a program that is currently being executed in another task slot cannot be called. In addition, own
program cannot be called, either.

(8) Eight levels (in a hierarchy) of sub programs can be executed by calling CALLP in the first main
program.

(9) Variable values may be passed from a main program to a sub program using arguments, however, it is
not possible to pass the processing result of a sub program to a main program by assigning it in an argu-
ment. To use the processing result of a sub program in a main program, pass the values using external
variables.

[Related instructions]
FPRM (FPRM)
-126 Detailed explanation of command words

 4MELFA-BASIC IV
CHRSRCH (Character search)

[Function]
Searches the character string out of the character array.

[Format]

[Terminology]
<Character string array variable> Specify the character string array to be searched.
<Character string> Specify the character string to be searched.
<Search result storage destination> The number of the element for which the character string to be searched

is found is set.

[Reference Program]
10 DIM C1$(10)
20 C1$(1)="ABCDEFG"
30 C1$(2)="MELFA"
40 C1$(3)="BCDF"
50 C1$(4)="ABD"
60 C1$(5)="XYZ"
70 C1$(6)="MELFA"
80 C1$(7)="CDF"
90 C1$(8)="ROBOT"
100 C1$(9)="FFF"
110 C1$(10)="BCD"
120 CHRSRCH C1$(1), "ROBOT", M1 ' 8 is set in M1.
130 CHRSRCH C1$(1), "MELFA", M2 ' 2 is set in M2.

[Explanation]
(1) The specified character string is searched from the character string array variables, and the element

number of the completely matched character string array is set in <search result storage destination>.
Partially matched character strings are not searched.
Even if CHRSRCH C1$(1), "ROBO", M1 are described in the above statement example, the matched
character string is not searched.

(2) If the character string to be searched is not found, 0 is set in <search result storage destination>.
(3) Character string search is performed sequentially beginning with element number 1, and the element

number found first is set.
Even if CHRSRCH C1$(3), "MELFA", M2 are described in the above statement example, 2 is set in M2.
(The same character string is set in C1$(2) and C1$(6).)

(4) The <character string array variable> that can be searched is the one-dimensional array only. If a two-
dimensional or higher array is specified as a variable, an error will occur at the time of execution.

CHRSRCH[]<Character string array variable>,<Character string>,<Search result storage destination>
 Detailed explanation of command words 4-127

4

4MELFA-BASIC IV
CLOSE (Close)

[Function]
Closes the designated file.(including communication lines)

[Format]

[Terminology]
<File No.> Designate the No. of the file to be closed. Only a numerical constant is allowed.

If this argument is omitted, all open files are closed.

[Reference Program]
 10 OPEN "COM1:" AS #1 ' "Open "COM1:" as file No. 1.
 20 PRINT #1,M1
 :
100 INPUT #1,M2
110 CLOSE #1 ' Close file No. 1, "COM1:".
 :
200 CLOSE ' Close all open files.

[Explanation]
(1) This instruction closes files (including communication lines) opened by the OPEN instruction. Data

remaining in the buffer is flushed.
The data left in the buffer will be processed as follows when the file is closed:

Table 4-13:Processing of each buffer when the file is closed

(2) Executing an END statement will also close a file.
(3) If the file number is omitted, all files will be closed.

[Related instructions]
OPEN (Open), PRINT (Print), INPUT (Input)

CLOSE[] [[#]<File No.>[, [[#]<File No.> ...]

Buffer types Processing when the file is closed
Communication line reception buffer The contents of the buffer are destroyed
Communication line transmission
buffer

(No data remains in the transmission buffer since the data in the transmission
buffer is sent immediately by executing the PRINT instruction.)

File load buffer The contents of the buffer are destroyed.
File unload buffer The contents of the buffer are written into the file, and then the file is closed.
-128 Detailed explanation of command words

 4MELFA-BASIC IV
CLR (Clear)

[Function]
This instruction clears general-purpose output signals, local numerical variables in a program, and numeri-
cal external variables.

[Format]

[Terminology]
<Type> It is possible to specify either a constant or a variable.

0 : All steps 1 to 3 below are executed.
1 : The general-purpose output signal is cleared based on the output reset pattern.

The output reset pattern is designated with parameters ORST0 to ORST224.
Refer to Page 335, "5.14 About the output signal reset pattern".
(0: OFF, 1: ON, *: Hold)
2 : All local numeric variables and numeric array variables used in the program are cleared

to zero
3 : Clears all external numerical variables (External system variables and user-defined

external variables) and external numerical array variables, setting them to 0. External
position variables are not cleared.

[Reference Program]
(1) The general-purpose output signal is output based on the output reset pattern.
 10 CLR 1

(2) The local numeric variables and numeric array variables in the program are cleared to 0.
 10 DIM MA(10)
 20 DEF INTE IVAL
 30 CLR 2 ' Clears MA(1) through MA(10), IVAL and local numeric variables in the program to 0.

(3) All external numeric array variables and external numeric array variables are cleared to 0
 10 CLR 3

(4) (1) though (3) above are performed simultaneously.
 10 CLR 0

[Related parameter]
ORST0 to ORST224

[Related system variables]
M_IN/M_INB/M_INW, M_OUT/M_OUTB/M_OUTW

CLR[]<Type>
 Detailed explanation of command words 4-129

4

4MELFA-BASIC IV
CMP JNT (Comp Joint)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the JOINT coordinates system.
Note) The available robot type is limited such as RH-nAH. Refer to "[Available robot type]".

[Format]

[Terminology]
<Axis designation> Specify the axis to be controlled in a pliable manner with the bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis 87654321.

[Reference Program]
10 MOV P1
20 CMPG 0.0,0.0,1.0,1.0, , , , ' Set softness.
30 CMP JNT,&B11 ' The J1 and J2 axes are put in the state where they are controlled in a

pliable manner.
40 MOV P2
50 HOPEN 1
60 MOV P1
70 CMP OFF ' Return to normal state.

[Explanation]
(1) It is possible to control each of the robot's axes in the joint coordinate system in a pliable manner. For

example, if using a horizontal multi-joint robot to insert pins in a workpiece by moving the robot's hand
up and down, it is possible to insert the pins more smoothly by employing pliable control of the J1 and J2
axes (see the statement example above).

(2) The degree of compliance can be specified by the CMPG instruction, which sets the spring constant. If
the robot is of the RH-*AH type, specify 0.0 for the horizontal axes J1 and J2 to make the robot behave
equivalently to a servo free system (the spring constant is zero). (Note that the vertical axes cannot be
made to behave equivalently to a servo free system even if 0.0 is set for them. Also, be careful not to let
these axes reach a position beyond the movement limit or where the amount of diversion becomes too
large.) Note that 4) and 5) below do not function if this servo-free equivalent behavior is in use.

(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,
execute the "CMP OFF" command or turn OFF the power.

(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of
each joint axis.

(5) If the amount of difference between the original target position and the actual robot position becomes
greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next line of the program.

(6) It is not possible to use CMP JNT, POS, and TOOL at the same time. In other words, an error occurs if
the CMP POS or CMP TOOL instruction is executed while the CMP JNT instruction is being performed.
Cancel the CMP JNT instruction once using the CMP OFF instruction to execute these instructions.

(7) Be aware that the position of the robot may change if the servo status is switched on while this instruc-
tion is active.

(8) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the
compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(9) To change the axis specification, cancel the compliance mode with the CMP OFF instruction first, and
then execute the CMP JNT instruction again.

The compliance mode is in effect continuously until the CMP OFF instruction is exe-
cuted, or the power is turned off.

CMP[]JNT, <Axis designation>

 CAUTION
-130 Detailed explanation of command words

 4MELFA-BASIC IV
To execute a jog operation after setting the compliance mode with the CMP JNT
instruction, use the JOINT jog mode.
If any other jog mode is used, the robot may operate in a direction different from the
expected moving direction because the directions of the coordinate systems con-
trolled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, perform
servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Available robot type]

[Related system variables]
M_BTIME

[Related instructions]
CMP OFF (Composition OFF), CMPG (Composition Gain), CMP POS (Composition Posture), CMP TOOL
(Composition Tool)

RH-5AH/10AH/15AH series
RH-6SH/12SH/18SH series

 CAUTION

 CAUTION
 Detailed explanation of command words 4-131

4

4MELFA-BASIC IV
CMP POS (Composition Posture)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the XYZ coordinates system.
Note) The available robot type is limited such as RV-4A. Refer to "[Available robot type]".

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
10 MOV P1 ' Move in front of the part insertion position.
20 CMPG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness
30 CMP POS, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
40 MVS P2 ' Moves to the part insertion position.
50 M_OUT(10)=1 ' Instructs to close the chuck for positioning.
60 DLY 1.0 ' Waits for the completion of chuck closing.(1 sec.)
70 HOPEN 1 ' Open the hand.
80 MVS, -100 ' Retreats 100 mm in the Z direction of the TOOL coordinate sys-

tem.
90 CMP OFF ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the XYZ coordinate system.

For example, when inserting a pin in the vertical direction, if the X, Y, A and B axes are set to soft opera-
tion, the pin can be inserted smoothly.

(2) The degree of softness can be designated with the CMPG command.
(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "CMP OFF" command or turn OFF the power.
(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of

each joint axis.
(5) The deviation of the command position and actual position can be read with M_CMPDST. The success/

failure of pin insertion can be checked using this variable.
(6) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next line of the program.

(7) It is not possible to use CMP JNT, POS, and TOOL at the same time. In other words, an error occurs if
the CMP POS or CMP TOOL instruction is executed while the CMP JNT instruction is being performed.
Cancel the CMP JNT instruction once using the CMP OFF instruction to execute these instructions.

(8) If the servo turns from OFF to ON while this command is functioning, the robot position could change.
(9) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(10) To change the axis specification, cancel the compliance mode with the CMP OFF instruction first, and
then execute the CMP POS instruction again.

(11) If the robot is operated near a singular point, an alarm may be generated or control may be disabled.
Do not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by
executing a CMP OFF instruction once with servo OFF (or turning OFF and then ON the power again),
keep the robot away from a singular point, and then make the compliance mode effective again.

CMP[]POS, <Axis designation>
-132 Detailed explanation of command words

 4MELFA-BASIC IV
Fig.4-4:The example of compliance mode use

The compliance mode is in effect continuously until the CMP OFF instruction is
executed, or the power is turned off. Exercise caution when changing the execut-
able program number or operating the jog.

To execute a jog operation after setting the compliance mode with the CMP POS
instruction, use the XYZ jog mode.
If any other jog mode is used, the robot may operate in a direction different from the
expected moving direction because the directions of the coordinate systems con-
trolled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, perform
servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Available robot type]

[Related system variables]
M_BTIME

[Related instructions]
CMP OFF (Composition OFF), CMPG (Composition Gain), CMP TOOL (Composition Tool), CMP JNT
(Comp Joint)

RV-1A/2AJ series
RV-2A/3AJ series
RV-4A/5AJ series
RV-20A
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-5AH/10AH/15AH series
RH-6SH/12SH/18SH series

Positioning device

+Y

+X

+Z

P2

Robot hand CMP POS, &B000011
 CBAZYX

Soften the control of
axis X and Y in the
XYZ coordinates
system.

J2

+Y

+X

J4

J1
OP2

Positioning device

J2

+Y

+X

J4

J1

OP2

Positioning device

 CAUTION

 CAUTION

 CAUTION
 Detailed explanation of command words 4-133

4

4MELFA-BASIC IV
CMP TOOL (Composition Tool)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the TOOL coordinates system.
Note) The available robot type is limited such as RV-4A. Refer to "[Available robot type]".

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
10 MOV P1 ' Moves to in front of the part insertion position.
20 CMPG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
30 CMP TOOL, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
40 MVS P2 ' Moves to the part insertion position.
50 M_OUT(10)=1 ' Instructs to close the chuck for positioning.
60 DLY 1.0 ' Waits for the completion of chuck closing.(1 sec.)
70 HOPEN 1 ' Open the hand.
80 MVS, -100 ' Retreats 100 mm in the Z direction of the TOOL coordinate sys-

tem.
90 CMP OFF ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the tool coordinate system. For the tool coordinate system, please

refer to Page 324, "5.6 Standard Tool Coordinates".
(2) For example, when inserting a pin in the tool coordinate Z axis direction, if the X, Y, A and B axes are set to

soft operation, the pin can be inserted smoothly.
(3) The degree of softness can be designated with the CMPG command.
(4) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "CMP OFF" command or turn OFF the power.
(5) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of each

joint axis.
(6) The deviation of the command position and actual position can be read with M_CMPDST. The success/

failure of pin insertion can be checked using this variable.
(7) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation shifts
to the next line of the program.

(8) It is not possible to use CMP JNT, POS, and TOOL at the same time. In other words, an error occurs if the
CMP POS or CMP TOOL instruction is executed while the CMP JNT instruction is being performed. Can-
cel the CMP JNT instruction once using the CMP OFF instruction to execute these instructions.

(9) If the servo turns from OFF to ON while this command is functioning, the robot position could change.
(10) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(11) To change the axis specification, cancel the compliance mode with the CMP OFF instruction first, and
then execute the CMP TOOL instruction again.

(12) For vertical 5-axis robots (such as the RV-5AJ), only the X and Z axes can be used for axis specification.
(13) If the robot is operated near a singular point, an alarm may be generated or control may be disabled. Do

not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by exe-
cuting a CMP OFF instruction once with servo OFF (or turning OFF and then ON the power again), keep
the robot away from a singular point, and then make the compliance mode effective again.

CMP[]TOOL, <Axis designation>
-134 Detailed explanation of command words

 4MELFA-BASIC IV
Fig.4-5:The example of using the compliance mode

The compliance mode is in effect continuously until the CMP OFF instruction is
executed, or the power is turned off. Exercise caution when changing the execut-
able program number or operating the jog.

To execute a jog operation after setting the compliance mode with the CMP TOOL
instruction, use the TOOL jog mode.
If any other jog mode is used, the robot may operate in a direction different from the
expected moving direction because the directions of the coordinate systems con-
trolled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, perform
servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Available robot type]

[Related system variables]
M_BTIME

[Related instructions]
CMP OFF (Composition OFF), CMPG (Composition Gain), CMP POS (Composition Posture), CMP JNT
(Comp Joint)

RV-1A/2AJ series
RV-2A/3AJ series
RV-4A/5AJ series
RV-20A
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-5AH/10AH/15AH series
RH-6SH/12SH/18SH series

Positioning device

+Y
+X

+Z

Robot hand

P2

 Tool coordinate system
CMP TOOL, &B000011
 CBAZYX

Softens the X
and Y axis of the
tool coordinate
system.

 CAUTION

 CAUTION

 CAUTION
 Detailed explanation of command words 4-135

4

4MELFA-BASIC IV
CMP OFF (Composition OFF)

[Function]
Release the soft control mode (compliance mode).
Note) The available robot type is limited such as RV-4A. Refer to "[Available robot type]".

[Format]

[Reference Program]
10 MOV P1 ' Moves to in front of the part insertion position.
20 CMPG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
30 CMP TOOL, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
40 MVS P2 ' Moves to the part insertion position.
50 M_OUT(10)=1 ' Instructs to close the chuck for positioning.
60 DLY 1.0 ' Waits for the completion of chuck closing.(1 sec.)
70 HOPEN 1 ' Open the hand.
80 MVS, -100 ' Retreats 100 mm in the Z direction of the TOOL coordinate sys-

tem.
90 CMP OFF ' Return to normal state.

[Explanation]
(1) This instruction cancels the compliance mode started by the CMP TOOL, CMP POS, or CMP JNT

instruction.
(2) In order to cancel jog operations in the compliance mode, either execute this instruction in a program or

execute it directly via the program edit screen of the T/B.

[Available robot type]

[Related instructions]
CMPG (Composition Gain), CMP TOOL (Composition Tool), CMP POS (Composition Posture), CMP JNT
(Comp Joint)

CMP[]OFF

RV-1A/2AJ series
RV-2A/3AJ series
RV-4A/5AJ series
RV-20A
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-5AH/10AH/15AH series
RH-6SH/12SH/18SH series
-136 Detailed explanation of command words

 4MELFA-BASIC IV
CMPG (Composition Gain)

[Function]
Specify the softness of robot control.
Note) The available robot type is limited such as RV-4A. Refer to "[Available robot type]".

[Format]
CMP POS, CMP TOOL

CMP JNT

[Terminology]
<X to L2 axis gain>
<J1 to J8 axis gain> Specify this argument using a constant.

The softness can be set for each axis.
Value 1 .0 indicates the normal status, and the 0.2 is the softest.
If the value is omitted, the current setting value will be applied.

[Reference Program]
10 CMPG , ,0.5, , , , , ' This statement selects only the Z-axis. For axes that are omitted, keep the corre-

sponding entries blank and just enter commas.

[Explanation]
(1) The softness can be designated in each axis units.
(2) The soft state will not be entered unless validated with the CMP POS or CMP TOOL commands.
(3) A spring-like force will be generated in proportion to the deviation of the command position and actual

position. CMPG designates that spring constant.
(4) The deviation of the command position and actual position can be read with M_CMPDST. The success/

failure of pin insertion can be checked using this variable.
(5) If a small gain is set, and the soft state is entered with the CMP POS, CMP TOOL, and CMP JNT com-

mands, the robot position could drop. Set the softness state gradually while checking it.
(6) The softness can be changed halfway when this command executed under the soft control status.
(7) The gain value of less than 0.2 is invalid. The robot is controlled using the value 0.2.

(However, up to 0.1 can be set for the RV-1A/2AJ, and up to 0.0 for the RH-[]AH.)
Also, two or more decimal positions can be set for gain values.

[Available robot type]

CMPG[] [<X axis gain>], [<Y axis gain>], [<Z axis gain>], [<A axis gain>],

 [<B axis gain>], [<C axis gain>], [<L1 axis gain>], [<L2axis gain>],

CMPG[] [<J1 axis gain>], [<J2 axis gain>], [<J3 axis gain>], [<J4 axis gain>],

 [<J5 axis gain>], [<J6 axis gain>], [<J7 axis gain>], [<J8 axis gain>],

RV-1A/2AJ series
RV-2A/3AJ series
RV-4A/5AJ series
RV-20A
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-5AH/10AH/15AH series
RH-6SH/12SH/18SH series
 Detailed explanation of command words 4-137

4

4MELFA-BASIC IV
CNT (Continuous)

[Function]
Designates continuous movement control for interpolation. Shortening of the operating time can be per-
formed by carrying out continuous movement.

[Format]

[Terminology]
<1/0> Designate the continuous operation or acceleration/deceleration operation mode.

1 : Continuous movement.
0 : Acceleration/deceleration movement.(default value.)

<Numeric value 1> Specify the maximum proximity distance in mm for starting the next interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

<Numeric value 2> Specify the maximum proximity distance in mm for ending the previous interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

[Reference Program]
When the maximum neighborhood distance is specified when changing a locus.
10 CNT 0 ' Invalidate CNT (Continuous movement).
20 MVS P1 ' Operate with acceleration/deceleration
30 CNT 1 ' Validate CNT (Continuous movement).

 (Operate with continuous movement after this line.)
40 MVS P2 ' The connection with the next interpolation is continuous movement.
50 CNT 1,100,200 ' Continuous operation specification at 100 mm on the starting side and at 200

mm on the end side.
60 MVS P3 ' Continuous operation at a specified distance before and after an interpolation.
70 CNT 1,300 ' Continuous operation specification at 300 mm on the starting side and at 300

mm on the end side.
80 MOV P4 ' Continuous operation specification at 300 mm on the starting side.
90 CNT 0 ' Invalidate CNT (Continuous movement).
100 MOV P5 ' Operate with acceleration/deceleration

Fig.4-6:Example of continuous path operation

CNT[] <Continuous movement mode/acceleration/deceleration movement mode>]

 [, <Numeric value 1>] [, <Numeric value 2>]

P1

P2

P3

P4P5

Start position of movement

Although the neighborhood
distance (300 mm) when
moving to P4 has been set,
continuous operation when
moving to P5 has been
canceled. Therefore, it moves to
P4 first, and then moves to P5.

It moves to P1 first and then to
P2 since continuous operation
is not set up.

Continuous operation is performed at
a distance shorter than the smaller of
the neighborhood distance (the initial
setting value in the robot controller)
when moving to P2 and the fulcrum
neighborhood point (100 mm) when
moving to P3.

Continuous operation is performed at a distance
shorter than the smaller of the neighborhood distance
(200 mm) when moving to P3 and the fulcrum
neighborhood point (300 mm) when moving to P4.
-138 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) The interpolation (40 line to 80 line of the example) surrounded by CNT 1 - CNT 0 is set as the target of

continuous action.
(2) The system default value is CNT 0 (Acceleration/deceleration movement).
(3) If values 1 and 2 are omitted, the connection with the next path segment is started from the time the

deceleration is started.
(4) As shown in Fig. 4-7, in the acceleration and deceleration operating mode, the speed is reduced in front

of the target position. After moving to the target position, the speed for moving to the next target position
starts to be accelerated. On the other hand, in the continuous operating mode, the speed is reduced in
front of the target position, but it does not stop completely. The speed for moving to the next target posi-
tion starts to be accelerated at that point. Therefore, it does not pass through each target position, but it
passes through the neighborhood position.

Fig.4-7:Acceleration/deceleration movement and continuous movement

(5) The neighborhood distance denotes the changing distance to the interpolation operation at the next tar-
get position. If this neighborhood distance (numerical value 1, numerical value 2) is omitted, the accel-
erate and deceleration starting position will be the changing position to the next interpolation. In this
case, it passes through a location away from the target position, but the operating time will be the short-
est. To pass through a location closer to the target position, set this neighborhood distance (numerical
value 1, numerical value 2).

Fig.4-8:Setting Up the Neighborhood Distance

10 MOV P1
20 MVS P2
30 MOV P3

It decelerates and accelerates to P1, P2
and P3. After moving to the target position,
it moves to the next target position.

10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

It passes through the neighborhood of P1
and P2, and then moves to P3.

P1 P2

P3
Start position of

movement

Acceleration/deceleration movement

P1 P2

P3

Continuous movement

P3P2

t (Time)

P1
v (Speed)

P3P2P1

*The above graph shown an example.
Depending on the moving distance and/or
speed, acceleration and deceleration may
occur during interpolation connection.

Start position of
movement

v (Speed)

t (Time)

P1

P2

P3

If the neighborhood
distance is not specified,
dotted line operation will
be performed.
10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

If the neighborhood distance
is specified, solid line
operation will be performed.
10 CNT 1, MA, MB
20 MOV P1
30 CNT 1, MC, MD
40 MVS P2
50 MOV P3
60 CNT 0

Deceleration start
position

Acceleration end
position

MB

MC

MC

MD
If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.

*If "30 CNT 1, MC, MD" are
not described, the value of
MC in the figure will be MA,
and the value of MD will be
MB.

Acceleration end
position

Deceleration start
position

If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.
 Detailed explanation of command words 4-139

4

4MELFA-BASIC IV
(6) If the specifications of numerical value 1 and numerical value 2 are different, continuous operation will be
performed at the position (distance) that is the smaller of these two.

(7) If numeric value 2 is omitted, the same value as numeric value 1 will be applied.
(8) When continuous operation is specified, the positioning completion specification by the FINE instruction

will be invalid.
(9) If the proximity distance (value 1, value 2) is set small, the movement time may become longer than in

the status where CNT 0.
-140 Detailed explanation of command words

 4MELFA-BASIC IV
COLCHK (Col Check)

[Function]
Set to enable/disable the impact detection function.
The impact detection function quickly stops the robot when the robot's hand and/or arm interferes with
peripheral devices so as to minimize damage to and deformation of the robot's tool part or peripheral
devices. However, it cannot completely prevent such damage and deformation.
The impact detection function can only be used in certain models (Refer to "[Available robot type]".). This
function is available for controller software version J2 or later.

[Format]

[Terminology]
ON Enable the impact detection function.

Once an impact is detected, it immediately stops the robot, issues an error numbered
in 1010's, and turns OFF the servo.

OFF Disable the impact detection function
NOERR Even if an impact is detected, no error is issued. (If omitted, an error will occur.)

[Reference Program 1]
If an error is set in the case of impact
10 COLLVL 80,80,80,80,80,80,, 'Specify the allowable level for impact detection.
20 COLCHK ON 'Enable the impact detection function.
30 MOV P1
40 MOV P2
50 DLY 0.2 'Wait until the completion of operation

 (FINE instruction can also be used).
50 COLCHK OFF 'Disable the impact detection function.
60 MOV P3

[Reference Program 2]
If interrupt processing is used in the case of impact
10 DEF ACT 1,M_COLSTS(1)=1 GOTO *HOME,S'Define the processing to be executed when an impact

is detected using an interrupt.
20 ACT 1=1
30 COLCHK ON,NOERR 'Enable the impact detection function in the error non-occurrence

mode.
40 MOV P1
50 MOV P2 'If an impact is detected while executing lines 40 through 70, it

jumps to interrupt processing.
60 MOV P3
70 MOV P4
80 ACT 1=0
 :
1000 *HOME 'Interrupt processing during impact detection
1010 COLCHK OFF 'Disable the impact detection function.
1020 SERVO ON 'Turn the servo on.
1030 PESC=P_COLDIR(1)*(-2) 'Create the amount of movement for escape operation.
1040 PDST=P_FBC(1)+PESC 'Create the escape position.
1050 MVS PDST 'Move to the escape position.
1060 ERROR 9100 'Stop operation by generating a user-defined L level error.

COLCHK[]ON [, NOERR] / OFF
 Detailed explanation of command words 4-141

4

4MELFA-BASIC IV
[Explanation]
(1) The impact detection function estimates the amount of torque that will be applied to the axes during

movement executed by a Move instruction. It determines that there has been an impact if the difference
between the estimated torque and the actual torque exceeds the tolerance, and immediately stops the
robot.

(2) Immediately after power ON, the impact detection function is disabled. Enable the COL parameter
before using.

(3) The detection level can be adjusted by a COLLVL instruction. The initial value of the detection level is the
setting value of the COLLVL parameter.

(4) After the impact detection function is enabled by this instruction, that state is maintained continuously
until it is disabled by the COLCHK OFF instruction, the program is reset, an END instruction is executed
or the power is turned OFF.

(5) Even if the impact detection function is disabled by this instruction, the impact tolerance level set by a
COLLVL instruction is retained.

(6) When the continuity function is enabled, the previous impact detection setting state is restored at next
power ON even if the power is turned OFF.

(7) Error 3950 occurs if an interrupt by the M_COLSTS status variable (an interrupt with the interrupt
condition of M_COLSTS(*)=1 and * denotes a machine number) is not enabled when specifying NOERR
(error non-occurrence mode). See [Syntax Example 2]. Error 3960 also occurs if this interrupt processing
is disabled while in the error non-occurrence mode.

(8) If an impact is detected while in the error non-occurrence mode, the robot turns OFF the servo and
stops. Therefore, no error occurs and operation also continues. However, it is recorded in the error log
that an impact was detected. (The recording into the log is done only if no other errors occur
simultaneously.)

(9) If an attempt is made to execute COLCHK ON and COLCHK ON,NOERR on a robot that cannot use the
impact detection function, low level error 3970 occurs. In the case of COLCHK OFF, neither error occurs
nor processing is performed.

(10) The impact detection function cannot be enabled while compliance is being enabled by a CMP
instruction or the torque limit is being enabled by a TORQ instruction. In this case, error 3940 will occur if
an attempt is made to enable the impact detection function. Conversely, error 3930 will occur if an
attempt is made to enable a CMP or TORQ instruction while impact detection is being enabled.

(11) If COLCHK OFF is described immediately after an operation instruction, impact detection may not work
near the last stop position of a given operation. As shown in syntax example 1, execute COLCHK OFF
upon completion of positioning by a DLY or FINE instruction between an operation instruction and a
COLCHK OFF instruction.

(12) Erroneous detection may occur if the hand weight (HNDDATn parameter) and workpiece weight
(WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly before using.

Estimated torque

60%(COLLVL 60,60,…after
execution)

100% (manufacturer's initial
value + side)

Actual torque
Detects an impact (at 100%).

Detects an impact (at 60%).

Torque

Time

Detection level + side
100% (manufacturer's initial
value - side)

60%

Detection level -side
-142 Detailed explanation of command words

 4MELFA-BASIC IV
[Related instructions and variables]
COLLVL (Col Level), M_COLSTS, J_COLMXL, P_COLDIR

[Related parameter]
COL, COLLVL, COLLVLJG

[Available robot type]
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series
 Detailed explanation of command words 4-143

4

4MELFA-BASIC IV
COLLVL (Col Level)

[Function]
Set the detection level of the impact detection function.
The impact detection function can only be used in certain models (Refer to "[Available robot type]".). This
function is available for controller software version J2 or later.

[Format]

[Terminology]
<J1 to J8 axis> Specify the detection level in a range between 1 and 500%.

If omitted, the previously set value is retained.
Currently, the J7 and J8 axes do not function.
The initial value is the setting value of the COLLVL parameter.

[Reference Program]
10 COLLVL 80,80,80,80,80,80,, 'Specify the allowable level for impact detection.
20 COLCHK ON 'Enable the impact detection function.
30 MOV P1
40 COLLVL ,50,50,,,,, 'Change the allowable level of the J2 and J3 axes for impact detection.
50 MOV P2
60 DLY 0.2 'After arriving at P2, disable impact detection.
70 COLCHK OFF 'Disable the impact detection function.
80 MOV P3

[Explanation]
(1) Set the allowable level of each axis for the impact detection function during program operation.
(2) Normally, the setting value of the allowable level immediately after power ON is the setting value of the

COLLVL parameter.
(3) "All axes 100%" is set as the initial value of the COLLVL parameter.
(4) If this value is increased, the detection level (sensitivity) lowers; if this value is lowered, the detection

level increases.
(5) Please do not increase the detection level too much, as it increases the possibility of erroneous

detection. Erroneous detection may also occur even with the initial value depending on the posture and
operating speed. In such a case, lower the sensitivity level.

(6) Erroneous detection may occur if the hand weight (HNDDATn parameter) and workpiece weight
(WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly before using.

(7) When the continuity function is enabled, the previously set value is restored at next power ON even if the
power is turned OFF.

(8) The allowable level is reset to the setting value of the COLLVL parameter when a program reset or an
END instruction is executed.

(9) Even if an attempt is made to execute this instruction on robots that cannot use the impact detection
function, the instruction is ignored and thus no error occurs.

(10) Currently, the impact detection function does not work even if the J7 and J8 axes are set. They are
reserved for future expansion.

[Related instructions and variables]
COLCHK (Col Check), M_COLSTS, J_COLMXL, P_COLDIR

[Related parameter]
COL,COLLVL

[Available robot type]

COLLVL[] [<J1 axis>],[<J2 axis>],[<J3 axis>],[<J4 axis>],[<J5 axis>],[<J6 axis>],[<J7 axis>],[<J8 axis>]

RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series
-144 Detailed explanation of command words

 4MELFA-BASIC IV
COM ON/COM OFF/COM STOP (Communication ON/OFF/STOP)

[Function]
COM ON :Allows interrupts from a communication line.
COM OFF :Prohibits interrupts from a communication line.
COM STOP :Prevents interrupts from a communication line temporarily (data is received).

Jump immediately to the interrupt routine the next time the COM ON instruction is executed.

[Format]

[Terminology]
<Communication Line No.> Describes numbers 1 to 3 assigned to the communication line.

(If the argument is omitted, 1 is set as the default value.)

[Reference Program]
 Refer to Page 195, "ON COM GOSUB (ON Communication Go Subroutine)".

[Explanation]
(1) When COMMON OFF is executed, even if communications are attempted, the interrupt will not be gen-

erated.
(2) For information on communication line Nos., refer to the Page 198, "OPEN (Open)".
(3) After COM STOP is executed, even if communication is attempted, the interrupt will not be generated.

Note that the receiving data and the fact of the interrupt will be recorded, and be executed the next time
the line is reopened.

COM[(<Communication Line No.>)][]ON

COM[(<Communication Line No.>)][]OFF

COM[(<Communication Line No.>)][]STOP
 Detailed explanation of command words 4-145

4

4MELFA-BASIC IV
DEF ACT (Define act)

[Function]
This instruction defines the interrupt conditions for monitoring signals concurrently and performing interrupt
processing during program execution, as well as the processing that will take place when an interrupt
occurs.

[Format]

[Terminology]
<Priority No.> This is the priority No. of the interrupt. It can be set with constant Nos. 1 to 8.
<Expression> For the interrupt status, use the formats described below: (Refer to the syntax diagram)

<Numeric type data> <Comparison operator> <Numeric type data> or
<Numeric type data> <Logical operator> <Numeric type data>
<Numeric type data> refers to the following:
<Numeric type constant>| <Numeric variable>|<Numeric array variable>|
<Component data>

<Process> Refers to a GOTO statement or a GOSUB statement used to process an interrupt when
it occurs.

<Type> When omitted: Stop type 1
The robot stops at the stop position, assuming 100% execution of the external override.
If the external override is small, the time required for the robot to stop becomes longer, but
it will always stop at the same position.
S : Stop type 2 (only for software version E3 or later)

The robot decelerates and stops in the shortest time and distance possible, independently
of the external override.

L : Execution complete stop
The interrupt processing is performed after the robot has moved to the target position
(the line being executed is completed).

[Reference Program]
10 DEF ACT 1,M_IN(17)=1 GOSUB 100 ' Defines the subroutine at line 100 to be the one to be

called up when the status for the general purpose input
signal No. 17 is ON.

20 DEF ACT 2,MFG1 AND MFG2 GOTO 200 ' Defines the line 200 as the one to jump to when the
logic operation of AND applied to MFG1 or MFG2
results in "true."

30 DEF ACT 3,M_TIMER(1)>10.5 GOSUB *LBL ' When 10.5 seconds pass, the program jumps to the
line 300 subroutine.

 :
100 M_TIMER(1)=0 ' Sets the timer to zero.
110 ACT 3=1 ' Enables ACT 3.
120 RETURN 0
200 MOV P_SAFE
210 END
300 *LBL
310 M_TIMER(1)=0.0 ' Resets the timer to zero.
320 ACT 3=0 ' Disables ACT 3.
320 RETURN 0

DEF[]ACT[]<Priority No.>, <Expression>[]<Process> [, <Type>]
-146 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) The priority level for the interrupts is decided by the <Priority No.>, and the priority level, from the highest

ranges from 1 to 8.
(2) There can be up to 8 settings for the interrupts. Use the <Priority No.> to differentiate them.
(3) An <expression> should be either a simple logical operation or a comparison operation (one operator).

Parentheses cannot be used either.
(4) If two DEF ACT instructions with the same priority number are included in a program, the latter one

defined becomes valid.
(5) Since DEF ACT defines only the interrupt, always use the ACT command to designate the enable/dis-

able status of the interrupt.
(6) The communications interrupt (COM) has a higher priority level than any of the interrupts defined by

DEF ACT.
(7) DEF ACT definitions are valid only in the programs where they are defined. These are invalid when

called up in a program by CALLP. If necessary, the data in a sub program may need to be redefined.
(8) If an interrupt is generated when a GOTO command is designated by <Process> for a DEF ACT com-

mand, during execution of the remaining program, the interrupt in progress will remain, and only inter-
rupts of a higher level will be accepted. The interrupt in progress for a GOTO statement can be canceled
with the execution of an END statement.

(9) Expressions containing conditional expressions combined with logical operations, such as (M1 AND
&H001) = 1, are not allowed.

Specify the proper interrupt stop type according to the purpose. Specify "S" for the
stop type if it is desired to stop the robot in the shortest time and distance possible
by an interrupt while the robot is executing a movement instruction.

 CAUTION
 Detailed explanation of command words 4-147

4

4MELFA-BASIC IV
The following conceptual diagrams illustrate the effects of the three types of execution program stop com-
mands when the interrupt conditions are met while the robot is moving according to a movement instruction.

Table 4-14:Conceptual diagram showing the effects of different stop commands

[Related instructions]
ACT (Act)

External override 100% (maximum speed) External override 50%

Stop type 1
(If the argument is
omitted)
S1=S2

Stop type 2(S)

Execution com-
plete stop(L)
S3=S4

Speed

Time

Interrupt

Stop distance S1

Time

Speed

Interrupt

Stop distance S2

Speed

Time

Interrupt

Speed

Time

Interrupt

Decelerate and stop immediately

Speed

Time

Interrupt

Total travel distance S3

Speed

Time

Interrupt

Total travel distance S4
-148 Detailed explanation of command words

 4MELFA-BASIC IV
DEF ARCH (Define arch)

[Function]
This instruction defines an arch shape for the arch motion movement corresponding to the MVA instruction.

[Format]
This function is available for controller software version G2 or later.

[Terminology]
<Arch number> Arch motion movement pattern number. Specify a number from 1 to 4 using a con-

stant or a variable.
<Upward movement increment>
<Downward movement increment >

Refer to figure at right. It is pos-
sible to specify either a con-
stant or a variable.

<Upward evasion increment>
<Downward evasion increment>
<Interpolation type> Interpolation type for upward

and downward movements.
Linear/joint = 1/0

<Interpolation type 1> Detour/short cut = 1/0,
<Interpolation type 2> 3-axis XYZ/Equivalent rotation = 1/0

If any of the arguments besides the arch number is omitted, the default value is employed.
The default values are set by the following parameters. Check the corresponding parameters to see the values;
it is also possible to modify the values.

Vertical multi-joint robot(RV-1A/2AJ, RV-4A/5AJ, etc.) Horizontal multi-joint robot(RH-5AH **, etc.)

[Reference Program]
10 DEF ARCH 1,5,5,20,20
20 MVA P1,1 'Performs the arch motion movement defined in the shape definition in line 10.
30 MVA P2,2 'The robot moves according to the default values specified by the parameters.

[Explanation]
(1) If the MVA instruction is executed without the DEF ARCH instruction, the robot moves according to the

arch shape specified by the parameters.
(2) Used to change the increments in a program, etc.

DEF[]ARCH[]<Arch number>, [<upward movement increment>][<downward movement increment >],
[<Upward evasion increment>], [<downward evasion increment>],
[<interpolation type>], [<interpolation type 1>, <interpolation type 2>]

Parameter name Arch number Upward movement
increment (mm)

Downward movement
increment (mm)

Upward evasion
increment (mm)

Downward evasion
increment (mm)

ARCH1S 1 0.0 0.0 30.0 30.0
ARCH2S 2 10.0 10.0 30.0 30.0
ARCH3S 3 20.0 20.0 30.0 30.0
ARCH4S 4 30.0 30.0 30.0 30.0

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

ARCH1T 1 1 0 0 ARCH1T 1 0 0 0
ARCH2T 2 1 0 0 ARCH2T 2 0 0 0
ARCH3T 3 1 0 0 ARCH3T 3 0 0 0
ARCH4T 4 1 0 0 ARCH4T 4 0 0 0

× ●

Downward
movement
increment

Downward
evasion

increment

Upnward
evasion

increment

Upnward
movement
increment
 Detailed explanation of command words 4-149

4

4MELFA-BASIC IV
[Related instructions]
MVA (Move Arch), ACCEL (Accelerate), OVRD (Override), MVS (Move S)(Used as a reference for interpo-
lation types 1 and 2)
-150 Detailed explanation of command words

 4MELFA-BASIC IV
DEF CHAR (Define Character)

[Function]
Declares a character string variable. It is used when using a variable with a name that begins with a charac-
ter other than "C." It is not necessary to declare variables whose names begin with the character "C" using
the DEF CHAR instruction.

[Format]

[Terminology]
<Character string variable name> Designate a variable name.

[Reference Program]
 10 DEF CHAR MESSAGE ' Declare "MESSAGE" as a character string variable.
 20 MESSAGE = "WORKSET" ' Substitute "WORKSET" in the MESSAGE variable.
 30 CMSG = "ABC" ' Substitute "ABC" for variable CMSG. For variables starting with

C, the definition of "DEF CHAR" is not required.

[Explanation]
(1) The variable name can have up to eight characters. Refer to the Page 96, "4.3.6 Types of characters

that can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (127 characters including command)

can be set on one line.
(3) A variable becomes a global variable that is shared among programs by placing "_" after C in the vari-

able name and writing it in a base program.
Refer to Page 105, "4.3.24 User-defined external variables" for details.

DEF[]CHAR[]<Character string variable name>

 [, <Character string variable name>...
 Detailed explanation of command words 4-151

4

4MELFA-BASIC IV
DEF FN (Define function)

[Function]
Defines a function and gives it name.

[Format]

[Terminology]
<Identification character> The identification character has the following four type.

Numeric value type:M
Character string type:C
Position type:P
Joint type:J

<Name> Describe a user-selected character string. (5 is the maximum)
<Dummy argument> When a function has been called up, it is transferred to the function.

It is possible to describe all the variables, and up to 16 variables can be used.
<Function Definition Expression>

Describe the expression for what operation to use as a function.

[Reference Program]
10 DEF FNMAVE(MA,MB)=(MA+MB)/2 ' Define FNMAVE to obtain the average of two numeric val-

ues.
20 MDATA1=20
30 MDATA2=30
40 MAVE=FNMAVE(MDATA1,MDATA2) ' Substitute average value 25 of 20 and 30 in numeric vari-

able MAVE.
50 DEF FNPADD(PA,PB)=PA+PB ' Position type addition.
60 P10=FNPADD(P1,P2)

[Explanation]
(1) FN + <Name> becomes the name of the function. The function name can be up to 8 characters long.
 Example) Numeric value type FNMMAX Identification character: M
 Character string type ... FNCAME$ Identification character: C (Describe $ at the end of the name)
(2) A function defined with DEF FN is called a user-defined function. A function as long as one line can be

described.
(3) Built-in functions and user-defined functions that have already been defined can be used in the function

definition expression. In this case, up to 16 levels of user-defined functions can be written.
(4) If the variables used in <Function Definition Expression> are not located in <Dummy Argument>, then

the value that the variable has at that time will be used. Also, an error will occur if during execution, the
number or argument type (numeric value or character string) of arguments differs from the number or
type declared.

(5) A user-defined function is valid only in the program where it is defined. It cannot be used by a CALLP
designation program.

DEF[]FN <Identification character><Name> [(<Dummy Argument> [, <Dummy Argument>]...)]

 = <Function Definition Expression>
-152 Detailed explanation of command words

 4MELFA-BASIC IV
DEF INTE/DEF FLOAT/DEF DOUBLE (Define Integer/Float/Double)

[Function]
Use this instruction to declare numerical values. INTE stands for integer, FLOAT stands for single-precision
real number, and DOUBLE stands for double-precision real number.

[Format]

[Terminology]
<Numeric value variable name> Designate the variable name.

[Reference Program]
(1) The definition of the integer type variable.
 10 DEF INTE WORK1, WORK2' Declare WORK 1 and WORK 2 as an numeric value variable name.
 20 WORK1 = 100 ' Substitute the value 100 in WORK 1.
 30 WORK2 = 10.562 ' Numerical "11" is set to WORK2.
 40 WORK2 = 10.12 ' Numerical "10" is set to WORK2.

(2) The definition of the single precision type real number variable.
 10 DEF FLOAT WORK3
 20 WORK3 = 123.468 ' Numerical "123.468000" is set to WORK3.

(3) The definition of the double precision type real number variable.
 10 DEF DOUBLE WORK4
 20 WORK4 = 100/3 ' Numerical "33.333332061767599" is set to WORK4.

[Explanation]
(1) The variable name can have up to eight characters. Refer to the Page 96, "4.3.6 Types of characters

that can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (123 characters including command)

can be set on one line.
(3) The variable declared with INTE will be an integer type.(-32768 to +32767)
(4) The variable declared with FLOAT will be a single-precision type.(+/-1.70141E+38)
(5) The variable declared with DOUBLE will be a double-precision type.(+/-1.701411834604692E+308)

DEF[]INTE[] <Numeric value variable name> [, <Numeric value variable name>]...

DEF[] FLOAT[] <Numeric value variable name> [, <Numeric value variable name>]...

DEF[]DOUBLE[] <Numeric value variable name> [, <Numeric value variable name>]...
 Detailed explanation of command words 4-153

4

4MELFA-BASIC IV
DEF IO (Define IO)

[Function]
Declares an input/output variable. Use this instruction to specify bit widths. M_IN and M_OUT variables are
used for normal single-bit signals, M_INB and M_OUTB are used in the case of 8-bit bytes, and M_INW and
M_OUTW are used in the case of 16-bit words.
Be aware that it is not allowed to reference output signals with variables declared using this instruction.

[Format]

[Terminology]
<Input/output variable name> Designate the variable name.
<Type designation> Designate BIT(1bit), BYTE(8bit), WORD(16bit) or INTEGER.
<Input/output bit No.> Designate the input(When referencing) or output(When assigning) bit No.
<Mask information> Designate when only a specific signal is to be validated.

[Reference Program]
(1) Assign the input variable named PORT1 to input/output signal number 6 in bit type.

 10 DEF IO PORT1 = BIT,6
 :
 100 PORT1 = 1 ' Output signal number 6 turns on.
 :
 200 PORT1 = 2 ' Output signal number 6 turns off.(Because the lowest bit of the numerical value 2 is

0.)
 210 M1 = PORT1 ' Substitute the state of the input signal number 6 for M11.

(2) Assign the input variable named PORT2 to input/output signal number 5 in byte type, and specify the
mask information as 0F in hexadecimal.

 10 DEF IO PORT2 = BYTE, 5, &H0F
 :
 100 PORT2 = &HFF ' Output signal number 5 to 8 turns on.
 :
 200 M2 = PORT2 ' Substitute the value of the input signals 5 to 8 for the variable M2.

(3) Assign the input variable named PORT3 to input/output signal number 8 in word type, and specify the
mask information as 0FFF in hexadecimal.

 10 DEF IO PORT3 = WORD, 8, &H0FFF
 :
 100 PORT3 = 9 ' Output signal number 8 and 11 turns on.
 :
 200 M3 = PORT3 ' Substitute the value of the input signals 8 to 19 for the variable

M3.

DEF[]IO[]<Input/output variable name> = <Type designation>, <Input/output bit No.>

 [, <Mask information>]
-154 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) An input signal is read when referencing this variable.
(2) An output signal is written when assigning a value to this variable.
(3) It is not allowed to reference an output signal by this variable. Use the M_OUT variable in order to refer-

ence an output signal.
(4) The variable name can have up to eight characters. Refer to the Page 96, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(5) When mask information is designated, only the specified signal will be validated.
 Example) In the above example on the 20th line, the input/output data with a bit width of eight is masked by
0F in hexadecimal. Thus, if PORT 2 is used thereafter,
•When used as an input signal (M1 = PORT 2):
Numbers 5 to 8 are used for input, and numbers 9 to 12 are always treated as 0.
No. 12 No.5 (Input/output bit No.)
 0000 1111
 Invalid Valid
•When used as an output signal (PORT 2 = M1):
Data to be output this time is output to numbers 5 to 8, and the status currently being output is retained at
numbers 9 to 12.
 No. 12 No.5 (Input/output bit No.)
 **** 1111
 | |
 Retains the current output status Output data of this time

 Detailed explanation of command words 4-155

4

4MELFA-BASIC IV
DEF JNT (Define Joint)

[Function]
This instruction declares joint type position variables. It is used when using a variable with a name that
begins with a character other than "J." It is not necessary to declare variables whose names begin with the
character "J" using the DEF JNT instruction.

[Format]

[Terminology]
<Joint variable name> Designate a variable name.

[Reference Program]
 10 DEF JNT SAFE ' Declare "SAFE" as a joint variable.
 20 MOV J1 ' For joint type position variables starting with J, the definition of

"DEF JNT" is not required.
 30 SAFE = (-50,120,30,300,0,0,0,0)
 40 MOV SAFE ' Move to SAFE.

[Explanation]
(1) Use this instruction to define a joint position variable by a name beginning with a character other than J.
(2) The variable name can have up to eight characters. Refer to the Page 96, "4.3.6 Types of characters that

can be used in program" for the characters that can be used. When designating multiple variable
names, the maximum value (127 characters including command) can be set on one line.

(3) A variable becomes a global variable that is shared among programs by placing "_" after J in the variable
name and writing it in a base program.
Refer to Page 105, "4.3.24 User-defined external variables" for details.

DEF[]JNT[] <Joint variable name> [, <Joint variable name>]...
-156 Detailed explanation of command words

 4MELFA-BASIC IV
DEF PLT (Define pallet)

[Function]
Defines the pallet. (3-point pallet, 4-point pallet)

[Format]

[Terminology]
<Pallet No.> This is the selection No. of the set pallet. (Constants from 1 to 8 only).
<Start Point> Refers to the pallet's start point.
<End Point A> One of the ending points for the pallet. Transit point of arc for arc pallet.
<End Point B> Another ending point for the pallet. Ending point of arc for arc pallet.
<Diagonal Point> The diagonal point from the pallet's start point. Insignificant for arc pallet.
<Quantity A> The No. of workpieces from the pallet's start point to the end point A.

The No. of workpieces between the pallet start point and arc end point when using
an arc pallet.

<Quantity B> The No. of workpieces from the pallet's start point to the end point B.
Insignificant for an arc pallet. (1, etc., must be designated.)

<Assignment Direction> Describes the direction of the number assignment when numbering divided grid
points.

 1 : Zigzag 2 : Same direction 3 : Arc pallet

[Reference Program]
10 DEF PLT 1,P1,P2,P3, ,4,3,1 ' Define a 3-point pallet.
20 DEF PLT 1,P1,P2,P3,P4,4,3,1 ' Define a 4-point pallet.

[Explanation]
(1) The accuracy of the position calculation will be higher for a 4-point pallet than for a 3-point pallet.
(2) The command is valid only within the program being executed. The command is invalid in the program

that calls up the command from another program. If necessary, redefine.
(3) Quantity A and B should be a non-zero positive number, while if 0 or a negative number is assigned, an

error will occur.
(4) If Quantity A x Quantity B exceeds 32,767, an error will occur when operation starts.
(5) The value of quantity B is insignificant for the arc pallet, but it must not be omitted. The diagonal point will

be insignificant even when designated. Set a dummy value.
(6) If the hand is facing downward, the signs of the A, B, and C axis coordinates at the starting point, end-

point A, and endpoint B must match. If the hand is facing downward, A = 180 (or -180), B = 0, and C =
180 (or -180). If the signs of the A and C axis coordinates at the three positions do not match, the hand
may rotate in the middle position. In this case, modify the signs so that they match in the position edit
screen of the T/B. +180 and -180 result in the same posture; modifying signs poses no problem.

Please refer to the illustrations in 4.1.2Pallet operation, which explain this concept.

[Related instructions]
PLT (Pallet)

DEF[]PLT[] <Pallet No.>, <Start Point>, <End Point A>, <End Point B>, [<Diagonal Point>],
<Quantity A>, <Quantity B>, <Assignment Direction>

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet
 Detailed explanation of command words 4-157

4

4MELFA-BASIC IV
DEF POS (Define Position)

[Function]
This instruction declares XYZ type position variables. It is used when using a variable with a name that
begins with a character other than "P." It is not necessary to declare variables whose names begin with the
character "P" using the DEF POS instruction.

[Format]

[Terminology]
<Position variable name> Designate a variable name.

[Reference Program]
 10 DEF POS WORKSET ' Declare "WORKSET" as the XYZ type position variable.
 20 MOV P1 ' For XYZ type position variables starting with P, the defini-

tion of "DEF POS" is not required.
 30 WORKSET=(250,460,100,0,0,-90,0,0)(0,0)
 40 MOV WORKSET ' Move to WORKSET.

[Explanation]
(1) Use this instruction to define a XYZ type position variable by a name beginning with a character other

than P.
(2) The variable name can have up to eight characters. Refer to the Page 96, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(3) When designating multiple variable names, the maximum value (127 characters including command)

can be set on one line.
(4) A variable becomes a global variable that is shared among programs by placing "_" after P in the vari-

able name and writing it in a base program.
Refer to Page 105, "4.3.24 User-defined external variables" for details.

DEF[]POS[] <Position variable name> [, <Position variable name>]...
-158 Detailed explanation of command words

 4MELFA-BASIC IV
DIM (Dim)

[Function]
Declares the quantity of elements in the array variable. (Arrays up to the third dimension are possible.)

[Format]

[Terminology]
<Variable name> Describe the name of the array variable.
<Eelement Value> Describe in terms of constants, the number of elements in an array variable.

[Reference Program]
10 DIM PDATA(10) ' Define the position array variable PDATA having ten elements.
20 DIM MDATA#(5) ' Define double-precision type array variable MDATA# having the five

elements.
30 DIM M1%(6) ' Define integer-type array variable M1% having the six elements.
40 DIM M2!(4) ' Define single-precision real number type array variable M2! having the

four elements.
50 DIM CMOJI(7) ' Define the character-string type variable CMOJI having the seven ele-

ments.
60 DIM MD6(2,3), PD1(5,5) ' Define the 2-dimensional single precision real number type array vari-

able MDATA having the element of 2x3.
' Define the 2-dimensional position array variable PD 1 having the ele-
ment of 5x5.

[Explanation]
(1) A one-dimensional, two-dimensional or three-dimensional array can be used.
(2) In the case of numeric variables, it is possible to use integer, single-precision real and double-precision

real variables differently by adding a symbol that indicates the type of each variable to the variable
name. If the variable type is omitted, a single-precision real variable will be assumed.

DIM MABC(10) ' Define the single-precision real number type array variable MABC having ten ele-
ments.

(3) Eelement number start from 1 when actually referencing array variables. For PDATA on line 10 of the
statement example, the element number will be 1 to 10.

(4) <Eelement Value> can be described with numeric constants from 1 to 999. It is not allowed to use a
numerical value operation expression.
If the number of elements is specified using a real number, an integer with rounded decimal part will be
assumed. Depending on the system memory's free space, arrays may not be allocated for the number
of specified elements. In this case, an error will occur when lines are registered.

(5) If an element number larger than the number of defined elements is specified, an error will occur at the
time of execution.

(6) At the point when array variables are defined, variable values are indeterminate.
(7) To use array variables, it is necessary to define them using the DIM instruction.
(8) The arrays defined by the DIM instruction are valid only in the program where they are defined. To use

these arrays by a sub program called by the CALLP instruction, it is necessary to define them again.
(9) Array variables can be used similar to normal variables. However, note that variables of which variable

names and/or the number of characters for specifying element numbers exceed eight characters can-
not be used on the monitor variable screen and position edit screen of the teaching pendant.

(10) If a variable name whose second character is underlined "_" is registered in a user program, a user
defined external variable (a variable common among programs) will be assumed..
Refer to Page 105, "4.3.24 User-defined external variables" for details.

DIM[]<Variable name> (<Eelement Value> [, <Eelement Value> [, <Eelement Value>]])

 [, <Variable name> (<Eelement Value> [, <Eelement Value>[, <Eelement Value>]])]...
 Detailed explanation of command words 4-159

4

4MELFA-BASIC IV
DLY (Delay)

[Function]
1) When used as a single command:
 At a designated time, it causes a wait. It is used for positioning the robot and timing input/output signals.
2) When used as an additional pulse output:
 Designates an output time for a pulse.

[Format]
1) When used as a single command

2) When used as an additional pulse output

[Terminology]
<Time> Describes the waiting time or the output time for the pulse output, in terms of a numeric operation

expression. Unit: [Seconds]
The minimum value that can be set is 0.01 seconds. It is allowed to specify 0.00 as well.

[Reference Program]
(1) Waiting for time
 10 DLY 30 ' Wait for 30 seconds
(2) Pulse output of the signal
 20 M_OUT(17)=1 DLY 0.5 ' Send the signal output to the general-purpose output signal 17

for 0.5 seconds.
 30 M_OUTB(18)=1 DLY 0.5 ' Among general-purpose output signals 18 to 25, only signal 18 is

output (on) for the first 0.5 seconds, and signals 19 to 25 are
output (on) after 0.5 seconds have passed.

(3) Wait for the completion of positioning.
 10 MOV P1 ' Moves to P1.
 20 DLY 0.1 ' Positions to 1.
(4) Wait for completion of hand opening. (closing)
 10 HOPEN 1 ' Open the hand 1.
 20 DLY 0.5 ' Wait for hand 1 to open securely.

[Explanation]
(1) This instruction sets the wait time in a program. It is used for timing input/output signals, positioning

movement instructions, and for specifying pulse output times when used in a signal output statement
(such as line 20 in [statement example] above).

(2) The pulse output will be executed simultaneously as the next command in the lines that follow.
(3) Up to 50 pulse outputs can be issued of all programs simultaneously. Exceeding this, an error will occur

when the program tries to execute it.
(4) A pulse output reverses each of its bits after the specified time. This means that if M_OUTB (8-bit signal)

or M_OUTW (16-bit signal) is used, the corresponding number of bits are reversed.
(5) As for pulse output, the execution of a program ends without waiting the elapse of the specified duration

if the END instruction or the last line of the program is executed during the specified duration. However,
output turns off after the specified duration.

(6) The relation of the priority levels for other interrupts is as shown below:
 COM>ACT>WTHIF (WTH) >Pulse output (Time setting ON)

(7) Even if stop is input during the execution of a pulse output, the pulse output operation will not stop.

Note1) If stop is input at line 20 in the following program, the output signal state will be held, and the execu-
tion is stopped.
10 M_OUT(17)=1
20 DLY 10
30 M_OUT(17)=0

DLY[]<Time>

Example) M_OUT(1) = 1 DLY[]<Time>
-160 Detailed explanation of command words

 4MELFA-BASIC IV
Note2) If a pulse output by the M_OUTB (8-bit signal) or the M_OUTW (1 6-bit signal) is used, each bits in
the corresponding bit width are reversed after the designated time.
M_OUTB(1)=1 DLY 1.0
In this case the bit pattern 00000001 is output for one second, and the bit pattern 11111110 is output
thereafter.
 Detailed explanation of command words 4-161

4

4MELFA-BASIC IV
ERROR (error)

[Function]
This instruction makes a program generate an error (9000s number).

[Format]

[Terminology]
<Error No.> Either a constant or numeric operation expression can be set. Designate the No. within the range

of 9000 to 9299.

[Reference Program]
(1) Generate the error 9000.
 100 ERROR 9000

(2) Change the error number to generate corresponding to the value of M1.
 40 IF M1 <> 0 THEN *LERR ' When M1 is not 0, branches to "*LERR".
 :
 140 *LERR
 150 MERR=9000+M1*10 ' Calculate the error number according to the value of M1.

 160 ERROR MERR ' The calculated error number is generated.
 170 END

[Explanation]
(1) It is possible to generate any error in the 9000's number range by executing this instruction.
(2) If a LOW level or HIGH level error is generated, the program is paused.

Lines after the ERROR instruction are not executed. A CAUTION error does not pause a program; the
next line and onward are executed. The action of system by error number is shown in the Table 4-15.

(3) It is possible to create up to 20 error messages using parameters UER1 to UER20.
(4) A system error occurs if a value outside the error number range shown in Table 4-15 is specified.

Table 4-15:Action of system by error number

[Related parameter]
UER1 to 20

ERROR[]<Error No.>

No. System behavior

9000 to 9099
(H level error)

The program execution is stopped, and the servo power is shut off.
The error state is reset when error reset is input.

9100 to 9199
(L level error)

The program execution is stopped.
The error state is reset when error reset is input.

9200 to 9299
(CAUTION)

The program execution is continued.
The error state is reset when error reset is input.
-162 Detailed explanation of command words

 4MELFA-BASIC IV
END (End)

[Function]
This instruction defines the final line of a program.
It is also used to indicate the end of a program explicitly, by entering the END instruction at the end of the
main processing, in case a sub program is attached after the main program. In the case of a sub program
called up by the CALLP instruction, the control is returned to the main program when the END instruction is
executed.

[Format]

[Reference Program]
10 MOV P1
20 GOSUB *ABC
30 END ' End the program.
 :
100 *ABC
110 M1=1
120 RETURN

[Explanation]
(1) This instruction defines the final line of a program. Use the HLT instruction to stop a program in the mid-

dle and put it in the pause status.
(2) If executed from the operation panel, a program is executed in the continuos operation mode; it will be

executed again from the top even if it contains an END instruction. If it is desired to end a program at
the END instruction, press the END key on the operation panel to stop the cycle.

(3) It is allowed to have several END statements within one program.
(4) The END statement does not need to be described at the end of the program.
(5) If the END command is executed by the sub program called by CALLP, control will return to the main

program. The operation will be similar to the RETURN command of GOSUB.
(6) The file and communication line which are opened are all closed by execution of the END command.
(7) At program END, the SPD, ACCEL, OADL, JOVRD, OVRD, FINE and CNT settings will be initialized.

[Related instructions]
HLT (Halt), CALLP (Call P)

END
 Detailed explanation of command words 4-163

4

4MELFA-BASIC IV
FINE (Fine)

[Function]
This instruction specifies completion conditions of the robot's positioning. It is invalid during the smooth
movement control (CNT 1).
Depending on the type of robot (RP series), positioning using the DLY instruction may be more effective
than using the FINE instruction.

[Format]

[Terminology]
<No. of pulses> Specify the positioning pulses number.

This will be invalid to when set to 0. The default value is 0.
<Axis No.> Designate the axis No. to which the positioning pulses are to be designated. The positioning

pulses will be applied on all axes when omitted.

[Reference Program]
10 FINE 300 ' Designate 300 for the positioning pulses.
20 MOV P1
30 FINE 100,2 ' Change the 2nd axis positioning pulses to 100.
40 MOV P2
50 FINE 0 ' Invalidate the positioning pulse designation.
60 MOV P3
70 FINE 100 ' Designate 100 for the positioning pulses.
80 MOV P4

[Explanation]
(1) The FINE instruction does not complete movement instructions such as MOV by giving commands to the

servo; rather, it completes positioning by determining whether or not the feedback pulse value from the
servo is within the specified range. It is thus possible to confirm positioning more accurately.

(2) There are cases when the DLY instruction (timer) is used for positioning instead of the FINE instruction.
This instruction is easier to specify.

10 MOV P1
20 DLY 0.1

(3) FINE is invalid in the program until the FINE command is executed. Once FINE is validated, it remains
valid until invalidated.

(4) FINE is invalidated at the end of the program (Execution of the END instruction, program reset after
pausing).

(5) When the continuous movement control valid state (CNT 1) is entered, the FINE command will be
ignored even if it is valid (i.e., it will be treated as invalid, but the status will be kept).

(6) To the addition axis (general-purpose servo axis), although the valid/invalid change of FINE is possible,
specification of the pulse number cannot be performed. The value registered in the "INP" parameter on
the servo amplifier side is used. Thus, when the integers other than zero are specified, the FINE
becomes effective by the parameter set value of servo amplifier, and the FINE becomes invalid when 0
is specified.

FINE[]<No. of pulses> [, <Axis No.>]
-164 Detailed explanation of command words

 4MELFA-BASIC IV
FOR - NEXT (For-next)

[Function]
Repeatedly executes the program between the FOR statement and NEXT statement until the end condi-
tions are satisfied.

[Format]

[Terminology]
<Counter> Describe the numerical variable that represents the counter for the number of repetitions.

Same for <Counter 1> and <Counter 2>.
<Default Value> Set default value of the counter for the number of repetitions as a numeric operation

expression.
<End Value> Set the end value of the counter for the number of repeats as a numeric operation

expression.
<Increment> Set the value of the increments for the counter for the number of repetitions as a numeric

operation expression. It is allowed to omit this argument, including STEP.

[Reference Program]
(1) A program that adds the numbers 1 to 10
10 MSUM=0 ' Initialize the total MSUM.
20 FOR M1=1 TO 10 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
30 MSUM=MSUM+M1 ' Add M1 value to numeric variable MSUM.
40 NEXT M1 ' Return to line 20.

(2) A program that puts the result of a product of two numbers into a 2-dimensional array variable
10 DIM MBOX(10,10) ' Reserve space for a 10Å~10 array.
20 FOR M1=1 TO 10 STEP 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
30 FOR M2=1 TO 10 STEP 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M2.
40 MBOX(M1,M2)=M1*M2 ' Substitute the value of M1*M2 for the array variable MBOX (M1, M2).
50 NEXT M2 ' Return to line 30.
60 NEXT M1 ' Return to line 20.

[Explanation]
(1) It is possible to describe FOR-NEXT statements between other FOR-NEXT statements.Jumps in the pro-

gram caused by the FOR-NEXT instruction will add one more level to the control structure in a program.
It is possible to make the control structure of a program up to 16 levels deep. An error occurs at execu-
tion if 16 levels are exceeded.

(2) If a GOTO instruction forces the program to jump out from between a FOR statement and a NEXT state-
ment, the free memory available for control structure (stack memory) decreases. Thus, if a program is
executed continuously, an error will eventually occur. Write a program in such a way that the loop exits
when the condition of the FOR statement is met.

(3) A run-time error occurs under the following conditions.
*The counter's <Default Value> is greater than <End Value> and <Increment> is a positive number.
*The counter's <Default Value> is smaller than <End Value>, and <Increment> is a negative number.

(4) A run-time error occurs if a FOR statement and a NEXT statement are not paired.
(5) When the NEXT statement corresponds to the closest FOR statement, the variable name in the NEXT

statement can be omitted. In the example, "M2" in line 50 and "M1" in line 60 can be omitted. The pro-
cessing speed will be slightly faster to omit the counter variable.

FOR[]<Counter> = <Default value> TO <End Value> [STEP <Increment>]

 :

NEXT[] [<Counter 1>]
 Detailed explanation of command words 4-165

4

4MELFA-BASIC IV
FPRM (FPRM)

[Function]
Defines the order of the arguments, the type, and number for the main program that uses arguments in a
sub program (i.e., when the host program uses another program with CALL P).

[Format]

[Terminology]
<Dummy Argument> The variable in the sub program that is transferred to the main statement when

executed. All variables can be used. Up to 16 variables may be used.

[Reference Program]
<Main program>
10 M1=1
20 P2=P_CURR
30 P3=P100
40 CALLP "100",M1,P2,P3 ' It can be described like "CALLP "100", 1, P_CURR, P100" also.

<Sub program "100">
10 FPRM M1,P1,P2
20 IF M1=1 THEN GOTO 40
30 MOV P1
40 MVS P2
50 END ' Return to the main program.

[Explanation]
(1) FPRM is unnecessary if there are no arguments in the sub program that is called up.
(2) An error occur when the type or number is different between the argument of CALLP and the dummy

argument that defined by FPRM.
(3) It is not possible to pass the processing result of a sub program to a main program by assigning it in an

argument.
To use the processing result of a sub program in a main program, pass the values using external vari-
ables.

[Related instructions]
CALLP (Call P)

FPRM[]<Dummy Argument> [,<Dummy Argument>] ...
-166 Detailed explanation of command words

 4MELFA-BASIC IV
GETM (Get Mechanism)

[Function]
This instruction is used to control the robot by a program other than the slot 1 program when a multi-task is
used, or to control a multi-mechanism by setting an additional axis as a user-defined mechanism.
Control right is acquired by specifying the mechanism number of the robot to be controlled. To release con-
trol right, use the RELM instruction.

[Format]

[Terminology]
<Mechanism No.> 1 to 3, Specify this argument using a numerical or a variable.

The standard system's robot arm is assigned to mechanism 1.

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.
Task slot 1.
10 RELM ' Releases the mechanism in order to control mechanism 1 using slot 2.
20 XRUN 2,"10" ' Start the program 10 in slot 2.
30 WAIT M_RUN(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
10 GETM 1 ' Get the control of mechanism 1.
20 SERVO ON ' Turn on the servo of mechanism 1.
30 MOV P1
40 MVS P2
50 P3=P_CURR ' Substitute P3 in mechanism 1 current position.
60 SERVO OFF ' Turn mechanism 1 servo OFF.
70 RELM ' Releases the control right of mechanism 1.
80 END

[Explanation]
(1) Normally (in single task operation), mechanism 1 is obtained in the initial status; it is not necessary to

use the GETM instruction.
(2) Because the control right of the same mechanism cannot be acquired simultaneously by multiple tasks,

the following procedure is required in order to operate the robot by other than slot 1:
First, release control right using the RELM instruction by the slot 1 program. Next, acquire control right
using the GETM instruction by the slot program that operates the robot. An error will be generated if the
GETM instruction is executed again using a slot that has already acquired control right.

(3) The instructions requiring control right include the motor power ON/OFF instruction, the interpolation
instruction, the speed acceleration deceleration specification instruction, and the TOOL/BASE instruc-
tion.

(4) If the argument is omitted from the system status variable requiring the mechanism designation, the cur-
rently acquired mechanism will be designated.

(5) If the program is stopped, RELM will be executed automatically by the system. When the program is
restarted, GETM will be executed automatically.

(6) This instruction cannot be used in a constantly executed program.

[Related instructions]
RELM (Release Mechanism)

GETM[]<Mechanism No.>
 Detailed explanation of command words 4-167

4

4MELFA-BASIC IV
GOSUB (RETURN)(Go Subroutine)

[Function]
Calls up the subroutine at the designated line No. or line label. Be sure to return from the jump destination
using the RETURN instruction.

[Format]

[Terminology]
<Call Destination> Describe the line No. or label name.

[Reference Program]
<For a line number>

100 GOSUB 1000
110 END

1000 MOV P1
1010 RETURN ' Be sure to use the RETURN instruction to return.

<For a label>
100 GOSUB *LBL
110 END

1000 *LBL
1010 MOV P1
1020 RETURN ' Be sure to use the RETURN instruction to return.

[Explanation]
(1) Make sure to return from the subroutine by using the RETURN command. If return by GOTO command,

the memory for control structure (stack memory) will decrease, and it will cause the error at continuous
executing.

(2) The call of other subroutines is possible again by the GOSUB command out of the subroutine. This
approach can be employed approximately up to 800 times.

(3) The line number or label can be specified as a jump destination.
When the line or label of the call place does not exist, it becomes the execution-time error.

[Related instructions]
RETURN (Return)

GOSUB[]<Call Destination>
-168 Detailed explanation of command words

 4MELFA-BASIC IV
GOTO (Go To)

[Function]
This instruction makes a program branch to the specified line number or label line unconditionally.

[Format]

[Terminology]
<Branch Destination> Describe the line No. or label name.

[Reference Program]
(1) Specify the line number.
 10 MOV P1
 :
 100 GOTO 10 ' Returns to the line number 10.
 110 END

(2) Specify the label.
 100 GOTO *LBL ' Branches to the label *LBL.
 :
 1000 *LBL
 1010 MOV P1

[Explanation]
(1) A line number or label can be specified as a branch destination.
(2) If a branch destination or label does not exist, an error will occur during execution.

GOTO[]<Branch Destination>
 Detailed explanation of command words 4-169

4

4MELFA-BASIC IV
HLT (Halt)

[Function]
Interrupts the execution of the program and movement of the robot, and stops. The program which was
being executed at this time becomes standby status.

[Format]

[Reference Program]
(1) Stop the robot without condition during program execution.
150 HLT ' Stop the program without condition.

(2) Stop the robot on some conditions.
100 IF M_IN(18)=1 THEN HLT ' Stop the program execution when the input signal 18 turns on.

200 MOV P1 WTHIF M_IN(17)=1, HLT ' When the input signal 17 turns on during moving to P1, the pro-
gram execution is stopped.

[Explanation]
(1) Interrupts the execution of a program and decelerates the robot to a stop. The system will enter the wait-

ing state.
(2) If the HLT instruction is used in multitask operation, only the task slot that executed the HLT instruction is

paused.
(3) To restart, start the O/P or issue the start signal from an external source. The program will be restarted at

the next line after the HLT statement. Note that if the HLT statement is an appended statement, the
operation will restart from the same line of the program where it was interrupted.

[Related instructions]
END (End)

HLT
-170 Detailed explanation of command words

 4MELFA-BASIC IV
HOPEN / HCLOSE (Hand Open/Hand Close)

[Function]
Commands the hand to open or close.

[Format]

[Terminology]
<Hand No.> Select a numeric value between 1 and 8. Specify this argument using a

constant or a variable.
<Starting grasp forcer> This parameter is valid for the motorized hand, and invalid for any other

type of hand.
Set the required grasping force for starting the hand open/close.
Set the grasping force as a step between 0 and 63 (63 = 3.5kg).
The default value is 63. When omitted, the previous setting value will be
applied.

<Holding grasp force> This parameter is valid for the motorized hand, and invalid for any other
type of hand.
Set the required grasping force for holding the hand open/close.
Set the grasping force as a step between 0 and 63 (63 = 3.5kg).
The default value is 63. When omitted, the previous setting value will be
applied.

<Starting grasp force holding timer>This parameter is valid for the motorized hand.
Set the time to hold the starting grasping force as a value from 0.00 (sec.).
The default value is 0.3 sec.

[Reference Program]
10 HOPEN 1 ' Open hand 1.
20 DLY 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to open securely.)
30 HCLOSE 1 ' Close hand 1.
40 DLY 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to close securely.)
50 MOV PUP '

[Explanation]
(1) The operation (single/double) of each hand is set with parameter HANDTYPE.
(2) If the hand type is set to double solenoid, hands 1 to 4 can be supported. If the hand type is set to single

solenoid, hands 1 to 8 can be supported.
(3) The status of the hand output signal when the power is turned ON is set with parameter HANDINIT.
(4) The hand input signal can be confirmed with the robot status variable M_HNDCQ ("Hand input number").

The signal can also be confirmed with the input signals No. 900 to 907 (when there is one mechanism).
10 HCLOSE 1
20 IF M_HNDCQ(1)<>1 THEN GOTO 20
30 MOV P1

(5) There are related parameters. Refer to Page 330, "5.10 Automatic return setting after jog feed at pause"
and, Page 334, "5.13 About default hand status" of this manual.

HOPEN[]<Hand No.> [, <Starting grasp force>, <Holding grasp force>,
<Starting grasp force holding time>]

HCLOSE[]<Hand No.>
 Detailed explanation of command words 4-171

4

4MELFA-BASIC IV
[Related system variables]
M_IN/M_INB/M_INW (900s number), M_OUT/M_OUTB/M_OUTW (900s number), M_HNDCQ

[Related instructions]
LOADSET (Load Set), OADL (Optimal Acceleration)

[Related parameter]
HANDTYPE, HANDINIT
Refer to Page 330, "5.10 Automatic return setting after jog feed at pause"and, Page 334, "5.13 About
default hand status".
-172 Detailed explanation of command words

 4MELFA-BASIC IV
IF...THEN...ELSE...ENDIF (If Then Else)

[Function]
A process is selected and executed according to the results of an expression.

[Format]

This function is available for controller software version G1 or later.
This BREAK command is available for controller software version J1 or later.

[Terminology]
<Expression> Describe the expression targeted for comparison as a comparison operation expression

or logic operation expression.
<Process> Describe the process following THEN for when the comparison results are true, and the

process following ELSE for when the comparison results are false.

[Reference Program]
(1) The software version earlier than G1 edition.
 100 IF M1>10 THEN 1000 ' When M1 is larger than 10, jump to the line

number 1000.
 110 IF M1>10 THEN GOTO 200 ELSE GOTO 300 ' If M1 is larger than 10, it jumps to line number

200; if smaller than 10, it jumps to line num-
ber 300.
 The "GOTO" after" THEN" or "ELSE" can be
omitted.

 :
 200 M1=10
 210 MOV P1
 220 GOTO 400
 300 M1=-10
 310 MOV P2
 320 GOTO 400

(2) The software version is G1 edition or later.
 100 IF M1>10 THEN
 110 M1=10
 120 MOV P1
 130 ELSE
 140 M1=-10
 150 MOV P2
 160 ENDIF

IF[]<Expression>[]THEN[]<Process>[][ELSE <Process>]

IF[]<Expression>[]THEN
 <Process>
 <Process>
 BREAK
 :
[ELSE]
 <Process>
 <Process>
 BREAK
 :
ENDIF
 Detailed explanation of command words 4-173

4

4MELFA-BASIC IV
 * The description method of earlier than G1 edition is also possible.
 250 IF M2=0 THEN GOSUB *SUB1 ELSE GOSUB *SUB2

(3) When a IF statement is described inside THEN or ELSE (allowed in revision G1 and later)
 300 IF M1>10 THEN
 310 IF M2 > 20 THEN
 320 M1 = 10
 330 M2 = 10
 340 ELSE
 350 M1 = 0
 360 M2 = 0
 370 ENDIF
 380 ELSE
 390 M1 = -10
 400 M2 = -10
 410 ENDIF

(4) In the THEN or the ELSE, it can escape to the next line of ENDIF by BREAK.(Version J1 or later,)
 300 IF M1>10 THEN
 310 IF M2 > 20 THEN BREAK ' If the conditions are met, branches to line 390
 320 M1 = 10
 330 M2 = 10
 340 ELSE
 350 M1 = -10
 360 IF M2>20 THEN BREAK ' If the conditions are met, branches to line 390
 370 M2 = -10
 380 ENDIF
 390 IF M_BRKCQ=1 THEN HLT
 400 MOV P1

[Explanation]
(1) The IF .. THEN .. ELSE .. statements should be contained in one line.
(2) It is allowed to split an IF .. THEN .. ELSE .. ENDIF block over several lines.
(3) ELSE can be omitted.
(4) Make sure to include the ENDIF statement in the IF .. THEN .. ELSE .. ENDIF block.
(5) If the GOTO instruction is used to jump out from inside an IF .. THEN .. ELSE .. ENDIF block, an error

will occur when the memory for control structure (stack memory) becomes insufficient.
(6) For IF .. THEN .. ELSE .. ENDIF, it is possible to describe IF .. THEN .. ELSE .. ENDIF inside THEN or

ELSE. (UP to eight levels of nesting is allowed.)
(7) GOTO following THEN or ELSE may be omitted.

Example) IF M1 > 10 THEN 200 ELSE 300
Also, only when THEN is followed by GOTO, either one of THEN or GOTO may be omitted.
ELSE cannot be omitted.

 Example) IF M1 > 10 THEN GOTO 200 (The program at left can be rewritten as shown below.)
--- IF M1 > 10 THEN 200
--- IF M1 > 10 GOTO 200

(8) In the THEN or the ELSE, it can escape to the next line of ENDIF by BREAK. That is, process of IF
THEN ENDIF can be skipped..(Version J1 or later,)
-174 Detailed explanation of command words

 4MELFA-BASIC IV
INPUT (Input)

[Function]
Inputs data into a file (including communication lines). Only ASCII character data can be received.
Please refer to Page 337, "5.15 About the communication setting", which lists related parameters.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 8.

This corresponds to the file No. assigned with the OPEN command.
<Input data name> Describe the variable name for saving the input data. All variables can be described.

[Reference Program]
10 OPEN "COM1:" AS #1 ' Assign RS-232-C to file No. 1.
20 INPUT #1, M1 ' The value will be set to the numerical variable M1 if data are inputted from the

keyboard.
30 INPUT #1, CABC$ '
 :
100 CLOSE #1

[Explanation]
(1) Data is input from file having the file No. opened with the OPEN statement, and is substituted in the vari-

able. If the OPEN statement has not been executed, an error will occur.
(2) The type of data input and the type of variable that is substituting it must be the same.
(3) When describing multiple variable names, use a comma (,) between variable names as delimiters.
(4) When the INPUT statement is executed, the status will be "standby for input. "The input data will be sub-

stituted for the variables at the same time as the carriage return (CR and LF) are input.
(5) If the protocol (in the case of the standard port: the "CRPC232" parameter is 0) of the specified port is for

PC support (non procedure), it is necessary to attach "PRN" at the head of any data sent from a PC. Nor-
mally, the standard port is connected to a PC and used for transferring and debugging robot programs.
Therefore, it is recommended to use the optional expansion serial interface if a data link is used.

(6) If the number of elements input is greater than the number of arguments in the INPUT statement, they
will be read and discarded.
When the END or CLOSE statement is executed, the data saved in the buffer will be erased.

 Example) To input both a character string, numeric value and position.
10 INPUT #1,C1$,M1,P1

Data sent from the PC side
 (when received by the standard port of the robot: the "CRPS232" parameter is 0)

MELFA is substituted in C1$, 125.75 in M1, and (130.5, -117.2,55.1,16.2,0,0)(1,0) in P1.

[Related instructions]
OPEN (Open), CLOSE (Close), PRINT (Print)

INPUT[]#<File No.>, <Input data name> [, <Input data name>] ...

PRNMELFA,125.75,(130.5,-117.2,55.1,16.2,0,0)(1,0) CR
 Detailed explanation of command words 4-175

4

4MELFA-BASIC IV
JOVRD (J Override)

[Function]
Designates the override that is valid only during the robot's joint movements.

[Format]

[Terminology]
<Designated override> Describe the override as a real number.

A numeric operation expression can also be described.
Unit: [%] (Recommended range: 1 to 100.0)

[Reference Program]
10 JOVRD 50
20 MOV P1
30 JOVRD M_NJOVRD ' Set the default value.

[Explanation]
(1) The JOVRD command is valid only during joint interpolation.
(2) The actual override is = (Operation panel (T/B) override setting value) x (Program override (OVRD com-

mand)) x (Joint override (JOVRD command)). The JOVRD command changes only the override for the
joint interpolation movement.

(3) The 100% <Designate override> is the maximum capacity of the robot. Normally, the system default
value (M_NOVRD) is set to 100%. The value is reset to the default value when the END statement is
executed or the program is reset.

[Related instructions]
OVRD (Override), SPD (Speed)

[Related system variables]
M_JOVRD/M_NJOVRD/M_OPOVRD/M_OVRD/M_NOVRD
(M_NJOVRD:System default value, M_JOVRD:Currently specified joint override)

JOVRD[]<Designated override>
-176 Detailed explanation of command words

 4MELFA-BASIC IV
JRC (Joint Roll Change)

[Function]
• This instruction rewrites the current coordinate values by adding +/-360 degrees to the current joint coordi-

nate values of the applicable axis (refer to <Axis No> in [Terminology]) of the robot arm.
• User-defined axis (additional axis, user defined mechanism)

This instruction rewrites the current coordinate values by adding/subtracting the value specified by a
parameter to/from the current joint coordinate values of the specified axis. This instruction can be used for
both rotating and linear axes. The origin can also be reset at the current position.

[Format]

<Numeric Value> can be used in the controller's software version J1 or later.

[Terminology]
<+1> The current joint angle of the designated axis is incremented by the amount designated

in parameter JRCQTT(The sign can be omitted.). For the priority axes of the robot arm,
it is fixed at 360 degrees.

<-1> The current joint angle of the designated axis is decremented by the amount designated
in parameter JRCQTT. For the priority axes of the robot arm, it is fixed at 360 degrees.

<0> The origin for the designated axis is reset at the value designated in parameter JRCORG.
This can be used only for the user-defined axis.

<Axis No> The target axis is specified with the number. The priority axes are used if omitted.
[Applicable Models and Applicable Axes]
(1)Applicable models and priority axes

(2)User defined additional axes of all models
(3)All axes of user defined mechanisms

The software version J1 or later.
<Numeric Value> Specify an incremental/decremental number (a multiple of 360 degrees). Description

by the constant or the variable is possible (J1 edition or later is possible).
Example) +3: Increases the applicable axis angle by 1080 degrees.

 -2: Decreases the angle by 720 degrees..

[Reference Program]
10 MOV P1 ' Moves to P1.
20 JRC 1 ' Add 360 degrees to the current coordinate values of the applicable axis.
30 MOV P1 ' Moves to P1.

The software version J1 or later.
10 MOV P1 ' Moves to P1.(The movement to which the J6 axis moves in the minus direction)
20 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
30 MOV P1 ’ Moves to P1.
40 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
50 MOV P1 ' Moves to P1.
60 JRC -2 ’ Subtract 720 degrees from the current coordinate values of the applicable axis.

(Reverts)

JRC < [+] 1 / -1 / 0 > [, < Axis No>]

JRC < [+] <Numeric Value> / -<Numeric Value> / 0 > [, < Axis No>]

RV-A series: J6 axis
RH-A series: J4 axis
RV-S series: J6 axis
RH-S series: J4 axis
RP-A series: J4 axis
 Detailed explanation of command words 4-177

4

4MELFA-BASIC IV
[Explanation]
(1) With the JRC 1/-1 instruction (JRC n/-n), the current joint coordinate values of the specified axis are

incremented/decremented.
The origin for the designated axis is reset with the JRC 0 command.
Although the values of the joint coordinates change, the robot does not move.

(2) When using this command, change the movement range of the target axis beforehand so that it does not
leave the movement range when the command is executed. The range can be changed by changing
the - side and + side value of the corresponding axis in the joint movement range parameter "MEJAR".
Set the movement range for the rotating axis in the range of -2340 deg. to 2340 deg.

(3) If the designated axis is omitted, the priority axis will be the target. The priority axis is the rotating axis (J6
axis) at the end of the robot.

(4) If the designated axis is omitted when a priority axis does not exist (robot incapable of JRC), or if the
designated axis is not a target for JRC, an error will occur when the command is executed.

(5) If the origin is not set, an error will occur when the command is executed.
(6) The robot is stopped while the JRC command is executed. Even if CNT is validated, the interpolation

connection will not be continuous when this command is executed.
(7) The following parameter must be set before using the JRC command.

Set JRCEXE to 1. (JRC execution enabled)
Change the movement range of the target axis with MEJAR.
Set the position change amount during the JRC 1/-1(JRC n/-n) execution with JRCQTT.
(Only for the additional axis or user-defined mechanism.)
Set the origin position for executing JRC 0 with JRCORG.
 (Only for the additional axis or user-defined mechanism.)

(8) When parameter JRCEXE is set to 0, no process will take place even if JRC command is executed.
(9) If the movement amount designated with parameter JRCQTT is not within the pulse data 0 to MAX., an

error will occur during the initialization. Here, MAX. is 2 ^ (Number of encoder bits + 15) - 1. For example,
with a 13-bit encoder (8192 pulses), this will be MAX. = 2 ^ (13+15)-1 = 0x0fffffff,
and for a 14-bit encoder (16384 pulses), this will be MAX. 2 ^ (14+15)-1 = 0x1fffffff.

The movement amount to pulse data conversion is as follows:
For rotating axis

Pulse data = movement amount (deg.)/360 * gear ratio denominator/gear ratio numerator * Num-
ber of encoder pulses

For linear axis
Pulse data = movement amount (mm) * gear ratio denominator/gear ratio numerator * Number of
encoder pulses

(10) The origin data will change when JRC is executed, so the default origin data will be unusable.
If the controller needs to be initialized due to a version upgrade, etc., the parameters must be backed
up beforehand in the original state.

(11) Step return operation is not possible with the JRC command.
(12) This instruction cannot be used in a constantly executed program.

[Related parameter]
JRCEXE

Set whether to enable/disable the JRC execution.
Execution disabled = 0 (default value)/execution enabled = 1

JRCQTT
Designate the amount to move (1 deg./1mm unit) when incrementing or decrementing with the JRC com-
mand in additional axis or user-defined mechanism.
For the JRC's applicable axis on the robot arm side, it is fixed at 360 degrees regardless of this setting.

JRCORG
Designate the origin for executing JRC 0. in additional axis or user-defined mechanism.
Refer to Page 306, "5 Functions set with parameters" for detail.

[Target mechanism and target axis]
•RV-1A/2AJ, RV-4A/5AJ and related models, RV-20A J6 axis
•User-defined additional axis for all mechanisms
•All user-defined mechanism axes
-178 Detailed explanation of command words

 4MELFA-BASIC IV
LOADSET (Load Set)

[Function]
This instruction specifies the condition of the hand/workpiece at execution of the OADL instruction.

[Format]

[Terminology]
<Hand condition No.> 1 to 8.Designate the hand condition (HNDDAT 1 to 8) No. for which the weight and

size are designated. In the RV-S/RH-S series, 0 (HNDDAT0) can also be set.
<Workpiece condition No.>

1 to 8. Designate the hand condition (WRKDAT 1 to 8) No. for which the weight
and size are designated. In the RV-S/RH-S series, 0 (WRKDAT0) can also be set.

[Reference Program]
10 OADL ON
20 LOADSET 1,1 ' Hand 1(HNDDAT1) and workpiece 1(WRKDAT1) conditions.
30 MOV P1
40 MOV P2
50 LOADSET 1,2 ' Hand 1(HNDDAT1) and workpiece 2(WRKDAT1) conditions.
60 MOV P1
70 MOV P2
80 OADL OFF

For RV-S/RH-S series
10 OADL ON
20 LOADSET 1,1 ' Hand 1(HNDDAT1) and workpiece 1(WRKDAT1) conditions.
30 MOV P1
40 LOADSET 0,0 ' Hand 0(HNDDAT0) and workpiece 0(WRKDAT0) conditions.
50 MOV P2
60 OADL OFF

[Explanation]
(1) Set the hand conditions and workpiece conditions used for optimum acceleration/deceleration. This is

used when setting the optimum acceleration/deceleration for workpiece types having different weights.
(2) The maximum load is set for the hand when the program execution starts.
(3) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the hand conditions in parameter

(HNDDAT 1 to 8).
(4) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the workpiece conditions in

parameter (WRKDAT 1 to 8).
(5) The hand conditions and workpiece conditions changed when this command is executed are reset to the

system default value when the program is reset and when the END statement is executed.
As the system default values, the hand conditions are set to the rated load, and the workpiece condi-
tions are set to none (0kg).

(6) Regarding the system initial values, HNDDAT0, WRKDAT0 and HNDHOLD0 can be changed in the RV-
S/RH-S series.

(7) Refer to Page 340, "5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)"
for details on the optimum acceleration/deceleration.

[Related instructions]
OADL (Optimal Acceleration), HOPEN / HCLOSE (Hand Open/Hand Close)

[Related parameter]
HNDDAT1 to 8, WRKDAT1 to 8, HNDHOLD1 to 8
Refer to Page 340, "5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)".
Refer to Page 314, "Table 5-2: List Signal parameter" for the ACCMODE.

LOADSET[]<Hand condition No.>, <Workpiece condition No.>
 Detailed explanation of command words 4-179

4

4MELFA-BASIC IV
MOV (Move)

[Function]
Using joint interpolation operation, moves from the current position to the destination position.

[Format]

[Terminology]
<Movement Target Position>This is the final position for interpolation operation. This position may be specified

using a position type variable and constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a position

separated by the designated distance in the tool coordinate system Z axis direc-
tion (+/- direction).

<Constants 1> 1/0 : Detour/short cut. The default value is 1(detour).
<Constants 2> Invalid (Specify 0).
<Appended conditions> The WTH and WHTIF statements can be used.

[Reference Program]
10 MOV P1 TYPE 1,0
20 MOV J1
30 MOV (PLT 1,10),100.0 WTH M_OUT(17)=1
40 MOV P4+P5,50.0 TYPE 0,0 WTHIF M_IN(18)=1,M_OUT(20)=1

[Explanation]
(1) The joint angle differences of each axis are evenly interpolated at the starting point and endpoint posi-

tions. This means that the path of the tip cannot be guaranteed.
(2) By using the WTH and WTHIF statement, the signal output timing and motion can be synchronized.
(3) The numeric constant 1 for the TYPE designates the posture interpolation amount.
(4) Detour refers to the operating exactly according to the teaching posture. Short cut operation may take

place depending on the teaching posture.
(5) Short cut operation refers to posture interpolation between the start point and end point in the direction

with less motion.
(6) The detour/short cut designation is significant when the posture axis has a motion range of (180 deg. or

more.
(7) Even if short cut is designated, if the target position is outside the motion range, the axis may move with

the detour in the reverse direction.
(8) The TYPE numeric constant 2 setting is insignificant for joint interpolation.
(9) This instruction cannot be used in a constantly executed program.
(10) If paused during execution of a MOV instruction and restarted after jog feed, the robot returns to the

interrupted position and restarts the MOV instruction. The interpolation method (JOINT interpolation / XYZ
interpolation) which returns to the interrupted position can be changed by the "RETPATH" parameter.
Moreover, it is also possible by changing the value of this RETPATH parameter to move to the direct target
position, without returning to the interrupted position. (Refer to Page 330, "5.10 Automatic return setting
after jog feed at pause")

Fig.4-9:Example of joint interpolation motion path

MOV[]<Target Position> [, <Close Distance>] [[]TYPE[]<Constants 1>, <Constants 2>][]
[<Appended conditions>]

Ｐ＿ＣＵＲＲ

Ｐ１
-180 Detailed explanation of command words

 4MELFA-BASIC IV
MVA (Move Arch)

[Function]
This instruction moves the robot from the current position to the target position with an arch movement (arch
interpolation).

[Format]
This function is available for controller software version G2 or later.

[Terminology]
<Target Position> Final position of interpolation movement. This position may be specified using a

position type variable and constant, or a joint variable.
<Arch number> A number defined by the DEF ARCH instruction (1 to 4).

If the argument is omitted, 1 is set as the default value.

[Reference Program]
10 DEF ARCH 1,5,5,20,20 ' Defines the arch shape configuration.
20 OVRD 100,20,20 ' Specifies override.
30 ACCEL 100,100,50,50,50,50 ' Specifies acceleration/deceleration rate.
20 MVA P1,1 ' Performs the arch motion movement according to the shape configura-

tion defined in line 10.
30 MVA P2,2 ' Moves the robot according to the default values registered in the

parameters.

MVA[]<Target Position> [, <Arch number>]
 Detailed explanation of command words 4-181

4

4MELFA-BASIC IV
[Explanation]
(1) The robot moves upward along the Z-axis direction from the current position, then moves to a position

above the target position, and finally moves downward, reaching the target position. This so-called arch
motion movement is performed with one instruction.

(2) If the MVA instruction is executed without the DEF ARCH instruction, the robot moves with the arch
shape configuration set in the parameters. Refer to Page 149, " DEF ARCH (Define arch)" for a detailed
description about the parameters.

(3) The interpolation form, type and other items are also defined by the DEF ARCH instruction; refer to Page
149, " DEF ARCH (Define arch)".

(4) This instruction cannot be used in a constantly executed program.
(5) If paused during execution of a MVA instruction and restarted after jog feed, the robot returns to the inter-

rupted position and restarts the MVA instruction. (this can be changed by the "RETPATH" parameter).
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted posi-
tion can be changed by the "RETPATH" parameter. (Refer to Page 330, "5.10 Automatic return setting
after jog feed at pause")

Fig.4-10:Example of arch interpolation motion path (seen from the side)

[Related instructions]
DEF ARCH (Define arch), ACCEL (Accelerate), OVRD (Override)

DEF ARCH 1,5,5,20,20

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Upward
retreat amount)

20mm (Downward
retreat amount)

Target positionStart position

DEF ARCH 1,5,5,20,20

*If Z is different between the movement starting position and the target position,
 it will operate as follows:

Start position

Target position

20mm (Upward
retreat amount)

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Downward
retreat amount)
-182 Detailed explanation of command words

 4MELFA-BASIC IV
MVC (Move C)

[Function]
Carries out 3D circular interpolation in the order of start point, transit point 1, transit point 2 and start point.

[Format]

[Terminology]
<Start point> The start point and end point for a circle. Describe a position operation expression or

joint operation expression.
<Transit point 1> Transit point 1 for a circular arc. Describe a position operation expression or joint oper-

ation expression.
<Transit point 2> Transit point 2 for a circular arc. Describe a position operation expression or joint oper-

ation expression.
<Additional condition> Describe a WTH conjunction or a WTHIF conjunction

[Reference Program]
10 MVC P1,P2,P3
20 MVC P1,J2,P3
30 MVC P1,P2,P3 WTH M_OUT(17)=1
40 MVC P3,(PLT 1,5),P4 WTHIF M_IN(20)=1,M_OUT(21)=1

[Explanation]
(1) In circular interpolation motion, a circle is formed with the 3 given points, and the circumference is

moved. (360 degrees)
(2) The posture at the starting point is maintained during circle interpolation. The postures while passing

points 1 and 2 are not considered.
(3) If the current position and the starting position do not match, the robot automatically moves to the start-

ing point based on the linear interpolation (3-axis XYZ interpolation), and then performs the circle inter-
polation.

(4) If paused during execution of a MVC instruction and restarted after jog feed, the robot returns to the
interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 330, "5.10 Automatic return set-
ting after jog feed at pause")

(5) This instruction cannot be used in a constantly executed program.

Fig.4-11:Example of circle interpolation motion path

MVC[]<Start point>,<Transit point 1>,<Transit point 2>[][<Additional condition>]

P1

P_CURR
P2

P3

MVC P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)
 Detailed explanation of command words 4-183

4

4MELFA-BASIC IV
MVR (Move R)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point via transit
points.

[Format]

[Terminology]
<Start Point> Start point for the arc. Describe a position operation expression or joint operation

expression.
<Transit Point> Transit point for the arc. Describe a position operation expression or joint operation

expression.
<End Point> End point for the arc. Describe a position operation expression or joint operation

expression.
<Constants 1> Detour/short cut = 1/0, The default value is 0.
<Constants 2> 3-axis XYZ/Equivalent rotation = 1/0, The default value is 0.
<Appended conditions> The WTH and WTHIF statements can be used.

[Reference Program]
10 MVR P1,P2,P3
20 MVR P1,J2,P3
30 MVR P1,P2,P3 WTH M_OUT(17)=1
40 MVR P3,(PLT 1,5),P4 WTHIF M_IN(20)=1,M_OUT(21)=1

MVR[]<Start Point>, <Transit Point>, <End Point>
[[]TYPE[]<Constants 1>, <Constants 2>][] [<Appended Condition>]
-184 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the transit point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a MVR instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 330, "5.10 Automatic return set-
ting after jog feed at pause")

(5) If the start point and end point structure flags differ for an interpolation method other than 3-axis XYZ
interpolation, an error will occur at the execution.

(6) Of the three designated points, if any points coincide with the other, or if three points are on a straight
line, linear interpolation will take place from the start point to the end point. An error will not occur.

(7) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and the
robot will move with the taught posture.

(8) Numeric constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out
interpolation on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular
point.

(9) This instruction cannot be used in a constantly executed program.

Fig.4-12:Example of circular interpolation motion path 1

P2

P1 P3

MVR P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P_CURR
 Detailed explanation of command words 4-185

4

4MELFA-BASIC IV
MVR2 (Move R2)

[Function]
Carries out 3-dimensional circular interpolation motion from the start point to the end point on the arc com-
posed of the start point, end point, and reference points.
The direction of movement is in a direction that does not pass through the reference points.

[Format]

[Terminology]
<Start Point> Start point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<End Point> End point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Reference point> Reference point for a circular arc. This position may be specified using a position

type variable and constant, or a joint variable.
<Constants 1> Detour/short cut = 1/0, The default value is 0.
<Constants 2> 3-axis XYZ/Equivalent rotation = 1/0, The default value is 0.
<Appended conditions> The WTH and WTHIF statements can be used.

[Reference Program]
10 MVR2 P1,P2,P3
20 MVR2 P1,J2,P3
30 MVR2 P1,P2,P3 WTH M_OUT(17)=1
40 MVR2 P3,(PLT 1,5),P4 WTHIF M_IN(20)=1,M_OUT(21)=1

MVR2[]<Start Point>, <End Point>, <Reference point>
[[]TYPE[]<Constants 1>, <Constants 2>][][<Appended Condition>]
-186 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the reference point posture has no

effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a MVR instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 330, "5.10 Automatic return set-
ting after jog feed at pause")

(5) The direction of movement is in a direction that does not pass through the reference points.
(6) If the start point and end point structure flags differ for an interpolation method other than 3-axis XYZ

interpolation, an error will occur at the execution.
(7) Of the three designated points, if any points coincide with the other, or if three points are on a straight

line, linear interpolation will take place from the start point to the end point. An error will not occur.
(8) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and the

robot will move with the taught posture.
(9) Numeric constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out

interpolation on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular
point.

(10) This instruction cannot be used in a constantly executed program.

Fig.4-13:Example of circular interpolation motion path 2

P2

P1 P3

MVR2 P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P2

P1

P4

MVR2 P1, P2, P4

P_CURR
P_CURR

Moves by XYZ
interpolation (3-axis
XYZ interpolation)
 Detailed explanation of command words 4-187

4

4MELFA-BASIC IV
MVR3 (Move R 3)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point on the arc
composed of the center point, start point and end point.

[Format]

[Terminology]
<Start Point> Start point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<End Point> End point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Center Point> Center point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Constants 1> Detour/short cut = 1/0, The default value is 0.
<Constants 2> 3-axis XYZ/Equivalent rotation = 1/0, The default value is 0.
<Appended conditions> The WTH and WTHIF statements can be used.

[Reference Program]
10 MVR3 P1,P2,P3
20 MVR3 P1,J2,P3
30 MVR3 P1,P2,P3 WTH M_OUT(17)=1
40 MVR3 P3,(PLT 1,5),P4 WTHIF M_IN(20)=1,M_OUT(21)=1

MVR3[]<Start Point>, <End Point>, <Center Point>
[[]TYPE[]<Constants 1>ÅC<Constants 2>][] [<Appended Condition>]
-188 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the center point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a MVR3 instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted position
can be changed by the "RETPATH" parameter. (Refer to Page 330, "5.10 Automatic return setting after jog
feed at pause")

(5) If the start point and end point structure flags differ for an interpolation method other than 3-axis XYZ
interpolation, an error will occur at the execution.

(6) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and the
robot will move with the taught posture.

(7) Numeric constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out inter-
polation on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

(8) The fan angle from the start point to the end point is 0 < fan angle < 180 deg.
(9) Designate the positions so that the difference from the center point to the end point and the center point to

the distance is within 0.01mm.
(10) If the three points are on the same line, or if the start point and center point, or end point and center point

are the same, an error will occur.
(11) If the start point and end point are the same or if three points are the same, an error will not occur, and

the next command will be executed. Note that if the posture changes at this time, only the posture will be
interpolated.

(12) This instruction cannot be used in a constantly executed program.

Fig.4-14:Example of circular interpolation motion path 3

P2

P3

P1

P_CURR

MVR3 P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)
 Detailed explanation of command words 4-189

4

4MELFA-BASIC IV
MVS (Move S)

[Function]
Carries out linear interpolation movement from the current position to the movement target position.

[Format 1]

[Format 2]

[Terminology]
<Movement Target Position> The final position for the linear interpolation. This position may be specified

using a position type variable and constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a posi-

tion separated by the designated distance in the tool coordinate system Z
axis direction (+/- direction).

<Constants 1> Detour/short cut = 1/0, The default value is 0(detour).
<Constants 2> 3-axis XYZ/Equivalent rotation = 1/0, The default value is 0(equivalent rota-

tion).
<Appended conditions> The WTH and WTHIF statements can be used.
<Separation Distance> When this value is designated, the axis will move the designated distance

from the current position to the Z axis direction (+/- direction) of the tool coor-
dinate system.

[Reference Program]
(1) Move to the target position P1 by XYZ interpolation.
10 MVS P1

(2)Turns on the output signal 17 at the same time if it moves to the target position P1 by linear interpolation.
10 MVS P1,100.0 WTH M_OUT(17)=1

(3)Turns on output signal 20 if the input signal 18 is turned on while moving 50 mm in the Z direction of the
tool coordinate system of the target position P4+P5 (relative operation position obtained by addition) by
linear interpolation.

20 MVS P4+P5, 50.0 WTHIF M_IN(18)=1, M_OUT(20)=1

(4)Moves 50 mm in the Z direction of the tool coordinate system from the current position by linear interpolation.
30 MVS ,50

MVS[]<Movement Target Position> [, <Close Distance>]
[[]TYPE <Constants 1>,<Constants 2>][][<Appended Condition>]

MVS[], <Separation Distance> [][<Interpolation Type>]
-190 Detailed explanation of command words

 4MELFA-BASIC IV
[Explanation]
(1) Linear interpolation motion is a type of movement where the robot moves from its current position to the

movement target position so that the locus of the control points is in a straight line.
(2) The posture is interpolation from the start point to the end point.
(3) In the case of the tool coordinate system specified by using <proximity distance> or <separation dis-

tance>, the + and - directions of the Z axis vary depending on the robot model. Refer to Page 324, "5.6
Standard Tool Coordinates" for detail. The "Fig.4-15:Example of movement at linear interpolation" is the
example of RV-1A movement.

Fig.4-15:Example of movement at linear interpolation

(4) If paused during execution of a MVS instruction and restarted after jog feed, the robot returns to the inter-
rupted position and restarts the MVS instruction. This can be changed by the "RETPATH" parameter,
and also the interpolation method (JOINT interpolation / XYZ interpolation) which returns to the inter-
rupted position can be changed by same parameter. Some robots for liquid crystal transportation have
different default values of this parameter. Refer to Page 330, "5.10 Automatic return setting after jog
feed at pause".

(5) This instruction cannot be used in a constantly executed program.
(6) If the start point and end point structure flags differ for an interpolation method other than 3-axis XYZ

interpolation, an error will occur at the execution.
(7) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and the

robot will move with the taught posture.
(8) Numeric constant 2 specifies the type of posture interpolation. Three-axis XYZ operation is used to pass

through near a singular point in order to perform interpolation in the coordinate system of (X, Y, Z, J4,
J5, J6).

ＭＶＳ Ｐ１

Ｐ１

P_CURR
P_CURR

Ｐ１

MVS P1,-100

100mm

P_CURR

MVS ,-100
100mm
 Detailed explanation of command words 4-191

4

4MELFA-BASIC IV
(9) Description of singular points.
<In the case of a vertical 6-axis robot>
Movement from posture A, through posture B, to posture C cannot be performed using the normal linear
interpolation (MVS).

This limitation applies only when J4 axis is at zero degrees at all
the postures A, B, and C. This is because the structure flag of axis
J5 (wrist axis) is FLIP for posture A and NONFLIP for posture C.
Moreover, in posture B, the wrist is fully extended and axes J4
and J6 are located on the same line. In this case, the robot cannot
perform a linear interpolation position calculation.
The 3-axis XYZ (TYPE 0, 1) method in the command option of
MVS should be used if it is desired to perform linear interpolation
based on such posture coordinates. Note that, strictly speaking,
this 3-axis XYZ method does not maintain the postures as it
evenly interpolates the joint angle of axes J4, J5, and J6 at pos-
ture A and C. Therefore, it is expected that the robot hand's pos-
ture may move front and back while moving from posture A to
posture C.
In this case, add one point in the middle to decrease the amount
of change in the hand's posture.

Another singular point is when the center of axis J5 is on the ori-
gin and the wrist is facing upward. In this case, J1 and J6 are
located on the same axis and it is not possible to calculate the
robot position.

Fig.4-16:Singular point 1

<In the case of a 6-axis robot for liquid crystal transportation>

The singular points are when the wrist axis J5 is at +90
degrees, and when the center of axis J6 is located at the
origin and the wrist is facing upward. In these cases, axes
J1 and J5 are located on the same axis and it is not possi-
ble to calculate the robot position.

Fig.4-17:Singular point 2

NONFLIP

FLIP

 About singular points of vertical 6-axis robots

1) Posture A

Posture at which the
flag changes status

2) Posture B

3) Posture C

0 °

+90°

The s in g u la r p o in t is a t ± 9 0 °

Fig u re o f th e h an d seen from th e sid e
-192 Detailed explanation of command words

 4MELFA-BASIC IV
OADL (Optimal Acceleration)

[Function]
Automatically sets the optimum acceleration/deceleration according to the robot hand's load state (Optimum
acceleration/deceleration control).
By employing this function, it becomes possible to shorten the robot's motion time (tact).
The acceleration/deceleration speed during optimum acceleration/deceleration can be calculated using the
following equation:

Acceleration/deceleration speed (sec) = Optimum acceleration/deceleration speed (sec) x ACCEL instruc-
tion (%) x M_SETADL (%)

* The optimum acceleration/deceleration speed is the optimum acceleration/deceleration speed calculated
when an OADL instruction is used.

[Format]

[Terminology]
<ON / OFF> ON : Start the optimum acceleration/deceleration speed.

OFF : End the optimum acceleration/deceleration speed.

[Reference Program]
10 OADL ON
20 MOV P1 ' Move with maximum load.
30 LOADSET 1ÅC1 ' Set hand 1 and workpiece 1.
40 MOV P2 ' Move with hand 1 + workpiece 1 load.
50 HOPEN 1 '
60 MOV P3 ' Move with hand 1 load.
70 HCLOSE 1 '
80 MOV P4 ' Move with hand 1 + workpiece 1 load.
90 OADL OFF

*When parameter HNDHOLD1 is set to 0, 1

[Explanation]
(1) The robot moves with the optimum acceleration/deceleration according to the hand conditions and work-

piece conditions designated with the LOADSET command.
(2) The workpiece grasp/not grasp for when the hand is opened or closed is set with parameter HNDHOLD

1 to 8.
(3) Initial setting of OADL can be changed by the ACCMODE parameter. (Refer to Page 314, "Table 5-2: List

Signal parameter")
(4) Once OADL is ON, it is valid until OADL OFF is executed or until the program END is executed.
(5) Depending on the conditions of the hand and/or workpiece, the motion time may become longer than

usual.
(6) It is possible to perform the optimum acceleration/deceleration operation by using the LOADSET and

OADL instructions, and by setting the HNDDAT1(0) through 8 and WRKDAT1(0) through 8 parameters to
appropriate values. (Refer to Page 340, "5.16 Hand and Workpiece Conditions (optimum acceleration/
deceleration settings)")

(7) The value of the acceleration/deceleration speed distribution rate in units of axes are predetermined by
the JADL parameter. This value varies with models in the S series. Refer to the JADL parameter.

OADL[]<ON / OFF>
 Detailed explanation of command words 4-193

4

4MELFA-BASIC IV
Fig.4-18:Acceleration/deceleration pattern at light load

[Related instructions]
ACCEL (Accelerate), LOADSET (Load Set), HOPEN / HCLOSE (Hand Open/Hand Close)

[Related parameter]
HNDDAT 0 to 8, WRKDAT 0 to 8, HNDHOLD 1 to 8, ACCMODE, JADL

S
p
ee

d

Time

S
p
ee

d

Time

OADL ON
-194 Detailed explanation of command words

 4MELFA-BASIC IV
ON COM GOSUB (ON Communication Go Subroutine)

[Function]
Defines the starting line of a branching subroutine when an interrupt is generated from a designated com-
munication line.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 3 assigned to the communication line.
<Call Destination> Describe the line No. and label name.

[Reference Program]
If an interrupt is generated from the file No. 1 communication line (COM1:), carry out the label RECV pro-

cess.
 10 OPEN "COM1:" AS #1 ' Communication line opening.
 20 ON COM(1) GOSUB *RECV' The definition of interruption.
 30 COM(1) ON ' Enable interrupt from file No. 1 communication line.
 40 '
100 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
110 '
120 MOV P1
130 COM(1) STOP ' Suspend the interrupt during movement only from P1 to P2.
140 MOV P2
150 COM(1) ON ' If there are some communications during movement from P1 to P2, the

interrupt occurs here.
160 '
170 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
260 '
270 COM(1) OFF ' Disable interrupt from file No. 1 communication line.
280 CLOSE #1
290 END
 :
 :
3000 *RECV ' Communication interruption processing.
3010 INPUT #1, M0001 ' Set the received information as M0001 and P0001.
3020 INPUT #1, P0001
 :
3100 RETURN 1 ' Returns control to the next line of interrupted line.

[Explanation]
(1) If the file No. is omitted, 1 will be used as the file No.
(2) The file Nos. with the smallest No. have the order of priority for the interrupt.
(3) If a communication interrupt is generated while the robot is moving, the robot will stop.

It is possible to use COM STOP to stop the interrupt, and prevent the robot from stopping.
(4) Interrupts are prohibited in the initial state. To enable interrupts, execute the COM ON instruction after

this instruction.
(5) Make sure to return from a subroutine using the RETURN instruction. An error occurs if the GOTO

instruction is used to return, because the free memory available for control structure (stack memory)
decreases and eventually becomes insufficient.

[Related instructions]
COM ON/COM OFF/COM STOP (Communication ON/OFF/STOP), RETURN (Return), OPEN (Open),
INPUT (Input), PRINT (Print), CLOSE (Close)

ON[]COM[][(<File No.>)][]GOSUB[]<Call Destination>
 Detailed explanation of command words 4-195

4

4MELFA-BASIC IV
ON ... GOSUB (ON Go Subroutine)

[Function]
Calls up the subroutine at the line No. or label corresponding to the value.

[Format]

[Terminology]
<Terminology> Designate the line No. or label on the line to branch to with a numeric operation expression.
<Call Destination> Describe the line No. or the label No. The maximum number is 32.

[Reference Program]
Sets the value equivalent to three bits of input signal 16 in M1, and branches according to the value of M1
(1 through 7).
(Calls line 1000 if M1 is 1, label LSUB if M1 is 2, line 2000 if M1 is 3, 4 or 5, and label L67 if M1 is 6 or 7.)
10 M1 = M_INB(16) AND &H7
20 ON M1 GOSUB 1000,*LSUB,2000,2000,2000,*L67,*L67

1000 ' Describes processing when M1=1.
1010 '
1200 RETURN ' Be sure to return by using RETURN.

1210 *LSUB
1220 ' Describes processing when M1=2.
1300 RETURN ' Be sure to return by using RETURN.

1700 *L67
1710 ' Describes processing when M1=6 or M1=7.
1720 RETURN ' Be sure to return by using RETURN.

2000 ' Describes processing when M1=3, M1=4, or M1=5.
2010 '
2020 RETURN ' Be sure to return by using RETURN.

[Explanation]
(1) The value of <Expression> determines which line No. or label subroutine to call.

For example, if the value of <Expression> is 2, the line No. or label described for the second value is
called.

(2) If the value of <expression> is larger than the number of <destinations called up>, the program control
jumps to the next line. For example, the program control jumps to the next line if the value of <expres-
sion> is 5 and there are only three <destinations called up>.

(3) When a line No. or label that is called up does not exist, or when there are two definitions, an error will
occur.

(4) Make sure to return from a subroutine using the RETURN instruction. An error occurs if the GOTO
instruction is used to return, because the free memory available for control structure (stack memory)
decreases and eventually becomes insufficient.

ON[]<Terminology>[]GOSUB[][<Expression>] [, [<Call Destination>]] ...

Value of <Expression> Process <Control>
Real number Value is converted to an integer by rounding it off,

and then branching is executed.
When 0, or when the value exceeds the num-
ber of line Nos. or labels

Control proceeds to the next line

Negative number or 32767 is exceeded Execution error
-196 Detailed explanation of command words

 4MELFA-BASIC IV
ON ... GOTO (On Go To)

[Function]
Branches to the line with the line No. or label that corresponds to the designated value.

[Format]

[Terminology]
<Expression> Designate the line No. or label on the line to branch to with a numeric operation expression.
<Call Destination> Describe the line No. or the label No. The maximum number is 32.

[Reference Program]
Branches based on the value (1-7) of the numerical variable M1.
(Branches to line 1000 if M1 is 1, to label LJMP if M1 is 2, to line 2000 if M1 is 3, 4 or 5, and to label L67 if

M1 is 6 or 7.)
 100 ON M1 GOTO 1000,*LJMP,2000,2000,2000,*L67,*L67
 110 ' Control is passed to this line when M1 is other than 1 through 7 (i.e., 0, or 8 or larger).

1000 ' Describes processing when M1=1.
1010 ' :

1110 *LJMP ' When M1=2.
1120 ' Describes processing when M1=2.
1130 ' :

1700 *L67
1710 ' Describes processing when M1=6 or M1=7.
1720 ' :

2000 ' Describes processing when M1=3, M1=4, or M1=5.
2010 ' :

[Explanation]
(1) This is the GOTO version of ON GOSUB.
(2) If the value of <expression> is larger than the number of <destinations called up>, the program control

jumps to the next line. For example, the program control jumps to the next line if the value of <expres-
sion> is 5 and there are only three <destinations called up>.

(3) When a line No. or label that is called up does not exist, or when there are two definitions, an error will
occur.

ON[]<Expression>[]GOTO[][<Branch Destination>] [, [<Branch Destination>]] ...

Value of <Expression> Process <Control>
Real number Value is converted to an integer by rounding it off,

and then branching is executed.
When 0, or when the value exceeds the num-
ber of line Nos. or labels

Control proceeds to the next line

Negative number or 32767 is exceeded Execution error
 Detailed explanation of command words 4-197

4

4MELFA-BASIC IV
OPEN (Open)

[Function]
Open the file or communication lines.

[Format]

[Terminology]
<File Descriptor> Describe a file name (including communication lines).

*To use a communication line, set "<Communication Line File Name>:"
*When not using a communications line, set "<File Name>"

<Mode> Designate the method to access a file.
*Omitted = random mode. This can be omitted when using a communication line.
*ÅEINPUT = input mode. Inputs from an existing file.
*OUTPUT = output mode (new file). Creates a new file and outputs it there.
*APPEND = Output mode (existing file). Appends output to the end of an existing file.

<File No.> Specify a constant from 1 to 8.
To interrupt from communication line: 1 to 3.

[Reference Program]
(1) Communication line.
10 OPEN "COM1:" AS #1 ' Open standard RS-232C line as file No. 1.20 MOV P_01
20 MOV P_01
30 PRINT #1,P_CURR ' Output current position to external source.

"(100.00,200.00,300.00,400.00)(7.0)" format
40 INPUT #1,M1,M2,M3 ' Receive from external source with "101.00,202.00,303.00" ASCII for-

mat.
50 P_01.X=M1
60 P_01.Y=M2
70 P_01.C=RAD(M3) ' Copy to global data.
80 CLOSE ' Close all opened files.
90 END

(2) File operation. (Create the file "temp.txt" to the controller and write "abc")
10 OPEN "temp.txt" FOR APPEND AS #1
20 PRINT #1, "abc"
30 CLOSE #1

[Explanation]
(1) Opens the file specified in <File name> using the file number.

Use this file No. when reading from or writing to the file.
(2) A communication line is handled as a file.

[Related instructions]
CLOSE (Close), PRINT (Print), INPUT (Input)

[Related parameter]
COMDEV

OPEN[] "<File Descriptor>" [][FOR <Mode>][]AS[] [#] <File No.>

File type File name Access method
File Describe with 16 characters or less. INPUT,PRINT,APPEND
Communi-
cation line

COM1: Standard RS-232C(default value)
COM2:The setting in the "COMDEV" parameter.
 :
COM8:The setting in the "COMDEV" parameter.

Omitted = random mode only
-198 Detailed explanation of command words

 4MELFA-BASIC IV
OVRD (Override)

[Function]
This instruction specifies the speed of the robot movement as a value in the range from 1 to 100%. This is
the override applied to the entire program.

[Format]

This function is available for controller software version G2 or later.

[Terminology]
<Override> Designate the override with a real number. The default value is 100.

Unit: [%] (Recommended range: 0.1 to 100.0)
A numeric operation expression can also be described. If 0 or a value over 100 is set,
an error will occur.

<Override when moving upward/downward>
Sets the override value when moving upward/downward by the arch motion instruction
(MVA).

[Reference Program]
10 OVRD 50
20 MOV P1
30 MVS P2
40 OVRD M_NOVRD ' Set default value.
50 MOV P1
60 OVRD 30,10,10 ' Sets the override when moving upward/downward by the arch motion

instruction to 10.
70 MVA P3,3

[Explanation]
(1) The OVRD command is valid regardless of the interpolation type.
(2) The actual override is as follows:
*During joint interpolation: Operation panel (T/B) override setting value) x (Program override (OVRD com-

mand)) x (Joint override (JOVRD command)).
*During linear interpolation: Operation panel (T/B) override setting value) x (Program override (OVRD com-

mand)) x (Linear designated speed (SPD command)).
(3) The OVRD command changes only the program override. 100% is the maximum capacity of the robot.

Normally, the system default value (M_NOVRD) is set to 100%. The designated override is the system
default value until the OVRD command is executed in the program.

(4) Once the OVRD command has been executed, the designated override is applied until the next OVRD
command is executed, the program END is executed or until the program is reset. The value will return
to the default value when the END statement is executed or the program is reset.

[Related instructions]
JOVRD (J Override) (For joint interpolation), SPD (Speed)(For linear/circular interpolation)

[Related system variables]
M_JOVRD/M_NJOVRD/M_OPOVRD/M_OVRD/M_NOVRD
(M_NOVRD (System default value), M_OVRD (Current designated speed))

OVRD[]<Override>

OVRD[]<Override> [, <Override when moving upward>] [, <Override when moving downward>]
 Detailed explanation of command words 4-199

4

4MELFA-BASIC IV
PLT (Pallet)

[Function]
Calculates the position of grid in the pallet.

[Format]

[Terminology]
<Pallet No.> Select a pallet No. between 1 and 8 that has already been defined with a DEF PLT command.

Specify this argument using a constant or a variable.
<Grid No.> The position number to calculate in the palette. Specify this argument using a constant

or a variable.

[Reference Program]
100 DEF PLT 1,P1,P2,P3,P4,4,3,1' The definition of the four-point pallet. (P1,P2,P3,P4)
110 '
120 M1=1 ' Initialize the counter M1.
130 *LOOP
140 MOV PICK, 50 ' Moves 50 mm above the work unload position.
150 OVRD 50
160 MVS PICK
170 HCLOSE 1 ' Close the hand.
180 DLY 0.5 ' Wait for the hand to close securely (0.5 sec.)
190 OVRD 100
200 MVS,50 ' Moves 50 mm above the current position.
210 PLACE = PLT 1, M1 ' Calculates the M1th position
220 MOV PLACE, 50 ' Moves 50 mm above the pallet top mount position.
230 OVRD 50
240 MVS PLACE
250 HOPEN 1 ' Open the hand.
260 DLY 0.5
270 OVRD 100
280 MVS,50 ' Moves 50 mm above the current position.
290 M1=M1+1 ' Add the counter.
300 IF M1 <=12 THEN *LOOP ' If the counter is within the limits, repeats from *LOOP.
310 MOV PICK,50
320 END

[Explanation]
(1) The position of grid of a pallet defined by the DEF PLT statement is operated.
(2) The pallet Nos. are from 1 to 8, and up to 8 can be defined at once.
(3) Note that the position of the grid may vary because of the designated direction in the pallet definition.
(4) If a grid No. is designated that exceeds the largest grid No. defined in the pallet definition statement, an

error will occur during execution.
(5) When using the pallet grid point as the target position of the movement command, an error will occur if

the point is not enclosed in parentheses as shown above. Refer to Page 71, "4.1.2 Pallet operation" for
detail.

[Related instructions]
DEF PLT (Define pallet)

PLT[]<Pallet No.> , <Grid No.>
-200 Detailed explanation of command words

 4MELFA-BASIC IV
PREC (Precision)

[Function]
This instruction is used to improve the motion path tracking. It switches between enabling and disabling the
high accuracy mode.
Note) The available robot type is limited such as RV-4A. Refer to "[Available robot type]".

[Format]
This function is available for controller software version D1 or later.

[Terminology]
<ON / OFF> ON : When enabling the high accuracy mode.

OFF : When disabling the high accuracy mode.

[Reference Program]
10 PREC ON ' Enables the high accuracy mode.
20 MVS P1
30 MVS P2
40 PREC OFF ' Disables the high accuracy mode.
50 MOV P1

[Explanation]

(1) The high accuracy mode is enabled using the PREC ON instruction if it is desired to perform interpola-
tion movement with increased path accuracy.

(2) When this instruction is used, the path accuracy is improved but the program execution time (tact time)
may become longer because the acceleration/deceleration times are changed internally.

(3) The enabling/disabling of the high accuracy mode is activated from the first interpolation instruction after
the execution of this instruction.

(4) The high accuracy mode is disabled if the PREC OFF or END instruction is executed, or a program reset
operation is performed.

(5) The high accuracy mode is disabled immediately after turning the power on.
(6) The high accuracy mode is always disabled in jog movement.

[Available robot type]

PREC[]<ON / OFF>

RV-1A/2AJ series
RV-2A/3AJ series
RV-4A/5AJ series
RV-20A
RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series
 Detailed explanation of command words 4-201

4

4MELFA-BASIC IV
PRINT (Print)

[Function]
Outputs data into a file (including communication lines). All data uses the ASCII format.

[Format]

[Terminology]
<File No.> Described with numbers 1 to 8.

Corresponds to the control No. assigned by the OPEN command.
<Expression> Describes numeric operation expressions, position operation expressions and character

string expressions.

[Reference Program]
10 OPEN "COM1" AS #1 ' Open standard RS-232-C line as file No. 1.20 MOV P_01.
20 MDATA=150 ' Substitute 150 for the numeric variable MDATA.
30 PRINT #1,"***PRINT TEST***" ' Outputs the character string "***PRINT TEST****."
40 PRINT #1 ' Issue a carriage return
50 PRINT #1,"MDATA=",MDATA ' Output the character string "MDATA" followed by the value of

MDATA, (150).
60 PRINT #1 ' Issue a carriage return.
40 PRINT #1,"****************" ' Outputs the character string "**************."
50 END ' End the program.

The output result is shown below.
PRINT TEST
MDATA=150

[Explanation]
(1) If <Expression> is not described, then a carriage return will be output.
(2) Output format of data (reference)

The output space for the value for <Expression> and for the character string is in units of 14 characters.
When outputting multiple values, use a comma between each <Expression> as a delimiter.
If a semicolon (;) is used at the head of each space unit, it will output after the item that was last dis-
played. The carriage return code will always be returned after the output data.

(3) The error occurs when OPEN command is not executed.
(4) If data contains a double quotation mark ("), only up to the double quotation mark is output.

Example)
[10 M1=123.5
 20 P1=(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0)]
1)[30 PRINT# 1,"OUTPUT TEST",M1,P1]is described,
OUTPUT TEST 123.5 (130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

2)[30 PRINT# 1,"OUTPUT TEST";M1;P1]is described,
OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

If a comma or semicolon is inserted after a <Expression>, the carriage return will not be issued, and instead,
printing will continue on the same line.

3)[30 PRINT# 1,"OUTPUT TEST",
 40 PRINT# 1,M1;
 50 PRINT# 1,P1]is described,
OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

[Related instructions]
OPEN (Open), CLOSE (Close), INPUT (Input)

PRINT[]#<File No.>[] [, [<Expression> ;] ...[<Expression>[;]]]
-202 Detailed explanation of command words

 4MELFA-BASIC IV
PRIORITY (Priority)

[Function]
In multitask program operation, multiple program lines are executed in sequence (one by one line according
to the default setting). This instruction specifies the priority (number of lines executed in priority) when pro-
grams are executed in multitask operation.

[Format]
This function is available for controller software version C2 or later.

[Terminology]
<Number of executed lines> Specify the number of lines executed at once .

Use a numerical value from 1 to 31.
<Slot number> 1 to 32. If this argument is omitted, the current slot number is set.

[Reference Program]
Slot 1
10 PRIORITY 3 ' Sets the number of executed lines for the current slot to 3.

Slot 2
10 PRIORITY 4 ' Sets the number of executed lines for this slot to 4.

[Explanation]
(1) Programs of other slots are not executed until the specified number of lines is executed. For example, as

in the statement example above, if PRIORITY 3 is set for slot 1's program and PRIORITY 4 is set for slot
2's program, three lines of the slot 1 program are executed first, then four lines of the slot 2 program are
executed. Afterward, this cycle is repeated.

(2) The default value is 1 for all the slots. In other words, the execution moves to the next slot every time one
line has been executed.

(3) An error occurs if there is no program corresponding to the specified task slot.
(4) It is possible to change the priority even while the program of the specified task slot is being executed.

PRIORITY[]<Number of executed lines> [, <Slot number>]
 Detailed explanation of command words 4-203

4

4MELFA-BASIC IV
RELM (Release Mechanism)

[Function]
This instruction is used in connection with control of a mechanism via task slots during multitask operation.
It is used to release the mechanism obtained by the GETM instruction.

[Format]

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.

Task slot 1
10 RELM ' Releases the mechanism in order to control mechanism 1 using slot 2.
20 XRUN 2,"10" ' Start the program 10 in slot 2.
30 WAIT M_RUN(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
10 GETM 1 ' Get the control of mechanism 1.
20 SERVO ON ' Turn on the servo of mechanism 1.
30 MOV P1
40 MVS P2
50 SERVO OFF ' Turn off the servo of mechanism 1.
60 RELM ' Releases the control right of mechanism 1.
70 END

[Explanation]
(1) Releases the currently acquired mechanism resource.
(2) If an interrupt is applied while the mechanism is acquired and the program execution is stopped, the

acquired mechanism resource will be automatically released.
(3) This instruction cannot be used in a constantly executed program.

[Related instructions]
GETM (Get Mechanism)

RELM
-204 Detailed explanation of command words

 4MELFA-BASIC IV
REM (Remarks)

[Function]
Uses the following character strings as comments.

[Format]

[Terminology]
<Comment> Describe a user-selected character string.

Descriptions can be made in the range of position lines.

[Reference Program]
10 REM ***MAIN PROGRAM***
20 ' ***MAIN PROGRAM***
30 MOV P1 ' Move to P1.

[Explanation]
(1) REM can be abbreviated to be a single quotation mark (') .
(2) It can be described after the instruction like an 30 line in reference program.

REM[][<Comment>]
 Detailed explanation of command words 4-205

4

4MELFA-BASIC IV
RESET ERR (Reset Error)

[Function]
This instruction resets an error generated in the robot controller. It is not allowed to use this instruction in the
initial status. If an error other than warnings occurs, normal programs other than constantly executed pro-
grams cannot be operated. This instruction is effective if used in constantly executed programs.

[Format]
This function is available for controller software version B1 or later.

[Reference Program]
Example of execution in a constantly executed program
10 IF M_ERR=1 THEN RESET ERR 'Resets an error when an error occurs in the controller.

[Explanation]
(1) This instruction is used in a program whose start condition is set to constant execution (ALWAYS) by the

"SLT*" parameter when it is desired to reset system errors of the robot.
(2) It becomes enabled when the controller's power is turned on again after changing the value of the

"ALWENA" parameter from 0 to 7.

[Related parameter]
ALWENA

[Related system variables]
M_ERR/M_ERRLVL/M_ERRNO

RESET ERR
-206 Detailed explanation of command words

 4MELFA-BASIC IV
RETURN (Return)
[Function]

(1) When returning from a normal subroutine returns to the next line after the GOSUB.
(2) When returning from an interrupt processing subroutine, returns either to the line where the interrupt was
generated, or to the next line.

[Format]
(1) When returning from a normal subroutine:

(2) When returning from an interrupt processing subroutine:

[Terminology]
<Return Designation No.> Designate the line number where control will return to after an interrupt has been

generated and processed.
0 ... Return control to the line where the interrupt was generated.
1 ... Return control to the next line after the line where the interrupt was issued.

[Reference Program]
(1) The example of RETURN from the usual subroutine .

10 ' ***MAIN PROGRAM***
20 GOSUB *SUB_INIT ' Subroutine jumps to label SUB_INIT.
30 MOV P1
 :
1000 ' ***SUB INIT*** ' Subroutine
1010 *SUB_INIT
1020 PSTART=P1
1030 M100=123
1040 RETURN ' Returns to the line immediately following the line where the subroutine

was called from.

(2) The example of RETURN from the subroutine for interruption processing. Calls the subroutine on line
100 when the input signal of general-purpose input signal number 17 is turned on.

10 DEF ACT 1,M_IN(17)=1 GOSUB 100' Definition of interrupt of ACT 1.
20 ACT 1=1 ' Enable the ACT 1.
 :
100 ' The subroutine for interrupt of ACT 1.
110 ACT 1=0 ' Disable the interrupt.
120 M_TIMER(1)=0 ' Set the timer to zero.
130 MOV P2 ' Move to P2.
140 WAIT M_IN(17)=0 ' Wait until the input signal 17 turns off.
150 ACT 1=1 ' Set up interrupt again.
160 RETURN 0 ' Returns control to the interrupted line.

RETURN

RETURN <Return Designation No.>
 Detailed explanation of command words 4-207

4

4MELFA-BASIC IV
[Explanation]
(1) Writes the RETURN instruction at the end of the jump destination processing called up by the GOSUB

instruction.
(2) An error occurs if the RETURN instruction is executed without being called by the GOSUB instruction.
(3) Always use the RETURN instruction to return from a subroutine when called by the GOSUB instruction.

An error occurs if the GOTO instruction is used to return, because the free memory available for control
structure (stack memory) decreases and eventually becomes insufficient.

(4) When there is a RETURN command in a normal subroutine with a return-to designation number, and
when there is a RETURN command in an interrupt-processing subroutine with no return-to destination
number, an error will occur.

(5) when returning from interruption processing to the next line by RETURN1, execute the statement to dis-
able the interrupt. When that is not so, if interruption conditions have been satisfied, because interrup-
tion processing will be executed again and it will return to the next line, the line may be skipped. Please
refer to Page 146, "DEF ACT (Define act)" for the interrupt processing.

[Related instructions]
GOSUB (RETURN)(Go Subroutine), ON ... GOSUB (ON Go Subroutine), ON COM GOSUB (ON Communi-
cation Go Subroutine), DEF ACT (Define act)
-208 Detailed explanation of command words

 4MELFA-BASIC IV
SELECT CASE (Select Case)

[Function]
Executes one of multiple statement blocks according to the condition expression value.

[Format]

[Terminology]
<Condition> Describe a numeric operation expression.
<Expression> Describe a numeric operation expression. The type must be the same as the condition

expression.
<Process> Writes any instruction (other than the GOTO instruction) provided by MELFA-BASIC IV.

[Reference Program]
10 SELECT MCNT
20 M1=10 ' This line is not executed
30 CASE IS <= 10 ' MCNT <= 10
40 MOV P1
50 BREAK
60 CASE 11 'MCNT=11
70 MOV P2
80 BREAK
90 CASE 13 TO 18 '13 <= MCNTÅ <= 18
100 MOV P4
110 BREAK
120 DEFAULT ' Other than the above.
130 M_OUT(10)=1
140 BREAK
150 END SELECT

SELECT[] <Condition>
CASE[]<Expression>

[<Process>]
BREAK

CASE[]<Expression>
[<Process>]
BREAK

 :
DEFAULT

[<Process>]
BREAK

END[]SELECT
 Detailed explanation of command words 4-209

4

4MELFA-BASIC IV
[Explanation]
(1) If the condition matches one of the CASE items, the process will be executed until the next CASE,

DEFAULT or ENDSELECT. If the case does not match with any of the CASE items but DEFAULT is
described, that block will be executed.

(2) If there is no DEFAULT, the program will jump to the line after ENDSELECT without processing.
(3) The SELECT CASE and END SELECT statements must always correspond. If a GOTO instruction

forces the program to jump out from a CASE block of the SELECT CASE statement, the free memory
available for control structure (stack memory) decreases. Thus, if a program is executed continuously,
an error will eventually occur.

(4) If an END SELECT statement that does not correspond to SELECT CASE is executed, an execution
error will occur.

(5) In the case of controller software version G1 or later, it is possible to write a SELECT CASE block within
another SELECT CASE block (up to eight nesting levels are allowed).

(6) It is possible to write WHILE-WEND and FOR-NEXT within a CASE block.
(7) Use "CASE IS", when using the comparison operators (<, =, >, etc.) for the "<Expression>".
-210 Detailed explanation of command words

 4MELFA-BASIC IV
SERVO (Servo)

[Function]
Controls the ON and OFF of the servo motor power.

[Format]
(1) The usual program

(2) The program of always (ALWAYS) execution.

[Terminology]
<ON / OFF> ON : When turning the servo motor power on.

OFF : When turning the servo motor power off.
<Mechanism No.> This is valid only within the program of always execution.

The range of the value is 1 to 3, and describe by constant or variable.

[Reference Program]
10 SERVO ON ' Servo ON.
20 IF M_SVO<>1 GOTO 20 ' Wait for servo ON.
30 SPD M_NSPD
40 MOV P1
50 SERVO OFF

[Explanation]
(1) The robot arm controls the servo power for all axes.
(2) If additional axes are attached, the servo power supply for the additional axes is also affected.
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related system variables]
M_SVO (1 : ON, 0 : OFF)

[Related parameter]
ALWENA

SERVO[]<ON / OFF>

SERVO[]<ON / OFF> [, <Mechanism No.>]
 Detailed explanation of command words 4-211

4

4MELFA-BASIC IV
SKIP (Skip)

[Function]
Transfers control of the program to the next line.

[Format]

[Reference Program]
10 MOV P1 WTHIF M_IN(17)=1,SKIP ' If the input signal (M_IN(1 7)) turns ON while moving with joint

interpolation to the position indicated with position variable P1,
stop the robot interpolation motion, and stop execution of this
command, and execute the next line.

20 IF M_SKIPCQ=1 THEN HLT ' Pauses the program if the execution is skipped.

[Explanation]
(1) This command is described with the WHT or WTHIF statements. In this case, the execution of that line is

interrupted, and control is automatically transferred to the next line. Execution of skip can be seen with
the M_SKIPCQ information.

[Related system variables]
M_SETADL (1: Skipped, 0: Not skipped)

SKIP
-212 Detailed explanation of command words

 4MELFA-BASIC IV
SPD (Speed)

[Function]
Designates the speed for the robot's linear and circular movements. This instruction also specifies the opti-
mum speed control mode.

[Format]

[Terminology]
<Designated Speed> Designate the speed as a real number. Unit: [mm/s]

[Reference Program]
10 SPD 100
20 MVS P1
30 SPD M_NSPD ' Set the default value.(The optimal speed-control mode .)
40 MOV P2
50 MOV P3
60 OVRD 80 ' Countermeasure against an excessive speed error in the optimal speed mode
70 MOV P4
80 OVRD 100

[Explanation]
(1) The SPD command is valid only for the robot's linear and circular movements.
(2) The actual designated override is (Operation panel (T/B) override setting value) x (Program override

(OVRD command)) x (Linear designated speed (SPD command)).
(3) The SPD command changes only the linear/circular designated speed.
(4) When M_NSPD (The default value is 10000) is designated for the designated speed, the robot will

always move at the maximum possible speed, so the line speed will not be constant(optimum speed
control).

(5) An error may occur depending on the posture of the robot despite of the optimal speed control. If an
excessive speed error occurs, insert an OVRD instruction in front of the error causing operation instruc-
tion in order to lower the speed only in that segment.

(6) The system default value is applied for the designated speed until the SPD command is executed in the
program. Once the SPD command is executed, that designated speed is held until the next SPD com-
mand.

(7) The designated speed will return to the system default value when the program END statement is exe-
cuted.

[Related system variables]
M_SPD/M_NSPD/M_RSPD

SPD[]<Designated Speed

SPD[]M_NSPD (Optimum speed control mode)
 Detailed explanation of command words 4-213

4

4MELFA-BASIC IV
SPDOPT (Speed Optimize)

[Function]
Adjusts the speed so that the speed does not exceed during the linear interpolation operation in the horizon-
tal direction which passes through near the OP (X=Y=0: one of the robot's singular points).
Note) This command is limited to the corresponding models such as the RH-1000G series. Refer to "[avail-
able robot type]".

[Format]
This function is available for controller software version H7 or later

[Terminology]
<ON/OFF> ON: Enable the speed-optimization function.

OFF: Disable the speed-optimization function.

[Reference Program]
10 MOV P1
20 SPDOPT ON ' Enable the speed-optimization function.
30 MVS P2
40 MVS P3
50 SPDOPT OFF ' Disable the speed-optimization function.
60 MVS P6

[Explanation]
(1) When performing a XYZ interpolation operation while maintaining the speed of the control point, the J1

axis must rotate at a faster speed when passing through a point near the origin point O (one of the
robot's singular points) as shown in Fig. 4-19, causing an excessive speed error depending on the
specified speed. If SPDOPT ON is executed, the speed is adjusted automatically in order to prevent an
excessive speed error from occurring. For example, while in operation at the command speed V, it
approaches the origin point O, and the speed will be exceeded if it continues to operate at the current
speed, the speed is decreased automatically as shown by A in Fig. 4-20 in order to prevent the speed
to be exceeded. Then, when it has passed near the origin point O and it becomes possible to increase
the speed, it starts accelerating to reach command speed V as shown by B in Fig. 4-20.

Fig.4-19:When passing through near the origin point by linear interpolation

(2) This instruction functions only for XYZ interpolation. It does not function for JOINT interpolation and CIR-
CULAR interpolation. Also, it does not function for linear interpolation by which the J4 axis does not
pass through the speed adjustment area and the singular point as shown in Page 215 "Fig. 4-21 Speed-
optimization area and singular point area.".

SPDOPT[] <ON/OFF>

J2

+Y

+X

J2J4

J4

J1

origin
-214 Detailed explanation of command words

 4MELFA-BASIC IV
Fig.4-20:The situation of the speed at speed-optimization. Fig.4-21:Speed-optimization area and singular point area.

(3) The initial state of the speed adjustment function immediately after the power is turned on can be
changed by the SPDOPT parameter. This parameter also limits the applicable models including the RH-
1000G series. Please check that it is listed in the "Command List" in the Additional Handbook/Standard
Specifications before using it.
The initial value on an applicable model is SPDOPT=1 (speed adjustment enabled).

(4) If the END instruction or a program reset operation is executed, the status of the speed adjustment
function returns to the initial state immediately after the power is turned on.

(5) When the speed adjustment function is enabled, error 2804 will be generated if the XYZ interpolation by
which the J4 axis passes through a singular point area shown in Fig. 4-21 is executed, and the
operation is then suspended.

(6) Even if this instruction is described in a program, it is ignored on models other than the applicable
models.

(7) Even if the speed adjustment function is enabled, an exceeded speed error may be generated if a path
is connected by enabling the CNT instruction near the origin point, or a XYZ interpolation operation that
drastically changes the posture is executed. In such a case, move the position where a path is
connected away from the origin point, or adjust the speed by using the OVRD instruction.

(8) In the case of a XYZ interpolation that operates slightly in the horizontal direction but operates
significantly in the vertical direction, the operation speed may degrade drastically when the speed
adjustment function is enabled vs. when it is disabled. In such a case, disable the speed adjustment
function, or operate by using a JOINT interpolation (MOV instruction).

[The available robot type]

[Related parameter]
SPDOPT

RH-1000G series

R1=360mm, R2=5mm
for RH-1000G

+Y

+X

Speed-optimization area

J4

Singular point area

R1

R2

Time

V

Ａ
↓

Ｂ
↓

Speed-optim ization area

Speed
 Detailed explanation of command words 4-215

4

4MELFA-BASIC IV
TITLE (Title)

[Function]
Appends the title to the program. The characters specified in the program list display field of the robot con-
troller can be displayed using the separately sold personal computer support software.
This command is available for controller software version J1 or later.

[Format]

[Terminology]
<Character String> Message for title

[Reference Program]
10 TITLE "ROBOT Loader program"
20 MOV P1
30 MVS P2

[Explanation]
(1) Although characters can be registered up to the maximum allowed for each line in the program, only a

maximum of 20 characters can be displayed in the program list display field of the robot controller using
the personal computer support software.

TITLE[]"<Character String>"
-216 Detailed explanation of command words

 4MELFA-BASIC IV
TOOL (Tool)

[Function]
Designates the tool conversion data. This instruction specifies the length, position of the control point from
the mechanical interface, and posture of the tools (hands).

[Format]

[Terminology]
<Tool Conversion Data> Specifies the tool conversion data using the position operation expression. (Position

constants, position variables, etc.)

[Reference Program]
(1) Set up the direct numerical value.

10 TOOL (100,0,100,0,0,0) ' Changes the control position to an X-axis coordinate value of
100 mm and a Z-axis coordinate value of 100 mm in the tool
coordinate system.

20 MVS P1
30 TOOL P_NTOOL ' Returns the control position to the initial value. (mechanical inter-

face position, flange plane.)

(2) Set up the position variable data in the XYZ coordinates system.
(If (100,0,100,0,0,0,0,0) are set in PTL01, it will have the same meaning as (1).)
10 TOOL PTL01
20 MVS P1

[Explanation]
(1) The TOOL instruction is used to specify the control points at the tip of each hand in a system using dou-

ble hands. If both hands are of the same type, the control point should be set by the "MEXTL" parame-
ter instead of by the TOOL instruction.

(2) The tool conversion data changed with the TOOL command is saved in parameter MEXTL, and is saved
even after the controller power is turned OFF.

(3) The system default value (P_NTOOL) is applied until the TOOl command is executed.
Once the TOOL command is executed, the designated tool conversion data is applied until the next
TOOL command is executed. This is operated with 6-axis three-dimension regardless of the mecha-
nism structure.

(4) If different tool conversion data are used at teaching and automatic operation, the robot may move to an
unexpected position. Make sure that the settings at operation and teaching match.
The valid axis element of tool conversion data is different depending on the type of robot.
Set up the appropriate data referring to the Page 326, "Table 5-6: Valid axis elements of the tool conver-
sion data depending on the robot model".

(5) Using the M_TOOL variable, it is possible to set the MEXTL1 to 4 parameters as tool data.

[Related parameter]
MEXTL, MEXTL 1 to 4 Refer to Page 324, "5.6 Standard Tool Coordinates" for detail.

[Related system variables]
P_TOOL/P_NTOOL, M_TOOL

TOOL[]<Tool Conversion Data>
 Detailed explanation of command words 4-217

4

4MELFA-BASIC IV
TORQ (Torque)

[Function]
Designates the torque limit for each axis. By specifying the torque limit, an excessive load (overload) on
works and so froth can be avoided. An excessive error is generated if the torque limit value ratio is
exceeded.

[Format]

[Terminology]
<Axis No.> Designate the axis No. with a numeric constant. (1 to 6)
<Torque Limitation Rate> Designate the limit of the force generated from the axis as a percentage. (1 to 100)

[Reference Program]
10 DEF ACT 1,M_FBD>10 GOTO *SUB1,S

' Generate an interrupt when the difference between the com-
mand position and the feedback position reaches 10 mm or
more.

20 ACT 1=1 ' Enable the interrupt 1
30 TORQ 3,10 ' Set the torque limit of the three axes to 10% of the normal torque

using the torque instruction.
40 MVS P1 ' Moves
50 MOV P2
:
100 *SUB1
110 MOV P_FBC ' Align the command position with the feedback position.
120 M_OUT(10)=1 ' Signal No. 10 output
130 HLT ' Stop when a difference occurs.

[Explanation]
(1) Restrict the torque limit value of the specified axis so that a torque exceeding the specified torque value

will not be applied during operation. Specify the ratio relative to the standard torque limit value. The
standard torque limit value is predefined by the manufacturer.

(2) The available rate of torque limitation is changed by robot type. The setting is made for each servo
motor axis; thus, it may not be the torque limit ratio at the control point of the tip of the actual robot. Try
various ratios accordingly.

(3) If the robot is stopped while still applying the torque limit, it may stop at the position where the command
position and the feedback position deviate (due to friction, etc.). In such a case, an excessive error may
occur when resuming the operation. To avoid this, program so as to move to the feedback position
before resuming the operation, as shown on the 110th line of the above example.

(4) This instruction is valid only for standard robot axes. It cannot be used for general-purpose servo axes
(additional axes and user-defined mechanisms). Change the parameters on the general-purpose servo
side to obtain similar movement.

[Related system variables]
P_FBC, M_FBD

TORQ[]<Axis No.>, <Torque Limitation Rate>
-218 Detailed explanation of command words

 4MELFA-BASIC IV
WAIT (Wait)

[Function]
Waits for the variable to reach the designated value.

[Format]

[Terminology]
<Numeric variable> Designate a numeric variable. Use the input/output signal variable (in such cases

as M_IN, M_OUT) well.
<Numeric constant> Designate a numeric constant.

[Reference Program]
(1) Signal state

10 WAIT M_IN(1)=1 ' The same meaning as "10 IF M_IN(1)=0 THEN GOTO 10".
20 WAIT M_IN(3)=0

(2) Task slot state
30 WAIT M_RUN(2)=1

(3) Variable state
40 WAIT M_01=100

[Explanation]
(1) This command is used as the interlock during signal input wait and during multitask execution.
(2) The WAIT instruction allows the program control to continue to the next line once the specified condition

is met.
(3) In case the WAIT instruction is executed in several tasks at one time in the multitask execution status,

the processing time (tact time) may become longer and affect the system. In such cases, use the IF-
THEN instruction instead of the WAIT instruction.

Example) 50 WAIT M_ABC=0 50 IF M_ABC<>0 THEN GOTO 50

WAIT[]<Numeric variable>=<Numeric constant>
 Detailed explanation of command words 4-219

4

4MELFA-BASIC IV
WHILE-WEND (While End)

[Function]
The program between the WHILE statement and WEND statement is repeated until the loop conditions are
satisfied.

[Format]

[Terminology]
<Loop Condition> Describe a numeric operation expression. (Refer to the syntax diagram)

[Reference Program]
Repeat the process while the numeric variable M1 value is between -5 and +5, and transfer control to line
after WEND statement if range is exceeded.

10 WHILE (M1>=-5) AND (M1<=5) ' Repeat the process while the value of numeric variable M1 is
between -5 and +5.

20 M1=-(M1+1) ' Add 1 to M1, and reverse the sign.
30 PRINT# 1, M1 ' Output the M1 value.
40 WEND ' Return to the WHILE statement (line 10)
50 END ' End the program.

[Explanation]
(1) The program between the WHILE statement and WEND statement is repeated.
(2) If the result of <Expression> is true (not 0), the control moves to the line following the WHILE statement

and the process is repeated.
(3) If the result of <Expression> is false (is 0), then the control moves to the line following the WEND state-

ment.
(4) If a GOTO instruction forces the program to jump out from between a WHILE statement and a WEND

statement, the free memory available for control structure (stack memory) decreases. Thus, if a pro-
gram is executed continuously, an error will eventually occur. Write a program in such a way that the
loop exits when the condition of the WHILE statement is met.

WHILE[]<Loop Condition>

 :

WEND
-220 Detailed explanation of command words

 4MELFA-BASIC IV
WTH (With)

[Function]
A process is added to the interpolation motion.

[Format]

[Terminology]
<Process> Describe the process to be added. The commands that can be described are as follow.

 1. <Numeric type data B> <Substitution operator><Numeric type data A> [Substitute,
signal modifier command (refer to syntax diagram)]

[Reference Program]

10 MOV P1 WTH M_OUT(17)=1 DLY M1+2 ' Simultaneously with the start of movement to P1, the out-
put signal No. 17 will turn ON for the value indicated with
the numeric variable M1 + two seconds.

[Explanation]
(1) This command can only be used to describe the additional condition for the movement command.
(2) An error will occur if the WTH command is used alone.
(3) The process will be executed simultaneously with the start of movement.
(4) The relationship between the interrupts regarding the priority order is shown below.

 COM > ACT > WTHIF(WTH) > Pulse substitution

Example) MOV P1 WTH[]<Process>
 Detailed explanation of command words 4-221

4

4MELFA-BASIC IV
WTHIF (With If)

[Function]
A process is conditionally added to the interpolation motion command.

[Format]

[Terminology]
<Additional Condition> Describe the condition for adding the process. (Same as ACT condition

expression)
<Process> Describe the process to be added when the additional conditions are estab-

lished. (Same as WTH)
The commands that can be described as a process are as follow. (Refer to
syntax diagram.)
 1. <Numeric type data B> <Substitution operator><Numeric type data A>
 Example) M_OUT(1)=1, P1=P2
 2. HLT statement
 3. SKIP statement

[Reference Program]
(1) If the input signal 17 turns on, the robot will stop.

10 MOV P1 WTHIF M_IN(17)=1, HLT

(2) If the current command speed exceeds 200 mm/s, turn on the output signal 17 for the M1+2 seconds.
20 MVS P2 WTHIF M_RSPD>200, M_OUT(17)=1 DLY M1+2

(3) If the rate of arrival exceeds 15% during movement to P3, turn on the output signal 1.
30 MVS P3 WTHIF M_RATIO>15, M_OUT(1)=1

[Explanation]
(1) This command can only be used to describe the additional conditions to the movement command.
(2) Monitoring of the condition will start simultaneously with the start of movement.
(3) It is not allowed to write the DLY instruction at the processing part.

WTHIF[]<Additional Condition>, <Process>
-222 Detailed explanation of command words

 4MELFA-BASIC IV
XCLR (X Clear)

[Function]
This instruction cancels the program selection status of the specified task slot from within a program. It is
used during multitask operation.

[Format]

[Terminology]
<Slot No.> Designate the slot number.

[Reference Program]
10 XRUN 2,"1" ' Executes the first program in task slot 2.
 :
100 XSTP 2 ' Pauses the program of task slot 2.
110 WAIT M_WAI(2)=1 ' Waits until the program of task slot 2 pauses.
150 XRST 2 ' Cancels the pause status of the program of task slot 2.
 :
200 XCLR 2 ' Cancels the program selection status of task slot 2.
210 END

[Explanation]
(1) An error occurs at execution if the specified slot does not select the program.
(2) If the designated program is being operating, an error will occur at execution.
(3) If the designated program is being pausing, an error will occur at execution.
(4) If this instruction is used within a constantly executed program, it becomes enabled by changing the

value of the "ALWENA" parameter from 0 to 7 and turning the controller's power off and on again.

[Related instructions]
XLOAD (X Load), XRST (X Reset), XRUN (X Run), XSTP (X Stop)

[Related parameter]
ALWENA

XCLR[]<Slot No.>
 Detailed explanation of command words 4-223

4

4MELFA-BASIC IV
XLOAD (X Load)

[Function]
This instruction commands the specified program to be loaded into the specified task slot from within a pro-
gram.
It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Designate the slot number.
<Program Name> Designate the program name.

[Reference Program]
10 IF M_PSA(2)=0 THEN 60 ' Checks whether slot 2 is in the program selectable state.
20 XLOAD 2,"10" ' Select program 10 for slot 2.
30 IF C_PRG(2)<>"10" THEN GOTO 30 ' Waits for a while until the program is loaded.
40 XRUN 2 ' Start slot 2.
50 WAIT M_RUN(2)=1 ' Wait to confirm starting of slot 2.
60 '
70 ' When the slot 2 is already operating, execute from here.

[Explanation]
(1) An error occurs at execution if the specified program does not exist.
(2) If the designated program is already selected for another slot, an error will occur at execution.
(3) If the designated program is being edited, an error will occur at execution.
(4) If the designated program is being executed, an error will occur at execution.
(5) Designate the program name in double quotations.
(6) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.
(7) If XRUN is executed immediately after executing XLOAD, an error may occur while loading a program. If

necessary, perform a load completion check as shown on the 30th line of the statement example.

[Related instructions]
XCLR (X Clear), XRST (X Reset), XRUN (X Run), XSTP (X Stop)

[Related parameter]
ALWENA

XLOAD[]<Slot No.> <Program Name>
-224 Detailed explanation of command words

 4MELFA-BASIC IV
XRST (X Reset)

[Function]
This instruction returns the program control to the first line if the program of the specified task slot is paused
by a command within the program (program reset). It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Designate the slot number.

[Reference Program]
10 XRUN 2 ' Start.
20 WAIT M_RUN(2)=1 ' Wait to confirm starting.
 :
100 XSTP 2 ' Stop.
110 WAIT M_WAI(2)=1 ' Wait for stop to complete.
 :
150 XRST 2 ' Set program execution start line to head line.
160 WAIT M_PSA(2)=1 ' Wait for program reset to complete.
 :
200 XRUN 2 ' Restart.
210 WAIT M_RUN(2)=1 ' Wait for restart to complete.

[Explanation]
(1) This is valid only when the slot is in the stopped state.
(2) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XCLR (X Clear), XLOAD (X Load), XRUN (X Run), XSTP (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_PSA (Slot number) (1: Program selection is possible, 0: Program selection is impossible)
M_RUN (Slot number) (1: Executing, 0: Not executing)
M_WAI (Slot number) (1: Stopping, 0: Not stopping)

XRST[]<Slot No.>
 Detailed explanation of command words 4-225

4

4MELFA-BASIC IV
XRUN (X Run)

[Function]
This instruction executes concurrently the specified programs from within a program.It is used during
multitask operation.

[Format]

[Terminology]
<Slot No.> If the argument is omitted, the current operation mode is used.
<Program Name> Designate the program name.
<Operation Mode> 0 = Continuous operation,

1 = Cycle stop operation. If the operation mode is omitted, the current operation mode
will be used. Specify this argument using a constant or a variable.

[Reference Program]
(1) When the program of execution is specified by XRUN command (continuous executing).

10 XRUN 2,"1" ' Start the program 1 with slot 2.
20 WAIT M_RUN(2)=1 ' Wait to have started.

(2) When the program of execution is specified by XRUN command (cycle operation)
10 XRUN 3,"2",1 ' Start the program 2 with slot 3 in the cycle operation mode
20 WAIT M_RUN(3)=1 ' Wait to have started.

(3) When the program of execution is specified by XLOAD command (continuous executing).
10 XLOAD 2, "1" ' Select the program 1 as the slot 2.
20 IF C_PRG(2)<>"1" THEN GOTO 20 ' Wait for load complete.
30 XRUN 2 ' Start the slot 2.

(4) When the program of execution is specified by XLOAD command (cycle operation)
10 XLOAD 3, "2" ' Select the program 2 as the slot 3.
20 IF C_PRG(2)<>"1" THEN GOTO 20 ' Wait for load complete
30 XRUN 3, ,1 ' Start the program 1 with cycle operation.

[Explanation]
(1) An error occurs at execution if the specified program does not exist.
(2) If the designated slot No. is already in use, an error will occur at execution.
(3) If a program has not been loaded into a task slot, this instruction will load it. It is thus possible to operate

the program without executing the XLOAD instruction.
(4) If XRUN is executed in the "Pausing" state with the program stopped midway, continuous execution will

start.
(5) Designate the program name in double quotations.
(6) If the operation mode is omitted, the current operation mode will be used.
(7) If it is used in programs that are constantly executed, change the value from 0 to 7 in the ALWENA

parameter, and power ON the controller again.
(8) If XRUN is executed immediately after executing XLOAD, an error may occur while loading a program. If

necessary, perform a load completion check as shown on the 20th line of both statement examples [3]
and [4].

[Related instructions]
XCLR (X Clear), XLOAD (X Load), XRST (X Reset), XSTP (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_RUN (Slot number) (1: Executing, 0: Not executing)

XRUN[]<Slot No.> [, "<Program Name>" [, <Operation Mode>]]
-226 Detailed explanation of command words

 4MELFA-BASIC IV
XSTP (X Stop)

[Function]
This instruction pauses the execution of the program in the specified task slot from within a program. If the
robot is being operated by the program in the specified task slot, the robot stops. It is used in multitask oper-
ation.

[Format]

[Terminology]
<Slot No.> Designate the slot No.

[Reference Program]
10 XRUN 2 ' Execute.
 :
100 XSTP 2 ' Stop.
110 WAIT M_WAI(2)=1 ' Wait for stop to complete.
 :
200 XRUN 2 ' Restart.

[Explanation]
(1) If the program is already stopped, an error will not occur.
(2) XSTP can also stop the constant execution attribute program.
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XCLR (X Clear), XLOAD (X Load), XRST (X Reset), XRUN (X Run)

[Related parameter]
ALWENA

[Related system variables]
M_WAI (Slot number) (1: Stopping, 0: Not stopping)

XSTP[]<Slot No.>
 Detailed explanation of command words 4-227

4

4MELFA-BASIC IV
Substitute

[Function]
The results of an operation are substituted in a variable or array variable.

[Format]

For pulse substitution

[Terminology]
<Variable Name> Designate the variable name of the value is to be substituted.

(Refer to the syntax diagram for the types of variables.)
<Expression 1> Substitution value. Describe an numeric value operation expression.
<Expression 2> Pulse timer. Describe an numeric value operation expression.

[Reference Program]

(1) Substitution of the variable operation result .
10 P100=P1+P2*2

(2) Output of the signal.
20 M_OUT(10)=1 ' Turn on the output signal 10.

(3) Pulse output of the signal.
30 M_OUT(17)=1 DLY 2.0 ' Turn on the output signal 17 for 2 seconds.

[Explanation]
(1) When using this additionally for the pulse output, the pulse will be executed in parallel with the execution

of the commands on the following lines.
(2) Be aware that if a pulse is output by M_OUTB or M_OUTW, the bits are reversed in 8-bit units or 16-bit

units, respectively. It is not possible to reverse at any bit widths.
(3) If the END command or program's last line is executed during the designated time, or if the program exe-

cution is stopped due to an emergency stop, etc., the output state will be held. But, the output reversed
after the designated time.

<Variable Name> = <Expression 1>

<Variable Name> = <Expression 1> DLY <Expression 2>
-228 Detailed explanation of command words

 4MELFA-BASIC IV
(Label)

[Function]
This indicates the jump site.

[Format]

The controller software version J1 or later

[Terminology]
<Label Name> Describe a character string that starts with an alphabetic character.

Up to 8 characters can be used. (Up to 9 characters including *.)
<Command line> The command line can be described after the colon after the label (:).

[Reference Program]
100 *SUB1
200 IF M1=1 THEN GOTO *SUB1

The controller software version J1 or later
300 *LBL1 : IF M_IN(19)=0 THEN GOTO *LBL1' Wait by the 300 lines until the input signal of No. 10

turns on.

[Explanation]
(1) An error will not occur even if this is not referred to during the program.
(2) If the same label is defined several times in the same program, an error will occur at the execution.
(3) The reserved words can't be used for the label.
(4) If the underscore is used for the label name, the 1st character is "L." only. If the characters except "L" are

used (ex. *A_LABEL), an error occurs.
Ex.) The correct example of the label with using the underscore. (The 1st character is "L")

*L_ABC, *L12_345, *LABEL_1

 The mistake example of the label with using the underscore.
*H_ABC, *ABC_123, *NG_, *_LABEL

(5) The software J1 or later, the command line can be described after the colon after the label (:). However,
after the command line, the colon cannot be described and the command line cannot be described
again.

*<Label Name>

*<Label Name> [:<Command line>]
 Detailed explanation of command words 4-229

4

4MELFA-BASIC IV
4.12 Detailed explanation of Robot Status Variable
4.12.1 How to Read Described items

[Function] : This indicates a function of a variable.
[Format] : This indicates how to enter arguments of an instruction. [] means that

arguments may be omitted.
System status variables can be used in conditional expressions, as well
as in reference and assignment statements. In the format example, only
reference and assignment statements are given to make the description
simple.

[Reference Program] : An example program using variables is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related items.

4.12.2 Explanation of Each Robot Status Variable
Each variable is explained below in alphabetical order.
-230 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
C_DATE

[Function]
This variable returns the current date in the format of year/month/date.

[Format]

[Reference Program]
10 C1$=C_DATE ' "2000/12/01" is assigned to C1$.

[Explanation]
(1) The current date is assigned.
(2) This variable only reads the data. Use the T/B to set the date.

[Reference]
C_TIME

C_MAKER

[Function]
This variable returns information on the manufacturer of the robot controller.

[Format]

[Reference Program]
10 C1$=C_MAKER ' "COPYRIGHT1999......." is assigned to C1$.

[Explanation]
(1) This variable returns information on the manufacturer of the robot controller.
(2) This variable only reads the data.

[Reference]
C_MECHA

Example) <Character String Variable >=C_DATE

Example) <Character String Variable >=C_MAKER
 Detailed explanation of Robot Status Variable 4-231

4

4MELFA-BASIC IV
C_MECHA

[Function]
This variable returns the name of the mechanism to be used.

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set

as the default value.

[Reference Program]
10 C1$=C_MECHA(1) ' "RV-4A" is assigned to C1$. (If the robot type name is RV-4A)

[Explanation]
(1) This variable returns the name of the mechanism to be used.
(2) This variable only reads the data.

C_PRG

[Function]
This variable returns the selected program number (name).

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Numeric> 1 to 32, Enter the task slot number. If the argument is omitted, 1 is set as

the default value.

[Reference Program]
10 C1$=C_PRG(1) ' "10" is assigned to C1$. (if the program number is 10.)

[Explanation]
(1) The program number (name) set (loaded) into the specified task slot is assigned.
(2) If this variable is used in single task operation, the task slot number becomes 1.
(3) If it is set in the operation panel, that number is set.
(4) This variable only reads the data.
(5) If a task slot for which a program is not loaded is specified, an error occurs at execution.

Example) <Character String Variable >=C_MECHA[(<Mechanism Number>)]

Example) <Character String Variable >=C_PRG [(<Numeric>)]
-232 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
C_TIME

[Function]
This variable returns the current time in the format of time:minute:second (24 hours notation).

[Format]

[Reference Program]
10 C1$=C_TIME ' "01/05/20" is assigned to C1$.

[Explanation]
(1) The current clock is assigned.
(2) This variable only reads the data.
(3) Use the T/B to set the time.

[Reference]
C_DATE

C_USER

[Function]
This variable returns the data registered in the "USERMSG" parameter.

[Format]

[Reference Program]
10 C1$=C_USER ' The characters registered in "USERMSG" are assigned to C1$.

[Explanation]
(1) This variable returns the data registered in the "USERMSG" parameter.
(2) This variable only reads the data.
(3) Use the PC support software or the T/B to change the parameter setting.

Example) <Character String Variable >=C_TME

Example) <Character String Variable >=C_USER
 Detailed explanation of Robot Status Variable 4-233

4

4MELFA-BASIC IV
J_CURR

[Function]
Returns the joint type data at the current position.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 J1=J_CURR ' J1 will contain the current joint position.

[Explanation]
(1) The joint type variable for the current position of the robot specified by the mechanism number will be

obtained.
(2) This variable only reads the data.

[Reference]
P_CURR

Example) <Joint Type Variable>=J_CURR [(<Mechanism Number>)]
-234 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
J_COLMXL

[Function]
Return the maximum value of the differences between the estimated torque and actual torque while the
impact detection function is being enabled.
The impact detection function can only be used in certain models (Refer to "[Available robot type]".). This
function is available for controller software version J2 or later.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.(Joint type variable will be used

even if this is a pulse value.)
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=100 'Set the initial value of the allowable impact level of each axis.
20 M2=100
30 M3=100
40 M4=100
50 M5=100
60 M6=100
70 COLLVL M1,M2,M3,M4,M5,M6,,'Set the allowable impact level of each axis.
80 COLCHK ON 'Enable the impact detection function.

(Start the calculation of the maximum value of torque error.)
90 MOV P1
 :
 :
500 COLCHK OFF 'Disable the impact detection function.

(End the calculation of the maximum value of torque error.)
510 M1=J_COLMXL(1).J1+10 'For each axis, the allowable impact level with a margin of 10% is calcu-

lated.
520 M2=J_COLMXL(1).J2+10
530 M3=J_COLMXL(1).J3+10
540 M4=J_COLMXL(1).J4+10
550 M5=J_COLMXL(1).J5+10
560 M6=J_COLMXL(1).J6+10
570 GOTO 70

Example) <Joint Type Variable>=J_COLMXL [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-235

4

4MELFA-BASIC IV
[Explanation]
(1) Keep the maximum value of the error of the estimated torque and actual torque of each axis while impact

detection function is valid.

(2) When this value is 100%, it indicates that the maximum error value is the same as the manufacturer's ini-
tial value of the allowable impact level.

(3) For robots that prohibit the use of impact detection, 0.0 is always returned for all axes.
(4) The maximum error value is initialized to 0.0 when the servo is turned ON during the execution of a

COLCHK ON or COLLVL instruction.
(5) Because they are joint-type variables, it will be conversion values from rad to deg if they are read as joint

variables. Therefore, substitute each axis element by a numeric variable as shown in the syntax exam-
ple when using these joint-type variables.

[Reference]
COLCHK (Col Check), COLLVL (Col Level), M_COLSTS, P_COLDIR

[Available robot type]

J_ECURR

[Function]
Returns the current encoder pulse value.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 J1=J_ECURR(1) ' JA will contain the encoder pulse value of mechanism 1.
20 MA=JA, 1 ’ Loads the encoder pulse value of the J1 axis to the MA.

[Explanation]
(1) Although the value to be returned is a pulse value, use the joint type as the substitution type. Then, spec-

ify joint component data, and use by substituting in a numeric variable.
(2) This variable only reads the data.

RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series

Example) <Joint Type Variable>=J_ECURR [(<Mechanism Number>)]

Estimated
torque

Actual torque

COLMXL

COLLVL

Torque

Time
-236 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
J_FBC/J_AMPFBC

[Function]
J_FBC:Returns the current position of the joint type that has been generated by encoder feedback.
J_AMPFBC:Returns the current feedback value of each axis

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 J1=J_FBC ' J1 will contain the current position of the joint that has been generated by

servo feedback.
20 J1=J_AMPFBC ' The present current feedback value is entered in J2.

[Explanation]
(1) J_FBC returns the present position of the joint type generated by the feedback of the encoder.
(2) J_FBC can check the difference between the command value to the servo and the delay in the actual

servo.
(3) J_FBC can also check if there is a difference as a result of executing a CMP JNT instruction.
(4) This variable only reads the data.

[Reference]
P_FBC

J_ORIGIN

[Function]
Returns the joint data when the origin has been set.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 J1=J_ORIGIN(1) ' J1 will contain the origin setting position of mechanism 1.

[Explanation]
(1) Returns the joint data when the origin has been set.
(2) This can be used to check the origin, for instance, when the position of the robot shifted.
(3) This variable only reads the data.

Example) <Joint Type Variable>=J_FBC [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_AMPFBC [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_ORIGIN [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-237

4

4MELFA-BASIC IV
M_ACL/M_DACL/M_NACL/M_NDACL/M_ACLSTS

[Function]
Returns information related to acceleration/deceleration time.
M_ACL : Returns the ratio of current acceleration time. (%)
M_DACL : Returns the ratio of current deceleration time. (%)
M_NACL : Returns the initial acceleration time value. (100%)
M_NDACL : Returns the initial deceleration time value. (100%)
M_ACLSTS : Returns the current acceleration/deceleration status.
(Current status: 0 = Stopped, 1 = Accelerating, 2 = Constant speed, 3 = Decelerating)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
10 M1=M_ACL ' M1 will contain the ratio of acceleration time set for task slot 1.
20 M1=M_DACL(2) ' M1 will contain the ratio of deceleration time set for task slot 2.
30 M1=M_NACL ' M1 will contain the ratio of initial acceleration time value set for task slot 1.
40 M1=M_NDACL(2) ' M1 will contain the ratio of initial deceleration time value set for task slot 2.
50 M1=M_ACLSTS(3) ' M1 will contain the current acceleration/deceleration status for task slot 3.

[Explanation]
(1) The ratio of acceleration/deceleration time is the ration against each robot's maximum acceleration/

deceleration time (initial value). If this value is 50%, the amount of time needed to accelerate/decelerate
is doubled, resulting in slower acceleration/deceleration.

(2) M_NACL and M_NDACL always return 100 (%).
(3) This variable only reads the data.

Example) <Numeric Variable>=M_ACL [(<Equation>)]

Example) <Numeric Variable>=M_DACL [(<Equation>)]

Example) <Numeric Variable>=M_NACL [(<Equation>)]

Example) <Numeric Variable>=M_NDACL [(<Equation>)]

Example) <Numeric Variable>=M_ACLSTS [(<Equation>)]
-238 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_BRKCQ

[Function]
Returns the result of executing a line containing a BREAK command that was executed last.
1 : BREAK was executed
0 : BREAK was not executed

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
10 WHILE M1<>0
20 IF M2=0 THEN BREAK ' The remaining battery capacity time is assigned to M1.
30 WEND
40 IF M_BRKCQ=1 THEN HLT ' HLT, if BREAK in WHILE is executed.

[Explanation]
(1) Check the state of whether the BREAK command was executed.
(2) This variable only reads the data.
(3) If the M_BRKCQ variable is referenced even once, the BREAK status is cleared. (The value is set to

zero.) Therefore, to preserve the status, save it by substituting it into a numeric variable.
(4) The BREAK status is also cleared even if it is referenced on T/B monitor screen and so forth.

M_BTIME

[Function]
Returns the remaining hour of battery left. (Unit: hour)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_BTIME ' The remaining battery capacity time is assigned to M1.

[Explanation]
(1) Returns the remaining hours the battery can last from now.
(2) As for the battery life, 14,600 hours are stored as the initial value.
(3) After summing the total amount of time the power of robot controller has been off, this value will be sub-

tracted from 14,600 and the result is returned.
(4) This variable only reads the data.

Example) <Numeric Variable>=M_BRKCQ [(<Equation>)]

Example)<Numeric Variable>=M_BTME
 Detailed explanation of Robot Status Variable 4-239

4

4MELFA-BASIC IV
M_CMPDST

[Function]
Returns the amount of difference (in mm) between the command value and the actual value from the robot
when executing the compliance function.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 MOV P1
20 CMPG 0.5,0.5,1.0,0.5,0.5, , , ' Set softness.
30 CMP POS, &B00011011 ' Enter soft state.
40 MVS P2
50 M_OUT(10)=1
60 MVS P1
70 M1=M_CMPDST(1) ' M1 will contain the difference between the position specified by the

operation command and the actual current position.
80 CMP OFF ' Return to normal state.

[Explanation]
(1) This is used to check the positional discrepancy while executing the compliance function.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_CMPDST [(<Mechanism Number>)]
-240 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_CMPLMT

[Function]
Returns whether or not the command value when the compliance function is being executed is about to
exceed various limits.
1: The command value is about to exceed a limit.
0: The command value is not about to exceed a limit.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
10 DEF ACT 1, M_CMPLMT(1)=1 GOTO *LMT' Define the conditions of interrupt 1.
20 '
30 '
100 MOV P1
110 CMPG 1,1,0,1,1,1,1,1
120 CMP POS, &B100 ' Enable compliance mode.
130 ACT 1=1 ' Enable interrupt 1.
140 MVS P2 '
150 '
160 '
1000 *LMT
1010 MVS P1 ' Movement to P2 is interrupted and returns to P1.
1020 RESET ERR ' Reset the error.
1030 HLT ' Execution is stopped.

[Explanation]
(1) This is used to recover from the error status by using interrupt processing if an error has occurred while

the command value in the compliance mode attempted to exceed a limit.
(2) For various limits, the joint operation range and operation speed of the command value in the compli-

ance mode, and the dislocation between the commanded position and the actual position are checked.
(3) 0 is set if the servo power is off, or the compliance mode is disabled.
(4) This is a read only variable.

Example) DEF ACT 1, M_CMPLMT [(<Mechanism Number>)]=1 GOTO *LMT
 Detailed explanation of Robot Status Variable 4-241

4

4MELFA-BASIC IV
M_COLSTS

[Function]
Return the impact detection status..
1: Detecting an impact
0: No impact has been detected
The impact detection function can only be used in certain models (Refer to "[Available robot type]".). This
function is available for controller software version J2 or later.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
10 DEF ACT 1,M_COLSTS(1)=1 GOTO *HOME,S'Define the processing to be executed when an impact

is detected using an interrupt.
20 ACT 1=1
30 COLCHK ON,NOERR 'Enable the impact detection function in the error non-occurrence mode.
40 MOV P1
50 MOV P2 'If an impact is detected while executing lines 40 through 70, it jumps to

interrupt processing.
60 MOV P3
70 MOV P4
80 ACT 1=0
 :
 :
1000 *HOME 'Interrupt processing during impact detection.
1010 COLCHK OFF 'Disable the impact detection function.
1020 SERVO ON 'Turn the servo on.
1030 PESC=P_COLDIR(1)*(-2) 'Create the amount of movement for escape operation
1040 PDST=P_FBC(1)+PESC 'Create the escape position.
1050 MVS PDST 'Move to the escape position.
1060 ERROR 9100 'Stop operation by generating a user-defined L level error.

[Explanation]
(1) When an impact is detected, it is set to 1. When the impact state is canceled, it is set to 0.
(2) It is used as an interrupt condition in the DEF ACT instruction when used in the NOERR mode.

[Available robot type]

Example) DEF ACT 1, M_COLSTS [(<Mechanism Number>)]=1 GOTO *LCOL

RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series
-242 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_CSTP

[Function]
Returns the status of whether or not a program is on cycle stop
1: Cycle stop is entered, and cycle stop operation is in effect.

(The input of the END key on the operation panel, or the input of a cycle stop signal)
0: Other than above

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
 10 M1=M_CSTP ' 1 is assigned to M1. (When under a cycle stop)

[Explanation]
(1) When the END key on the operation panel is pressed while the program is under continuous execution,

the system enters a cycle operation state. The status at this time is returned as 1.
(2) This variable only reads the data.

M_CYS

[Function]
Returns the status of whether or not a program is on cycle operation
1: In cycle operation (operating mode set by the slot parameter SLT* to ...)
0: Other than above.

[Format]

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.

[Reference Program]
 10 M1=M_CYS ' The numerical value 1 is substituted for M1. (When under a cycle operation)

[Explanation]
(1) When starting a program, the cycle mode - either continuous operation or cycle operation - can be spec-

ified using a parameter, etc. Returns this operation mode.
(2) Even if CYC has been specified in the slot parameter, the value will be 0 when continuous operation is

specified by XRUN.
(3) This is a read only variable.

Example)<Numeric Variable>=M_CSTP

Example)<Numerical variable> = M_CYS
 Detailed explanation of Robot Status Variable 4-243

4

4MELFA-BASIC IV
M_DIN/M_DOUT

[Function]
This is used to write or reference the remote register of CC-Link (optional).
M_DIN : References the input register.
M_DOUT : Writes or reference the output register.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable that assigns the CC-Link register value.
<Equation 1> Specifies the CC-Link register number (6000 or above).
<Equation 2> Specifies the CC-Link register number (6000 or above).

[Reference Program]
10 M1=M_DIN(6000) ' M1 will contain the CC-Link input register value.

' (If CC-Link station number is 1.)
20 M1=M_DOUT(6000) ' M1 will contain the CC-Link output register value.
30 M_DOUT(6000)=100 ' Writes 100 to the CC-Link output register.

[Explanation]
(1) For details, refer to the "CC-Link Interface Instruction Manual."
(2) Signal numbers in 6,000's will be used for CC-Link.
(3) M_DIN is read-only.

Example)<Numeric Variable>=M_DIN [(<Equation 1>)]

Example)<Numeric Variable>=M_DOUT [(<Equation 2>)]
-244 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_ERR/M_ERRLVL/M_ERRNO

[Function]
Returns information regarding the error generated from the robot.
M_ERR : Returns whether an error has been generated. (1: Error has been generated, 0: No error)
M_ERRLVL : Returns the level of the generated error. (Caution/Low/High1/High2 = 1/2/3/4)
M_ERRNO : Returns the error number of the generated error.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 IF M_ERR=0 THEN 10 ' Waits until an error is generated.
20 M2=M_ERRLVL ' M2 will contain the error level
30 M3=M_ERRNO ' M3 will contain the error number.

[Explanation]
(1) Normal programs will pause when an error (other than cautions) is generated. The error status of the

controller may be monitored using this variable for programs whose startup condition is set to ALWAYS
by the SLT* parameter. The program set to ALWAYS will not stop even when an error is generated from
other programs.

(2) Level 1 errors are warnings, level 2 errors pause programs. Level 3 errors pause programs and turn the
servo power OFF, but error reset can be performed. Level 4 errors pause programs, turn the servo
power OFF, and error reset cannot be performed. Thus, when a level 4 error occurs, it is necessary to
turn the controller power OFF.

(3) This variable only reads the data.

[Related instructions]
RESET ERR (Reset Error)

M_EXP

[Function]
Returns the base of natural logarithm (2.718281828459045).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_EXP ' Base of natural logarithm (2.718281828459045) is assigned to M1.

[Explanation]
(1) This is used when processing exponential and logarithmic functions.
(2) This variable only reads the data.

Example) <Numeric Variable>=M_ERR
Example) <Numeric Variable>=M_ERRLVL
Example) <Numeric Variable>=M_ERRNO

Example) <Numeric Variable>=M_EXP
 Detailed explanation of Robot Status Variable 4-245

4

4MELFA-BASIC IV
M_FBD
[Function]

Returns the difference between the command position and the feedback position.
This variable is available for controller software version J1 or later.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
10 DEF ACT 1,M_FBD>10 GOTO *SUB1,S ' Generate an interrupt when the difference between the

command position and the feedback position reaches 10
mm or more.

20 ACT 1=1 ' An interrupt takes effect.
30 TORQ 3,10 ' Set the torque limit of the three axes to 10% or less using

the torque instruction.
40 MVS P1 ' Moves.
50 END

100 *SUB1
110 MOV P_FBC ' Align the command position with the feedback position.
120 M_OUT(10)=1 ' Signal No. 10 output
130 HLT ' Stop when a difference occurs.

[Explanation]
(1) This function returns the difference between the command position specified by the operation instruction

and the feedback position from the motor. When using the torque instruction, use this in combination
with a DEF ACT instruction to prevent the occurrences of excessive errors (960, 970, etc.).

(2) This variable only reads the data.

[Reference]
TORQ (Torque), P_FBC

Example) <Numeric Variable>=M_FBD[(<Mechanism Number>)]
-246 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_G

[Function]
Returns gravitational constant (9.80665).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_G ' Gravitational constant (9.80665) is assigned to M1.

[Explanation]
(1) This is used to perform calculation related to gravity.
(2) This variable only reads the data.

M_HNDCQ

[Function]
Returns the hand check input signal value.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the hand input signal number.

1 to 8, (Corresponds to input signals 900 to 907.)

[Reference Program]
10 M1=M_HNDCQ(1) ' M1 will contain the status of hand 1.

[Explanation]
(1) Returns one bit of the hand check input signal status (such as a sensor).
(2) M_HNDCQ(1) corresponds to input signal number 900. Same result will be obtained using M_IN (900).
(3) This variable only reads the data.

Example) <Numeric Variable>=M_G

Example) <Numeric Variable>=M_HNDCQ [(<Equation>)]
 Detailed explanation of Robot Status Variable 4-247

4

4MELFA-BASIC IV
M_IN/M_INB/M_INW

[Function]
Returns the value of the input signal.
M_IN : Returns a bit.
M_INB : Returns a byte (8 bits).
M_INW : Returns a word (16 bits).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the input signal number. 0 to 32767 (Theoretical value)

0 to 255 : Standard remote inputs (Normally 32 points. 0 to 31)
900 to 907 : Hand input.
2000 to 5071 : Input signal of PROFIBUS.
6000 to 8047 : Remote input for CC-Link.

[Reference Program]
10 M1=M_IN(0) ' M1 will contain the value of the input signal 0 (1 or 0).
20 M2=M_INB(0) ' M2 will contain the 8-bit information starting from input signal 0.
30 M3=M_INB(3) AND &H7 ' M3 will contain the 3-bit information starting from input signal 3.
40 M4=M_INW(5) ' M4 will contain the 16-bit information starting from input signal 5.

[Explanation]
(1) Returns the status of the input signal.
(2) M_INB and M_INW will return 8- or 16-bit information starting from the specified number.
(3) Although the signal number can be as large as 32767, only the signal numbers with corresponding hard-

ware will return a valid value. Value for a signal number without corresponding hardware is set as unde-
fined.

(4) This variable only reads the data.

Example) <Numeric Variable>=M_IN(<Equation>)

Example) <Numeric Variable>=M_INB(<Equation>)

Example) <Numeric Variable>=M_INW(<Equation>)
-248 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_JOVRD/M_NJOVRD/M_OPOVRD/M_OVRD/M_NOVRD

[Function]
Returns override value.
M_JOVRD : Value specified by the override JOVRD instruction for joint interpolation.
M_NJOVRD : Initial override value (100%) for joint interpolation.
M_OPOVRD : Override value of the operation panel.
M_OVRD : Current override value, value specified by the OVRD instruction.
M_NOVRD : Initial override value (100%).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this parameter is omitted, the current slot

will be used as the default.

[Reference Program]
10 M1=M_OVRD ' M1 will contain the current override value.
20 M2=M_NOVRD ' M2 will contain the initial override value (100%).
30 M3=M_JOVRD ' M3 will contain the current joint override value.
40 M4=M_NJOVRD ' M4 will contain the initial joint override value.
50 M5=M_OPOVRD ' M5 will contain the current OP (operation panel) override value.
60 M6=M_OVRD(2) ' M6 will contain the current override value for slot 2.

[Explanation]
(1) If the argument is omitted, the current slot status will be returned.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_JOVRD [(i<Equation>)]

Example)<Numeric Variable>=M_NJOVRD[(i<Equation>)]

Example)<Numeric Variable>=M_OPOVRD

Example)<Numeric Variable>=M_OVRD[(<Equation>)]

Example)<Numeric Variable>=M_NOVRD[(<Equation>)]
 Detailed explanation of Robot Status Variable 4-249

4

4MELFA-BASIC IV
M_LDFACT

[Function]
The load ratio for each joint axis can be referenced.
This variable is available for controller software version J1 or later.

[Format]

[Terminology]
<Numeric Variable> The load ratio of each axis is substituted. The range is 0 to 100%.
<Axis Number> 1 to 8, Specifies the axis number.

[Reference Program]
10 ACCEL 100,100 ' Lower the overall deceleration time to 50%.
20 MOV P1
30 MOV P2
40 IF M_LDFACT(2)>90 THEN
50 ACCEL 50,50 ' Lower the acceleration/deceleration ratio to 50%.
60 M_SETADL(2)=50 ' Furthermore, lower the acceleration/deceleration ratio of the J2 axis to

50%. (In actuality, 50% x 50% = 25%)
70ELSE
80 ACCELL 100.,100 ' Return the acceleration/deceleration time.
90 ENDIF
100 GOTO 20

[Explanation]
(1) The load ratio of each axis can be referenced.
(2) The load ratio is derived from the current that flows to each axis motor and its flow time.
(3) The load ratio rises when the robot is operated with a heavy load in a severe posture for a long period of

time.
(4) When the load ratio reaches 100%, an overload error occurs. In the above example statement, once the

load ratio exceeds 90%, the k acceleration/deceleration time is lowered to 50%.
(5) To lower the load ratio, measures, such as decreasing the acceleration/deceleration time, having the

robot standing by in natural posture, or shutting down the servo power supply, are effective.

[Related instructions]
ACCEL (Accelerate), OVRD (Override), M_SETADL

Example)<Numeric Variable>=M_LDFACT(<Axis Number>)
-250 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_LINE

[Function]
Returns the line number that is being executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 M1=M_LINE(2) ' M1 will contain the line number being executed by slot 2.

[Explanation]
(1) This can be used to monitor the line being executed by other tasks during multitask operation.
(2) This variable only reads the data.

M_MODE

[Function]
Returns the key switch mode of the operation panel.
1 : TEACH
2 : AUTO(OP)
3 : AUTO(Ext.)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_MODE ' M1 will contain the key switch status.

[Explanation]
(1) This can be used in programs set to ALWAYS (constantly executed) during multitask operation.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_LINE [(<Equation>)]

Example)<Numeric Variable>=M_MODE
 Detailed explanation of Robot Status Variable 4-251

4

4MELFA-BASIC IV
M_ON/M_OFF

[Function]
Always returns 1 (M_ON) or 0 (M_OFF).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_ON ' 1 is assigned to M1.
20 M2=M_OFF ' 0 is assigned to M2.

[Explanation]
(1) Always returns 1 or 0.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_ON

Example)<Numeric Variable>=M_OFF
-252 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_OPEN

[Function]
RetReturns the status indicating whether or not a file is opened.
Returns the status of other end of the RS-232C cable.

[Format]
This function is available for controller software version H7 or later

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.
<File number> Specify the file number 1-8 by constant value of communication line opened by

OPEN command. The default value is 1. If 9 or more are specified, the error
will occur when executing.

[Reference Program]
100 OPEN "COM2:" AS #1 ' Open the communication line COM2 as the file number 1.
110 IF M_OPEN(1)<>1 THEN GOTO 110 ' Wait until the file number 1 opens.

[Explanation]
(1) This is a read only variable.
(2) The return value differ corresponding to the file type specified by OPEN command as follows.

*Refer to separate manual "Ethernet Interface INSTRUCTION MANUAL" when using the ethernet.

[Related instructions]
OPEN (Open)

[Related parameter]
COMDEV

Example)<Numerical variable>=M_OPEN [<File number>]

Kind of files Meaning Value
File Returns the status indicating whether or not a file is

opened.
Returns 1 until the CLOSE instruction, the END
instruction or END in a program is executed after exe-
cuting the OPEN instruction.

1: Already opened
-1: Undefined file number (not
opened)

Communication line
RS-232C

*Returns the status of other end of the RS-232C
cable.
Returns the status of the CTS signal input as is.
(This can be used only when the RTS signal of other
end is enabled using the Mitsubishi genuine cable
specification.)

1: Already connected (CTS signal is
ON)
0: Unconnected (CTS signal is OFF)
 -1: Undefined file number (not
opened)
 Detailed explanation of Robot Status Variable 4-253

4

4MELFA-BASIC IV
M_OUT/M_OUTB/M_OUTW

[Function]
Writes or references external output signal.
M_OUT:Output signal bit.
M_OUTB:Output signal byte (8 bits).
M_OUTW:Output signal word (16 bits).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Specify the output signal number.

0 to 255 : Standard remote outputs.
900 to 907 : Hand output.
2000 to 5071 : Output signal of PROFIBUS.
6000 to 8047 : Remote output for CC-Link.

[Reference Program]
10 M_OUT(2)=1 ' Turn ON output signal 2 (1 bit).
20 M_OUTB(2)=&HFF ' Turns ON 8-bits starting from the output signal 2.
30 M_OUTW(2)=&HFFFF ' Turns ON 16-bits starting from the output signal 2.
40 M4=M_OUTB(2) AND &H0F ' M4 will contain the 4-bit information starting from output signal 2.

[Explanation]
(1) This is used when writing or referencing external output signals.
(2) Numbers in 900's will be used as I/O signals for the hand.
(3) Numbers 6000 and beyond will be referenced/assigned to the CC-Link (optional).

M_PI

[Function]
Returns pi (3.14159265358979).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
10 M1=M_PI ' 3.14159265358979 is assigned to M1.

[Explanation]
(1) A variable to be assigned will be a real value.
(2) This variable only reads the data.

Example)M_OUT(<Equation>)=<Numeric Variable>

Example)M_OUTB(<Equation>)=<Numeric Variable>

Example)M_OUTW(<Equation>)=<Numeric Variable>

Example)<Numeric Variable>=M_PI
-254 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_PSA

[Function]
Returns whether the program is selectable by the specified task slot.
1 : Program is selectable.
0 : Program not selectable (when the program is paused).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 M1=M_PSA(2) ' M1 will contain the program selectable status of task slot 2.

[Explanation]
(1) Returns whether the program is selectable by the specified task slot.
(2) This variable only reads the data.

M_RATIO

[Function]
Returns how much the robot has approached the target position (0 to 100%) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 MOV P1 WTHIF M_RATIO>80, M_OUT(1)=1' The output signal 1 will turn ON when the robot has

moved 80% of the distance until the target position is
reached while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_PSA [(<Equation>)]

Example)<Numeric Variable>=M_RATIO [(<Equation>)]
 Detailed explanation of Robot Status Variable 4-255

4

4MELFA-BASIC IV
M_RDST

[Function]
Returns the remaining distance to the target position (in mm) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 MOV P1 WTHIF M_RDST<10 M_OUT(10)=1' The output signal 1 will turn ON when the remaining dis-

tance until the target position is reached becomes 10
mm or less while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

M_RUN

[Function]
Returns whether the program for the specified task slot is being executed.
1 : Executing.
0 : Not executing (paused or stopped).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 M1=M_RUN(2) ' M1 will contain the execution status of slot 2.

[Explanation]
(1) This will contain 1 if the specified slot is running, or 0 if the slot is stopped (or paused).
(2) Combine M_RUN and M_WAI to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

Example)<Numeric Variable>=M_RDST [(<Equation>)]

Example)<Numeric Variable>=M_RUN [(<Equation>)]
-256 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_SETADL

[Function]
Set the acceleration/deceleration time distribution rate of the specified axis when optimum acceleration/
deceleration control is enabled (OADL ON). Since it can be set for each axis, it is possible to reduce the
motor load of an axis with a high load. Also, unlike a method that sets all axes uniformity, such as OVRD,
SPD and ACCEL instructions, the effect on the tact time can be minimized as much as possible. The initial
value is the setting value of the JADL parameter.
This status variable can only be used in certain models (Refer to "[Available robot type]".). This function is
available for controller software version J2 or later.

[Format]

[Terminology]
<Axis Number> 1 to 8, Specifies the axis number.
<Numeric Variable> Specify the ratio for the standard acceleration/deceleration time, between 1

and 100. The unit is %. The initial value is the value of the optimum accelera-
tion/deceleration adjustment rate parameter (JADL).

[Reference Program]
10 ACCEL 100,50 ' Set the overall acceleration/deceleration distribution rate to 50%.
20 IF M_LDFACT(2)>90 THEN ' If the load rate of the J2 axis exceeds 90%,
30 M?SETADL(2)=70 ' set the acceleration/deceleration time distribution rate of the J2

axis to 70%.
40 ENDIF ' Acceleration 70% (= 100% x 70%), deceleration 35% (= 50% x

70%)
50 MOV P1
60 MOV P2
70 M_SETADL(2)=100 ' Return the acceleration/deceleration time distribution rate of the

J2 axis to 100%.
80 MOV P3 ' Acceleration 100%, deceleration 50%
90 ACCEL 100,100 ' Return the overall deceleration distribution rate to 100%.
100 MOV P4

[Explanation]
(1) The acceleration/deceleration time distribution rate when optimum acceleration/deceleration is enabled

can be set in units of axes. If 100% is specified, the acceleration/deceleration time becomes the short-
est.

(2) Using this status variable, the acceleration/deceleration time can be set so as to reduce the load on axes
where overload and overheat errors occur.

(3) The setting of this status variable is applied to both the acceleration time and deceleration time.
(4) When this status variable is used together with an ACCEL instruction, the specification of the accelera-

tion/deceleration distribution rate of the ACCEL instruction is also applied to the acceleration/decelera-
tion time calculated using the optimum acceleration/deceleration speed.

(5) With the ACCEL instruction, the acceleration/deceleration time changes at the specified rate. Because
this status variable is set independently for each axis and also the acceleration/deceleration time that
takes account of the motor load is calculated, the change in the acceleration/deceleration time may
show a slightly different value than the specified rate.

[Reference]
ACCEL (Accelerate),OVRD (Override),SPD (Speed),M_LDFACT

[Available robot type]

Example)M_SETADL(<Axis Number>)=<Numeric Variable>

RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
 Detailed explanation of Robot Status Variable 4-257

4

4MELFA-BASIC IV
M_SKIPCQ

[Function]
Returns the result of executing the line containing the last executed SKIP command.
1 : SKIP has been executed.
0 : SKIP has not been executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 MOV P1 WTHIF M_IN(10)=1,SKIP ' If the input signal 10 is 1 when starting to move to P1, skip

the MOV instruction.
20 IF M_SKIPCQ=1 THEN GOTO 1000 ' If SKIP instruction has been executed, jump to line 1000.
ÅE
1000 END

[Explanation]
(1) Checks if a SKIP instruction has been executed.
(2) This variable only reads the data.
(3) If the M_SKIPCQ variable is referenced even once, the SKIP status is cleared. (The value is set to zero.)

Therefore, to preserve the status, save it by substituting it into a numeric variable.

Example)<Numeric Variable>=M_SKIPCQ [(<Equation>)]
-258 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_SPD/M_NSPD/M_RSPD

[Function]
Returns the speed information during XYZ and JOINT interpolation.
M_SPD : Currently set speed.
M_NSPD : Initial value (optimum speed control).
M_RSPD : Directive speed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 M1=M_SPD ' M1 will contain the currently set speed.
20 SPD M_NSPD ' Reverts the speed to the optimum speed control mode.

[Explanation]
(1) M_RSPD returns the directive speed at which the robot is operating.
(2) This can be used in M_RSPD multitask programs or with WTH and WTHIF statements.
(3) This variable only reads the data.

M_SVO

[Function]
Returns the current status of the servo power supply.
1 : Servo power ON
0 : Servo power OFF

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=M_SVO(1) ' M1 will contain the current status of the servo power supply.

[Explanation]
(1) The status of the robot's servo can be checked.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_SPD [(<Equation>)]

Example)<Numeric Variable>=M_NSPD [(<Equation>)]

Example)<Numeric Variable>=M_RSPD [(<Equation>)]

Example)<Numeric Variable>=M_SVO [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-259

4

4MELFA-BASIC IV
M_TIMER

[Function]
Time is measured in milliseconds. This can be used to measure the operation time of the robot or to mea-
sure time accurately.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the number to 8 from 1. Parentheses are required.

[Reference Program]
10 M_TIMER(1)=0
20 MOV P1
30 MOV P2
40 M1=M_TIMER(1) ' M1 will contain the amount of time required to move from P1 to P2 (in ms).

Example) If the time is 5.346 sec. the value of M1 is 5346.
50 M_TIMER(1) ' Set to 1.5 sec.

[Explanation]
(1) A value may be assigned. The unit is seconds when set to M_TIMER.
(2) Since measurement can be made in milliseconds (ms), precise execution time measurement is possible.

Example)<Numeric Variable>=M_TMER (<Equation>)
-260 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_TOOL

[Function]
In addition to using the tool data (MEXTL1 to 4) of the specified number as the current tool data, it is also set
in the MEXTL parameter.
The current tool number can also be read.. This function is available for controller software version J1 or
later

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number to 3 from 1.

If the argument is omitted, 1 is set as the default value.
<Equation> Enter the tool number to 4 from 1.

[Reference Program]
Setting Tool Data
10 TOOL (0,0,100,0,0,0) ' Specify tool data (0,0,100,0,0,0), and write it into MEXTL.
20 MOV P1
30 M_TOOL=2 ' Change the tool data to the value of tool number 2 (MEXTL2).
40 MOV P2

Referencing the Tool Number
10 IF M_IN(900)=1 THEN ' Change the tool data by a hand input signal.
20 M_TOOL=1 ' Set tool 1 in tool data.
30 ELSE
40 M_TOOL=2 ' Set tool 2 in tool data.
50 ENDIF
60 MOV P1

[Explanation]
(1) The values set in the MEXTL1, MEXTL2, MEXTL3 and MEXTL4 tool parameters are reflected in the tool

data. It is also written into the MEXTL parameter.
(2) Tool numbers 1 to 4 correspond to MEXTL1 to 4.
(3) While referencing, the currently set tool number is read.
(4) If the reading value is 0, it indicates that tool data other than MEXTL1 to 4 is set as the current tool data.
(5) The same setting can be performed on the Tool Setup screen of the teaching pendant. For more infor-

mation, see Page 19, "3.2.8 Switching Tool Data".

[Reference]
TOOL (Tool), MEXTL, MEXTL1, MEXTL2, MEXTL3, MEXTL4

Example)<Numeric Variable>=M_TOOL [(<Mechanism Number>)]'Referencing the Current Tool Number

Example)M_TOOL [(<Mechanism Number>)] = [(<Equation>)] 'Set a tool number.
 Detailed explanation of Robot Status Variable 4-261

4

4MELFA-BASIC IV
M_UAR

[Function]
Returns whether the robot is in the user-defined area.
Bits 0 through 7 correspond to areas 1 through 8.
1 : Within user-defined area
0 : Outside user-defined area

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=M_UAR(1) ' M1 indicates whether the robot is within or outside the user-defined area.

The value 4 indicates that the robot is in the user-defined area 3.

[Explanation]
(1) For details on how to use user-defined areas, refer to Page 328, "About user-defined area".
(2) This variable only reads the data.

M_WAI

[Function]
Returns the standby status of the program for the specified task slot.
1 : Paused (The program has been paused.)
0 : Not paused (Either the program is running or is being stopped.)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
10 M1=M_WAI(1) ' M1 will contain the standby status of slot 1.

[Explanation]
(1) This can be used to check whether the program has been paused.
(2) Combine M_RUN and M_WAI to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

[Reference]
M_WUPOV, M_WUPRT, M_WUPST

Example)<Numeric Variable>=M_UAR [(<Mechanism Number>)]

Example)<Numeric Variable>=M_WAI [(<Equation>)]
-262 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_WUPOV

[Function]
Returns the value of an override (warm-up operation override, unit: %) to be applied to the command speed
in order to reduce the operation speed when in the warm-up operation status.This status variable can be
used in the controller's software version J8 or later.
Note: For more information about the warm-up operation mode, see Page 355, "5.19 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=M_WUPOV(1) ' The value of a warm-up operation override is entered in M1.

[Explanation]
(1) This is used to confirm the value of an override (warm-up operation override) to be applied to the com-

mand speed in order to reduce the operation speed when the robot is in the warm-up operation status
(the status in which operation is performed by automatically reducing the speed).

(2) If the warm-up operation mode is disabled, the MODE switch on the front of the controller is set to
"TEACH," or the machine is being locked, the value is always 100.

(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set
immediately after power on, the value specified in the first element (the initial value of a warm-up oper-
ation override) of the WUPOVRD parameter is set as the initial value, and the value of M_WUPOV
increases according to the operation of the robot. And when the warm-up operation status is canceled,
the value of M_WUPOV is set to 100.

(4) The actual override in the warm-up operation status is as follows:
During joint interpolation operation = (operation panel (T/B) override setting value) x (program override
(OVRD instruction)) x (joint override (JOVRD instruction)) x warm-up operation override
During linear interpolation operation = (operation panel (T/B) override setting value) x (program over-
ride (OVRD instruction)) x (linear specification speed (SPD instruction)) x warm-up operation override

(5) This variable only reads the data.

Example)<Numeric Variable> = M_WUPOV [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-263

4

4MELFA-BASIC IV
M_WUPRT

[Function]
Returns the time (sec) during which a target axis must operate to cancel the warm-up operation status.
This status variable can be used in the controller's software version J8 or later.
Note: For more information about the warm-up operation mode, see Page 355, "5.19 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=M_WUPRT(1) ' The time during which a target axis must operate is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status can be canceled after how long more the joint

axis specified in the WUPAXIS parameter (warm-up operation mode target axis) operates when the
robot is in the warm-up operation status (the status in which operation is performed by automatically
reducing the speed).

(2) If the warm-up operation mode is disabled, 0 is always returned.
(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set

immediately after power on, the time specified in the first element (the valid time of the warm-up opera-
tion mode) of the WUPTIME parameter is set as the initial value, and the value of M_WUPRT
decreases according to the operation of the robot. And when the value is set to 0, the warm-up opera-
tion status is canceled.

(4) If a multiple number of target axes in warm-up operation mode exist, the value of the axis with the short-
est operation time among them is returned.
For example, when a target axis (A) operates and the warm-up operation status is canceled in remain-
ing 20 seconds (when M_WUPRT = 20), if another target axis (B) that has continuously been stopped
changes from the normal status to the warm-up operation status, (B) becomes the axis with the shortest
operation time (operation time of 0 sec). Therefore, the time during which (B) must operate (= the valid
time of the warm-up operation mode, initial value is 60 sec) becomes the value of this status variable
(M_WUPRT = 60).

(5) This variable only reads the data.

Example)<Numeric Variable> = M_WUPRT [(<Mechanism Number>)]
-264 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
M_WUPST

[Function]
Returns the time (sec) until the warm-up operation status is set again after it has been canceled.
This status variable can be used in the controller's software version J8 or later.
Note: For more information about the warm-up operation mode, see Page 355, "5.19 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 M1=M_WUPST(1) ' The time until the warm-up operation status is set again is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status is set again after how long more the joint axis

specified in the WUPAXIS parameter (warm-up operation mode target axis) continues to stop operating
while the robot’s warm-up operation status (the status in which operation is performed by automatically
reducing the speed) is canceled.

(2) If the warm-up operation mode is disabled, the time specified in the second element (warm-up operation
mode resume time) of the WUPTIME parameter is returned.

(3) If a target axis operates while the warm-up operation status is canceled, the time specified in the second
element (warm-up operation mode resume time) of the WUPTIME parameter is set as the initial value,
and the value of M_WUPST decreases while the target axis is stopping. And when the value is set to 0,
the warm-up operation status is set.

(4) If a multiple number of target axes exist, the value of the axis that has been stopped the longest among
them is returned.

(5) This variable only reads the data.

Example)<Numeric Variable> = M_WUPST [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-265

4

4MELFA-BASIC IV
P_BASE/P_NBASE

[Function]
Returns information related to the base conversion data.
P_BASE : Returns the base conversion data that is currently being set.
P_NBASE : Returns the initial value (0, 0, 0, 0, 0, 0) (0, 0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 P1=P_BASE ' P1 will contain the base conversion data that is currently being set.
20 BASE P_NBASE ' Resets the base conversion data to the initial value.

[Explanation]
(1) P_NBASE will contain (0, 0, 0, 0, 0, 0) (0, 0).
(2) Be careful when using base conversion since it may affect the teaching data.
(3) Use the BASE instruction when changing the base position.
(4) This variable only reads the data.

Example)<Position Variables>=P_BASE [(<Mechanism Number>)]

Example)<Position Variables>=P_NBASE
-266 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
P_COLDIR

[Function]
Return the operation direction of the robot when an impact is detected.
The impact detection function can only be used in certain models (Refer to "[Available robot type]".). This
function is available for controller software version J2 or later.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

Refer to Page 141, " [Reference Program 2]" for "COLCHK (Col Check)".

[Explanation]
(1) This is used to verify the operation direction of the robot in automatic restoration operation after impact

detection.
(2) The operation direction of the robot at the very moment of impact detection is expressed as a ratio using

the maximum travel axis as @1.0. Example: If the robot was being operated at a ratio of (X-axis direc-
tion:Y-axis direction) = (2:-1)...P_COLDIR = (1,-0.5,0,0,0,0)(0,0)

(3) The posture axis and structural flag are always (*.*.*.0,0,0,0,0)(0,0).
(4) A value is calculated when an impact is detected, and then that value is retained until the next impact is

detected.
(5) If an impact is detected when an external object hits the robot in the stationary state, all axes are set to

0.0.
(6) Because this variable calculates the operation direction based on the target position of an operation

instruction, all elements may be set to 0.0 if an impact occurs at a position near the target position.
(7) This is read only.
(8) For robots that prohibit the use of impact detection, 0.0 is always returned for all axes.

[Reference]
COLCHK (Col Check), COLLVL (Col Level), M_COLSTS, J_COLMXL

[Available robot type]

Example)<Position Variables>=P_COLDIR [(<Mechanism Number>)]

RV-3S/3SJ/3SB/3SJB series
RV-6S/6SL/12S/12SL series
RH-6SH/12SH/18SH series
 Detailed explanation of Robot Status Variable 4-267

4

4MELFA-BASIC IV
P_CURR

[Function]
Returns the current position (X, Y, Z, A, B, C,L1,L2) (FL1, FL2).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

10 DEF ACT 1,M_IN(10)=1 GOTO 1000 ' Defines interrupt.
20 ACT 1=1 ' Enables interrupt.
30 MOV P1
40 MOV P2
50 ACT 1=0 ' Disables interrupt.

1000 P100=P_CURR ' Loads the current position when an interrupt signal is
received.

1010 MOV P100,-100 ' Moves 100 mm above P100 (i.e, -100 mm in the Z direc-
tion of the tool).

1020 END ' Ends the program.

[Explanation]
(1) This can be used to identify the current position.
(2) This variable only reads the data.

[Reference]
J_CURR

Example)<Position Variables>=P_CURR [(<Mechanism Number>)]
-268 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
P_FBC

[Function]
Returns the current position (X,Y,Z,A,B,C,L1,L2)(FL1,FL2) based on the feedback values from the servo.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

10 P1=P_FBC ' P1 will contain the current position based on the feedback.

[Explanation]
(1) Returns the current position based on the feedback values from the servo.
(2) This variable only reads the data.

[Reference]
TORQ (Torque),J_FBC/J_AMPFBC,M_FBD

P_SAFE

[Function]
Returns the safe point (XYZ position of the JSAFE parameter).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 P1=P_SAFE ' P1 will contain the set safe point being set.

[Explanation]
(1) Returns the XYZ position, which has been converted from the joint position registered in parameter

JSAFE.
(2) This variable only reads the data.

Example)<Position Variables>=P_FBC [(<Mechanism Number>)]

Example)<Position Variables>=P_SAFE [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-269

4

4MELFA-BASIC IV
P_TOOL/P_NTOOL

[Function]
Returns tool conversion data.
P_TOOL: Returns the tool conversion data that is currently being set.
P_NTOOL: Returns the initial value (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
10 P1=P_TOOL ' P1 will contain the tool conversion data.

[Explanation]
(1) P_TOOL returns the tool conversion data set by the TOOL instruction or the MEXTL parameter.
(2) Use the TOOL instruction when changing tool data.
(3) This variable only reads the data.

P_ZERO

[Function]
Always returns (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.

[Reference Program]
10 P1=P_ZERO '(0,0,0,0,0,0,0,0)(0,0) is assigned to P1.

[Explanation]
(1) This can be used to initialize the P variable to zeros.
(2) This variable only reads the data.

Example)<Position Variables>=P_TOOL [(<Mechanism Number>)]

Example)<Position Variables>=P_NTOOL

Example)<Position Variables>=P_ZERO
-270 Detailed explanation of Robot Status Variable

 4MELFA-BASIC IV
4.13 Detailed Explanation of Functions
4.13.1 How to Read Described items

[Function] : This indicates a function of a function.
[Format] : This indicates how to input the function argument.
[Reference Program] : An example program using function is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related function.

4.13.2 Explanation of Each Function
Each variable is explained below in alphabetical order.
 Detailed Explanation of Functions 4-271

4

4MELFA-BASIC IV
ABS

[Function]
Returns the absolute value of a given value.

[Format]

[Reference Program]
10 P2.C=ABS(P1.C) ' P2.C will contain the value of P1.C without the sign.
20 MOV P2
30 M2=-100
40 M1=ABS(M2) ' 100 is assigned to M1.

[Explanation]
(1) Returns the absolute value (Value with the positive sign) of a given value.

[Reference]
SGN

<Numeric Variable>=ABS(<Equation>)
-272 Detailed Explanation of Functions

 4MELFA-BASIC IV
ALIGN

[Function]
Positional posture axes (A, B, and C axes) are converted to the closest XYZ postures (0, +/-90, and +/-180).
ALIGN outputs numerical values only. The actual operation will involve movement instructions such as the
MOV instruction.

[Format]

[Reference Program]
 10 P1=P_CURR
 20 P2=ALIGN(P1)
 30 MOV P2

[Explanation]
(1) Converts the A, B, and C components of the position data to the closest XYZ postures (0, +/-90, and +/-

180).
(2) Since the return value is of position data type, an error will be generated if the left-hand side is of joint

variable type.
(3) This function cannot be used in vertical multi-joint 5-axes robot.

The following shows a sample case for the axis B.

<Position Variables>=ALIGN(<Position>)
 Detailed Explanation of Functions 4-273

4

4MELFA-BASIC IV
ASC

[Function]
Returns the character code of the first character in the string.

[Format]

[Reference Program]
 10 M1=ASC("A") ' &H41is assigned to M1.

[Explanation]
(1) Returns the character code of the first character in the string.
(2) An error will be generated if the string is a null string.

[Reference]
CHR$, VAL, CVI, CVS, CVD

ATN/ATN2

[Function]
Calculates the arc tangent.

[Format]

[Terminology]
<Numeric Variable> Calculates the arc tangent with specified expression, and returns the result. The unit is radian.
<Equation> Calculated value of delta Y/delta X.
<Equation 1> delta Y
<Equation 2> delta X

[Reference Program]
10 M1=ATN(100/100) 'PI/4 is assigned to M1.
20 M2=ATN2(-100,100) '-PI/4 is assigned to M1.

[Explanation]
(1) Calculates the arc tangent of a given equation. Unit is in radians.
(2) The range of the returned value for ATN is -PI/2 < ATN < PI/2.
(3) The range of the returned value for ATN2 is -PI < ATN < PI.
(4) If <Equation 2> evaluates to 0, ATN2 will return PI/2 when <Equation 1> evaluates to a positive value

and -PI/2 when <Equation 1> evaluates to a negative value.
(5) In the case of ATN2, it is not possible to describe a function that contains an argument in <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.
NG exampleM1=ATN2(MAX(MA,MB), 100)
 M1=ATN2(CINT(10.2), 100)

[Reference]
SIN, COS, TAN

<Numeric Variable>=ASC(<Character String Expression>)

<Numeric Variable>=ATN(<Equation>)

<Numeric Variable>=ATN2(<Equation 1>, <Equation 2>)
-274 Detailed Explanation of Functions

 4MELFA-BASIC IV
BIN$

[Function]
Value is converted to a binary string.

[Format]

[Reference Program]
 10 M1=&B11111111
 20 C1$=BIN$(M1) ' C1$ will contain the character string of "11111111".

[Explanation]
(1) Value is converted to a binary string.
(2) If the equation does not evaluate to an integer, the integral value obtained by rounding the fraction will be

converted to a binary string.
(3) VAL is a command that performs the opposite of this function.

[Reference]
HEX$, STR$, VAL

<Character String Variable >=BIN$(<Equation>)
 Detailed Explanation of Functions 4-275

4

4MELFA-BASIC IV
CALARC

[Function]
Provides information regarding the arc that contains the three specified points.

[Format]

[Terminology]
<Position 1> Specifies the starting point of the arc.
<Position 2> Specifies the passing point of the arc. Same as the three points in the MVR instruction.
<Position 3> Specifies the endpoint of the arc.
<Numeric Variable 1> Radius of the specified arc (in mm) will be calculated and returned.
<Numeric Variable 2> Central angle of the specified arc (in radians) will be calculated and returned.
<Numeric Variable 3> Length of the specified arc (in mm) will be calculated and returned.
<Position Variables 1> The center coordinates of the specified arc (in mm) will be calculated and returned (as a position data

type, ABC are all zeros).
<Numeric Variable 4> Return value

1 : Calculation was performed normally.
-1 : Of positions 1, 2, and 3, either two points had the exact same position or all three points were on

a straight line.
-2 : All three points are at approximately the same position.

[Reference Program]
10 M1=CALARC(P1,P2,P3,M10,M20,M30,P10)
20 IF M1<>1 THEN END ' Ends if an error occurs.
30 MR=M10 ' Radius.
40 MRD=M20 ' Circular arc angle.
50 MARCLEN=M30 ' Circular arc length.
60 PC=P10 ' Coordinates of the center point.

[Explanation]
(1) Provides information regarding the arc that is determined by the three specified points, position 1, posi-

tion 2 and position 3.
(2) If the arc generation and calculation of various values succeeded, 1 will be returned as the return value.
(3) If some points have the exact same position or if all three points are on a straight line, -1 will be returned

as the return value. In such cases, the distance between the starting point and the endpoint will be
returned as the arc length, -1 as the radius, 0 as the central angle, and (0, 0, 0) as the center point.

(4) If circular arc generation fails, -2 will be returned as the return value. If a circular arc cannot be gener-
ated, -1, 0, 0 and (0, 0, 0) are returned as the radius, central angle, arc length and center point, respec-
tively.

(5) It is not possible to describe a function that contains an argument in <position 1>, <position 2>, <position
3>, <numeric variable 1>, <numerical variable 2>, <numeric variable 3> and <position variable 1>. If
such a function is described, an error will be generated during execution.

<Numeric Variable 4> = CALARC(<Position 1>, <Position 2>, <Position 3>,

 <Numeric Variable 1>, <Numeric Variable 2>, <Numeric Variable 3>,

<Position Variables 1>)
-276 Detailed Explanation of Functions

 4MELFA-BASIC IV
CHR$

[Function]
Returns the character that has the character code obtained from the specified equation.

[Format]

[Reference Program]
10 M1=&H40
20 C1$=CHR$(M1+1) ' "A" is assigned to C1$.

[Explanation]
(1) Returns the character that has the character code obtained from the specified equation.
(2) If the equation does not evaluate to an integer, the character will be returned whose character code cor-

responds to the integral value obtained by rounding the fraction.

[Reference]
ASC

CINT

[Function]
Rounds the fractional part of an equation to convert the value into an integer.

[Format]

[Reference Program]
10 M1=CINT(1.5) ' 2 is assigned to M1.
20 M2=CINT(1.4) ' 1 is assigned to M2.
30 M3=CINT(-1.4) ' -1 is assigned to M3.
40 M4=CINT(-1.5) ' -2 is assigned to M4.

[Explanation]
(1) Returns the value obtained by rounding the fractional part of an equation.

[Reference]
INT, FIX

<Character String Variable >=CHR$(<Equation>)

<Numeric Variable>=CINT(<Equation>)
 Detailed Explanation of Functions 4-277

4

4MELFA-BASIC IV
CKSUM

[Function]
Calculates the checksum of the string.

[Format]

[Terminology]
<Character String> Specifies the string from which the checksum should be calculated.
<Equation 1> Specifies the first character position from where the checksum calculation

starts.
<Equation 2> Specifies the first character position from where the checksum calculation

ends.

[Reference Program]
10 M1=CKSUM("ABCDEFG",1,3)' &H41("A")+&H42("B")+&H43("C")=&HC6 is assigned to M1.

[Explanation]
(1) Adds the character codes of all characters in the string from the starting position to the end position and

returns a value between 0 and 255.
(2) If the starting position is outside the range of the string, an error will be generated.
(3) If the end position exceeds the end of the string, checksum from the starting position to the last character

in the string will be calculated.
(4) If the result of addition exceeds 255, a degenerated value of 255 or less will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String>, <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.

COS

[Function]
Gives the cosine.

[Format]

[Reference Program]
10 M1=COS(RAD(60))

[Explanation]
(1) Calculates the cosine of the equation.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
SIN, TAN, ATN/ATN2

<Numeric Variable>=CKSUM(<Character String>, <Equation 1>, <Equation 2>)

<Numeric Variable>=COS(<Equation>)
-278 Detailed Explanation of Functions

 4MELFA-BASIC IV
CVI

[Function]
Converts the character codes of the first two characters of a string into an integer.

[Format]

[Reference Program]
10 M1=CVI("10ABC") ' &H3031 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first two characters of a string into an integer.
(2) An error will be generated if the string consists of one character or less.
(3) MKI$ can be used to convert numerical values into a string.
(4) This can be used to reduce the amount of communication data when transmitting numerical data with

external devices.

[Reference]
ASC, CVS, CVD, MKI$, MKS$, MKD$

CVS

[Function]
Converts the character codes of the first four characters of a string into a single precision real number.

[Format]

[Reference Program]
10 M1=CVS("FFFF") ' 12689.6 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first four characters of a string into an single-precision real number.
(2) An error will be generated if the string consists of three character or less.
(3) MKS$ can be used to convert numerical values into a string.

[Reference]
ASC, CVI, CVD, MKI$, MKS$, MKD$

<Numeric Variable>=CVI(<Character String Expression>)

<Numeric Variable>=CVS(<Character String Expression>)
 Detailed Explanation of Functions 4-279

4MELFA-BASIC IV
CVD

[Function]
Converts the character codes of the first eight characters of a string into a double precision real number.

[Format]

[Reference Program]
10 M1=CVD("FFFFFFFF") ' +3.52954E+30 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first eight characters of a string into a double precision real number.
(2) An error will be generated if the string consists of seven character or less.
(3) MKD$ can be used to convert numerical values into a string.

[Reference]
ASC, CVI, CVS, MKI$, MKS$, MKD$

DEG

[Function]
Converts the unit of angle measurement from radians (rad) into degrees (deg).

[Format]

[Reference Program]
10 P1=P_CURR
20 IF DEG(P1.C) < 170 OR DEG(P1.C) > -150 THEN *NOERR
30 ERROR(9100)

40 *NOERR

[Explanation]
(1) Converts the radian value of an equation into degree value.
(2) When the posture angles of the position data are to be displayed using positional constants, the unit

used for ((500, 0, 600, 180, 0, 180) (7, 0)) is DEG. As in the case of P1.C, the unit used will be in radi-
ans (rad) when the rotational element of the positional variable is to be referenced directly. Value of
P1.C can be handled in DEG. In such case, set parameter "PRGMDEG" to 1.

[Reference]
RAD

<Numeric Variable>=CVD(<Character String Expression>)

<Numeric Variable>=DEG(<Equation>)
4-280 Detailed Explanation of Functions

 4MELFA-BASIC IV
DIST

[Function]
Calculates the distance between two points (position variables).

[Format]

[Reference Program]
10 M1=DIST(P1,P2) ' M1 will contain the distance between positions 1 and 2.

[Explanation]
(1) Returns the distance between positions 1 and 2 (in mm).
(2) Posture angles of the position data will be ignored; only the X, Y, and Z data will be used for calculation.
(3) The joint variables cannot be used. Trying to use it will result in an error during execution.
(4) It is not possible to describe a function that contains an argument in <position 1> and <position 2>. If

such a function is described, an error will be generated during execution.

EXP

[Function]
Calculates exponential functions. (an equation that uses "e" as the base.)

[Format]

[Reference Program]
10 M1=EXP(2) ' e2 is assigned to M1.

[Explanation]
(1) Returns the exponential function value of the equation.

[Reference]
LN

<Numeric Variable>=DIST(<Position 1>, <Position 2>)

<Numeric Variable>=EXP(<Equation>)
 Detailed Explanation of Functions 4-281

4

4MELFA-BASIC IV
FIX

[Function]
Returns the integral portion of the equation.

[Format]

[Reference Program]
10 M1=FIX(5.5) ' 5 is assigned to M1.

[Explanation]
(1) Returns the integral portion of the equation value.
(2) If the equation evaluates to a positive value, the same number as INT will be returned.
(3) If the equation evaluates to a negative value, then for instance FIX(-2.3) = -2.0 will be observed.

[Reference]
CINT, INT

<Numeric Variable>=FIX(<Equation>)
-282 Detailed Explanation of Functions

 4MELFA-BASIC IV
FRAM

[Function]
Calculates the position data that indicates a coordinate system (plane) specified by three position data.
Normally, use DEF PLT and PLT instructions for pallet calculation.

[Format]

[Terminology]
<Numeric Variable 1> This will be the origin of X, Y, and Z of the plane to be specified by three posi-

tions. A variable or a constant.
<Numeric Variable 2> A point on the X axis of the plane to be specified by three positions. A variable

or a constant.
<Numeric Variable 3> A point in the positive Y direction of the X-Y plane on the plane to be specified

by three positions. A variable or a constant.
<Numeric Variable 4> Variable to which the result is assigned.

Substitute the structural flag by the value of <position 1>.

[Reference Program]
10 BASE P_NBASE
20 P100=FRAM(P1,P2,P3) ' Create P100 coordinate system based on P1, P2 and P3 positions.
30 P10=INV(P10)
40 P10. X=P1. X
50 P10. Y=P1. Y
60 P10. Z=P1. Z
70 BASE P10 ' Position of P100 will be used as the origin for robot.
 :

[Explanation]
(1) This can be used to define the base coordinate system.
(2) This creates a plane from the three coordinates X, Y, and Z for the three positions to calculate the posi-

tion of the origin and the inclination of the plane, and returns the result as a position variable. The X, Y,
and Z coordinates of the position data will be identical to that of position variable 1, while A, B, and C
will be the inclination of the plane to be specified by the three positions.

(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-
hand side.

(4) It is not possible to describe a function that contains an argument in <position 1>, <position 2> and
<position 3>. If such a function is described, an error will be generated during execution.
NG exampleP10=FRAM(FPRM(P01,P02,P03), P04, P05)

[Reference]
Relative conversion (* operator). Refer to Page 328, "5.8 About user-defined area".

<Numeric Variable 4>=FRAM(<Numeric Variable 1>, <Numeric Variable 2>,

<Numeric Variable 3>)
 Detailed Explanation of Functions 4-283

4

4MELFA-BASIC IV
HEX$

[Function]
Converts the value of an equation (Between -32768 to 32767) into hexadecimal string.

[Format]

[Reference Program]
10 C1$=HEX$(&H41FF) ' "41FF" is assigned to C1$.
20 C2$=HEX$(&H41FF,2) ' "FF" is assigned to C2$.

[Explanation]
(1) Converts the value of an equation into hexadecimal string.
(2) If <Number of output characters> is specified, the right most part of the converted string is output for the

specified length.
(3) If the numerical value is not an integer, the integer value obtained by rounding the fraction will be con-

verted into hexadecimal string.
(4) VAL is a command that performs this procedure in reverse.
(5) If <number of output characters> is specified, it is not possible to describe a function that contains an

argument in <Equation>. If such a function is described, an error will be generated during execution.
NG example C1$=HEX$(ASC("a"),1)

[Reference]
BIN$, STR$, VAL

INT

[Function]
Returns the largest integer that does not exceed the value of the equation.

[Format]

[Reference Program]
10 M1=INT(3.3) ' 3 is assigned to M1.

[Explanation]
(1) Returns the largest integer that does not exceed the value of the equation.
(2) If the nquation evaluates to a positive value, the same number as FIX will be returned.
(3) If the equation evaluates to a negative value, then for instance FIX(-2.3) = -3.0 will be observed.

[Reference]
CINT, FIX

<Character String Variable >=HEX$(<Equation> [, <Number of output characters>])

<Numeric Variable>=INT(<Equation>)
-284 Detailed Explanation of Functions

 4MELFA-BASIC IV
INV

[Function]
Obtains the position data of the inverse matrix of the position variable. This is used to perform relative calcu-
lation of the positions.

[Format]

[Reference Program]
10 P1=INV(P2) ' P1 will contain the inverse matrix of P2.

[Explanation]
(1) Obtains the position data of the inverse matrix of the position variable.
(2) Joint variables cannot be used as the argument. When a joint variable is used, an error will be gener-

ated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.

JTOP

[Function]
Given joint data will be converted into position data.

[Format]

[Reference Program]
10 P1=JTOP(J1) ' The position that expresses the J1 (joint type) position using the XYZ

type will be assigned to P1.
[Explanation]

(1) Converts the joint data into the position data.
(2) Position variables cannot be used as the argument. When a position variable is used, an error will be

generated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.

[Reference]
PTOJ

<Position Variables>=INV(<Position Variables>)

<Position Variables>=JTOP(<Joint Variables>)
 Detailed Explanation of Functions 4-285

4

4MELFA-BASIC IV
LEFT$

[Function]
Obtains a string of the specified length starting from the left end.

[Format]

[Reference Program]
10 C1$=LEFT$("ABC",2) ' "AB" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the left end.
(2) An error will be generated if the value is a negative value or is longer than the string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
MID$, RIGHT$

LEN

[Function]
Returns the length of the string.

[Format]

[Reference Program]
10 M1=LEN("ABCDEFG") ' 7 is assigned to M1.

[Explanation]
(1) Returns the length of the argument string.

[Reference]
LEFT$, MID$, RIGHT$

<Character String Variable >=LEFT$(<Character String>, <Equation>)

<Numeric Variable>=LEN(<Character String>)
-286 Detailed Explanation of Functions

 4MELFA-BASIC IV
LN

[Function]
Returns the natural logarithm. (Base e.)

[Format]

[Reference Program]
10 M1=LN(2) ' 0.693147 is assigned to M1.

[Explanation]
(1) Returns the natural logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
EXP, LOG

LOG

[Function]
Returns the common logarithm. (Base 10.)

[Format]

[Reference Program]
10 M1=LOG(2) ' 0.301030 is assigned to M1.

[Explanation]
(1) Returns the common logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
EXP, LN

<Numeric Variable>=LN(<Equation>)

<Numeric Variable>=LOG(<Equation>)
 Detailed Explanation of Functions 4-287

4

4MELFA-BASIC IV
MAX

[Function]
Obtains the maximum value.

[Format]

[Reference Program]
10 M1=MAX(2,1,3,4,10,100) ' 100 is assigned to M1.

[Explanation]
(1) Returns the maximum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123 charac-

ters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
MIN

MID$

[Function]
Returns a string of the specified length starting from the specified position of the string.

[Format]

[Reference Program]
10 C1$=MID$("ABCDEFG",3,2) ' "CD" is assigned to C1$.

[Explanation]
(1) A string of the length specified by argument 3 is extracted from the string specified by the first argument

starting from the position specified by argument 2 and returned.
(2) An error will be generated if equation 2 or 3 evaluates to a zero or a negative value.
(3) An error is generated if the position of the last character to be extracted is larger than the length of the

string specified by the first argument.
(4) It is not possible to describe a function that contains an argument in <Character String>, <Equation 2>

and <Equation 3>. If such a function is described, an error will be generated during execution.

[Reference]
LEFT$, RIGHT$, LEN

<Numeric Variable>=MAX(<Equation 1>, <Equation 2>, ...)

<Character String Variable >=MID$(<Character String>, <Equation 2>, <Equation 3>)
-288 Detailed Explanation of Functions

 4MELFA-BASIC IV
MIN

[Function]
Obtains the minimum value.

[Format]

[Reference Program]
10 M1=MIN(2,1,3,4,10,100) ' 1 is assigned to M1.

[Explanation]
(1) Returns the minimum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123 charac-

ters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
MAX

MIRROR$

[Function]
Inverts the bit string representing each character code of the string in binary, and obtains the character-
coded string.

[Format]

[Reference Program]
10 C1$=MIRROR$("BJ") ' "RB" is assigned to C1$.

' "BJ" =&H42,&H4A=&B01000010,&B01001010.
' Inverted =&H52,&H42=&B01010010,&B01000010.
' Output ="RB".

[Explanation]
(1) Inverts the bit string representing each character code of the string in binary, and obtains the character-

coded string.

<Numeric Variable>=MIN(<Equation 1>, <Equation 2>, )

<Character String Variable >=MIRROR$(<Character String Expression>)
 Detailed Explanation of Functions 4-289

4

4MELFA-BASIC IV
MKI$

[Function]
Converts the value of an equation (integer) into a two-byte string.

[Format]

[Reference Program]
10 C1$=MKI$(20299) ' "OK" is assigned to C1$.
20 M1=CVI(C1$) ' 20299 is assigned to M1.

[Explanation]
(1) Converts the lowest two bytes of the value of an equation (integer) into a strings.
(2) Use CVI to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
ASC, CVI, CVS, CVD, MKS$, MKD$

MKS$

[Function]
Converts the value of an equation (single-precision real number) into a four-byte string.

[Format]

[Reference Program]
10 C1$=MKS$(100.1) '
20 M1=CVS(C1$) ' 100.1 is assigned to M1.

[Explanation]
(1) Converts the lowest four bytes of the value of an equation (single-precision real number) into the strings.
(2) Use CVS to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
ASC, CVI, CVS, CVD, MKI$, MKD$

<Character String Variable >=MKI$(<Equation>)

<Character String Variable >=MKS$(<Equation>)
-290 Detailed Explanation of Functions

 4MELFA-BASIC IV
MKD$

[Function]
Converts the value of an equation (double-precision real number) into a eight-byte string.

[Format]

[Reference Program]
10 C1$=MKD$(10000.1) '
20 M1=CVD(C1$) ' 10000.1 is assigned to M1.

[Explanation]
(1) Converts the lowest eight bytes of the value of an equation (single-precision real number) into the

strings.
(2) Use CVD to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
ASC, CVI, CVS, CVD, MKI$, MKI$

POSCQ

[Function]
Checks whether the given position is within the movement range.

[Format]

[Reference Program]
10 M1=POSCQ(P1) ' M1 will contain 1 if the position P1 is within the movement range.

[Explanation]
(1) Check whether the position data given by an argument is within the movement range of the robot. Value

1 will be returned if it is within the movement range of the robot; value 0 will be returned if it is outside
the movement range of the robot.

(2) Arguments must give either the position data type or joint data type.

<Character String Variable >=MKD$(<Equation>)

<Numeric Variable>=POSCQ(<Position Variables>)
 Detailed Explanation of Functions 4-291

4

4MELFA-BASIC IV
POSMID

[Function]
Obtain the middle position data when a linear interpolation is performed between two given points.

[Format]

[Reference Program]
10 P1=POSMID(P2,P3,0,0) ' The position data (including posture) of the middle point between P2

and P3 will be assigned to P1.

[Explanation]
(1) Obtain the position data of the middle point when a linear interpolation is performed between two posi-

tion data.
(2) The first argument gives the starting point of the linear interpolation, while the second argument gives

the endpoint of the linear interpolation.
(3) The third and fourth arguments correspond to the two TYPE arguments of the MVS command.
(4) The arguments for the starting and end points must be positions that allow linear interpolation with the

specified interpolation type. For instance, an error will be generated if the structure flags of the starting
and end points are different.

(5) It is not possible to describe a function that contains an argument in <Position Variables 1>, <Position
Variables 2>,<Equation 1> and <Equation 2>. If such a function is described, an error will be generated
during execution.

PTOJ

[Function]
Converts the given position data into a joint data.

[Format]

[Reference Program]
10 J1=PTOJ(P1) ' J1 will contain the value of P1 (XYZ position variable) that has been con-

verted into joint data type.

[Explanation]
(1) Converts the position data into the joint data.
(2) Joint variables(J variable) cannot be used as the argument. When a joint variable is used, an error will

be generated.
(3) Since the return value is a joint data, an error will be generated if a position variable is used in the left-

hand side.

[Reference]
JTOP

<Position Variables>=POSMID(<Position Variables 1>, <Position Variables 2>,<Equation 1>,

<Equation 2>)

<Joint Variable>=PTOJ(<Position Variables>)
-292 Detailed Explanation of Functions

 4MELFA-BASIC IV
RAD

[Function]
Converts the unit of angle measurement from degrees (deg) into radians (rad).

[Format]

[Reference Program]
10 P1=P_CURR
20 P1.C=RAD(90)
30 MOV P1 ' Moves to P1, which is obtained by changing the C axis of the current position

to 90 degrees.

[Explanation]
(1) Converts the degree value of an equation into radian value.
(2) This can be used to assign values to the posture components (ABC) of a position variable or to execute

trigonometric functions.

[Reference]
DEG

RDFL 1

[Function]
Returns the structure flag of the specified position using character data "R"/"L", "A"/"B", and "N"/"F".

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the structure flag will be extracted.
<Equation> Specifies which structure flag is to be extracted.

0 = "R" / "L", 1 = "A" / "B", 2 = "N" / "F"
[Reference Program]

10 P1=(100,0,100,180,0,180)(7,0)' Since the structure flag 7 (&B111) is RAN,
20 C1$=RDFL1(P1,1) ' C1$ will contain "A".

[Explanation]
(1) Of the structure flags in the position data specified by argument 1, the flag specified by argument 2 will

be extracted.
(2) This function extracts information from the FL1 element of position data.
(3) It is not possible to describe a function that contains an argument in <Position Variables> and

<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
RDFL 2, SETFL 1, SETFL 2

<Numeric Variable>=RAD(<Equation>)

<Character String Variable >=RDFL1(<Position Variables>, <Equation>)
 Detailed Explanation of Functions 4-293

4

4MELFA-BASIC IV
RDFL 2

[Function]
Returns the multiple rotation information of the specified joint axis.

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the multiple rotation information is to be extracted.
<Equation> Specifies the value for the joint axis from which the multiple rotation information is to be extracted. (1

through 8)
[Reference Program]

10 P1=(100,0,100,180,0,180)(7,&H00100000)'
20 M1=RDFL2(P1,6) ' 1 is assigned to M1.

[Explanation]
(1) Of the multiple rotation information of the position data specified by argument 1, the value for the joint

axis specified by argument 2 is extracted.
(2) The range of the return value is between -8 and 7.
(3) This function extracts information from the FL2 element of position data.
(4) Structure flag 2 (multiple rotation information) has a 32-bit structure, which contains 4 bits of information

per axis for 8 axes.
(5) When displaying in T/B and the multiple rotation is a negative value, value of -1 to -8 is converted into F

to 8 (4-bit signed hexadecimal notation) and displayed.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
RDFL 1, SETFL 1, SETFL 2, JRC (Joint Roll Change)

<Numeric Variable>=RDFL2(<Position Variables>, <Equation>)

<Sample display of multiple rotation information in TB> 87654321 axis <Relationship between display and number of multiple
rotations per axis>

When multiple rotation of axis J6 is +1: FL2=00100000 -2 -1 0 +1 +2...............
When multiple rotation of axis J6 is -1: FL2=00F00000 E F 0 1 2...............
-294 Detailed Explanation of Functions

 4MELFA-BASIC IV
RND

[Function]
Generates a random number.

[Format]

[Terminology]
<Equation> Specifies the initial value of random numbers. If this value is set to 0, subsequent random numbers

will be generated without setting the initial value of random numbers.
<Numeric Variable> A value in the range of 0.0 to 1.0 will be returned.

[Reference Program]
10 DIM MRND(10)
20 C1=RIGHT$(C_TIME,2) ' Initializes random numbers using the clock.
30 MRNDBS=CVI(C1)) ' in order to obtain different sequence of numbers.
40 MRND(1)=RND(MRNDBS) ' Sets the initial value of random numbers and extracts the first random

number.
50 FOR M1=2 TO 10 ' Obtain other nine random numbers.
60 MRND(M1)=RND(0)
70 NEXT M1

[Explanation]
(1) Initializes random numbers using the value provided by the argument and extracts a random number.
(2) If the equation provided as the argument evaluates to 0, initialization of random numbers will not take

place and the next random number will be extracted.
(3) When the same value is used to perform initialization of random numbers, identical random number

sequence will be obtained.

RIGHT$

[Function]
Obtains a string of the specified length starting from the right end.

[Format]

[Reference Program]
10 C1$=RIGHT$("ABCDEFG",3) ' "EFG" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the right end.
(2) An error will be generated if the value of the second argument is a negative value or is longer than the

first string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
LEFT$, MID$, LEN

<Numeric Variable>=RND(<Equation>)

<Character String Variable >=RIGHT$(<Character String>, <Equation>)
 Detailed Explanation of Functions 4-295

4

4MELFA-BASIC IV
SETFL 1

[Function]
Changes the structure flag of the specified position using a string (such as "RAN").

[Format]

[Terminology]
<Position Variables>Specifies the position variable whose structure flag is to be changed.
<Character String> Specifies the structure flag to be changed. Multiple flags can be specified.

"R" or "L": Right/Left setting.
"A" or "B": Above/Below setting.
"N" or "F": Nonflip/Flip setting.

[Reference Program]
10 MOV P1
20 P2=SETFL1(P1,"LBF")
30 MOV P2

[Explanation]
(1) Returns the position data obtained by changing the structure flags in the position data specified by argu-

ment 1 to flag values specified by argument 2.
(2) This function changes information from the FL1 element of position data. The content of the position data

given by the argument will remain unchanged.
(3) The structure flag will be specified starting from the last character in the string. Therefore, for instance, if

the string "LR" is specified, the resulting structure flag will be "L".
(4) If the flags are changed using a numerical value, set P1.FL1=7.
(5) Structure flags may have different meanings depending on the robot model. For details, please refer to

"ROBOT ARM SETUP & MAINTENANCE" for each robot.

The structure flag corresponds to 7 in the position constant (100, 0, 300, 180, 0, 180) (7, 0). The actual posi-
tion is a bit pattern.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Character String>. If such a function is described, an error will be generated during execution.

[Reference]
RDFL 1, RDFL 2, SETFL 2

<Position Variables>=SETFL1(<Position Variables>, <Character String>)

 7 = & B 0 0 0 0 0 1 1 1
1/0=N/F
1/0=A/B
1/0=R/L
-296 Detailed Explanation of Functions

 4MELFA-BASIC IV
SETFL 2

[Function]
Changes the multiple rotation data of the specified position.

[Format]

[Terminology]
<Position Variables> Specifies the position variable whose multiple rotation data are to be changed.
<Equation 1> Specifies the axis number for which the multiple rotation data are to be

changed. (1 through 8).
<Equation 2> Specifies the multiple rotation data value to be changed (-8 through 7).

[Reference Program]
10 MOV P1
20 P2=SETFL2(P1,6,1)
30 MOV P2

[Explanation]
(1) Returns the position data obtained by changing the position data's multiple rotation information of the

joint axis specified by equation 1 to the value specified by equation 2.
(2) This function changes information from the FL2 element of position data.
(3) The content of the position of position variables given by the argument (X, Y, Z, A, B, C, and FL1) will

remain unchanged.

(4) It is not possible to describe a function that contains an argument in <Position Variables>, <Equation 1>
and <Equation 2>. If such a function is described, an error will be generated during execution.

[Reference]
RDFL 1, RDFL 2, SETFL 1

<Position Variables>=SETFL2(<Position Variables>, <Equation 1>, <Equation 2>)

-900 -540 -180 0 180 540 900

・・・
-2
（E）

-1
（F） 0 1 2 ・・・

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data
 Detailed Explanation of Functions 4-297

4

4MELFA-BASIC IV
SETJNT

[Function]
Sets the value to the joint variable.
This function is available for controller software version J2 or later.

[Format]

[Terminology]
<Joint Variable> Sets the value to the joint variable.
<J1 Axis>-<J8 Axis> The unit is RAD (the unit is mm for direct-driven axes).

[Reference Program]
10 J1=J_CURR
20 FOR M1=0 to 60 SETP 10
30 M2=J1.J3+RAD(M1)
40 J2=SETJNT(J1.J1,J1.J2,M2) ' Only for the value of the J3 axis, it is rotated by 10 degrees each

time. The same value is used for the J4 and succeeding axes.
50 MOV J2
60 NEXT M1
70 M0=RAD(0)
80 M90=RAD(90)
70 J3=SETJNT(M0,M0,M90,M0,M90,M0)
100 MOV J3

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the J1 axis. They can be omitted for all subsequent axes. (Argu-

ments such as SETJNT(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SETPOS

[Related parameter]
AXUNT, PRGMDEG

<<Joint Variable>>=SETJNT(<J1 Axis>[,<J2 Axis>[,<J3 Axis>[,<J4 Axis>

 [,<J5 Axis>[,<J6 Axis>[,<J7 Axis>[,<J8 Axis>]]]]]]])
-298 Detailed Explanation of Functions

 4MELFA-BASIC IV
SETPOS

[Function]
Sets the value to the Position variable
This function is available for controller software version J2 or later.

[Format]

[Terminology]
<Position Variable> Sets the value to the Position variable.
<X Axis>-<Z Axis> The unit is mm.
<A Axis>-<C Axis> The unit is RAD. (It can be switched to DEG using the PRGMDEG parameter.)
<L1 Axis>-<L2 Axis> The unit depends on "AXUNT" Parameter.

[Reference Program]
10 P1=P_CURR
20 FOR M1=0 to 100 SETP 10
30 M2=P1.Z+M1
40 P2=SETPOS(P1.X, P1.Y, M2) ' Only for the value of the Z axis, it is rotated by 10 mm each time.

The same value is used for the A and succeeding axes.
50 MOV J2
60 NEXT M1

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the X axis. They can be omitted for all subsequent axes. (Argu-

ments such as SETPOS(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SETJNT

[Related parameter]
AXUNT, PRGMDEG

<<Position Variable>>=SETPOS(<X Axis>[,<Y Axis>[,<Z Axis>

 [,<A Axis>[,<B Axis>[,<C Axis>[,<L1 Axis>[,<L2 Axis>]]]]]]])
 Detailed Explanation of Functions 4-299

4

4MELFA-BASIC IV
SGN

[Function]
Checks the sign of the equation.

[Format]

[Reference Program]
10 M1=-12
20 M2=SGN(M1) ' -1 is assigned to M2.

[Explanation]
(1) Checks the sign of the equation and returns the following value.

Positive value 1
0 0
Negative value -1

SIN

[Function]
Calculates the sine.

[Format]

[Reference Program]
10 M1=SIN(RAD(60)) ' 0.866025 is assigned to M1.

[Explanation]
(1) Calculates the sine to which the given equation evaluates.
(2) The range of values will be the entire range that numerical values can take.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
COS, TAN, ATN/ATN2

<Numeric Variable>=SGN(<Equation>)

<Numeric Variable>=SIN(<Equation>)
-300 Detailed Explanation of Functions

 4MELFA-BASIC IV
SQR

[Function]
Calculates the square root of an equation value.

[Format]

[Reference Program]
10 M1=SQR(2) ' 1.414214 is assigned to M1.

[Explanation]
(1) Calculates the square root of the value to which the given equation evaluates.
(2) An error will be generated if the equation given by the argument evaluates to a negative value.

STRPOS

[Function]
Searches for a specified string in a string.

[Format]

[Reference Program]
10 M1=STRPOS("ABCDEFG","DEF") ' 4 is assigned to M1.

[Explanation]
(1) Returns the position of the first occurrence of the string specified by argument 2 from the string specified

by argument 1.
(2) An error will be generated if the length of the argument 2 is 0.
(3) For instance, if argument 1 is "ABCDEFG" and argument 2 is "DEF", 4 will be returned.
(4) If the search string could not be found, 0 will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String 1> and <Charac-

ter String 2>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=SQR(<Equation>)

<Numeric Variable>=STRPOS(<Character String 1>, <Character String 2>)
 Detailed Explanation of Functions 4-301

4

4MELFA-BASIC IV
STR$

[Function]
Converts the value of the equation into a decimal string.

[Format]

[Reference Program]
10 C1$=STR$(123) ' "123" is assigned to C1$.

[Explanation]
(1) Converts the value of the equation into a decimal string.
(2) VAL is a command that performs this procedure in reverse.

[Reference]
BIN$, HEX$, VAL

TAN

[Function]
Calculates the tangent.

[Format]

[Reference Program]
10 M1=TAN(RAD(60)) ' 1.732051 is assigned to M1.

[Explanation]
(1) Returns the tangent of the value to which the equation evaluates.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of return values will be the entire range that numerical values can take.
(4) The unit of arguments is in radians.

[Reference]
SIN, COS, ATN/ATN2

<Character String Variable >=STR$(<Equation>)

<Numeric Variable>=TAN(<Equation>)
-302 Detailed Explanation of Functions

 4MELFA-BASIC IV
VAL

[Function]
Converts the value in the string into a numerical value.

[Format]

[Reference Program]
10 M1=VAL("15")
20 M2=VAL("&B1111")
30 M3=VAL("&HF")

[Explanation]
(1) Converts the given character string expression string into a numerical value.
(2) Binary (&B), decimal, and hexadecimal (&H) notations can be used for the string.
(3) In the example above, M1, M2 and M3 evaluate to the same value (15).

[Reference]
BIN$, HEX$, STR$

<Numeric Variable>=VAL(<Character String Expression>)
 Detailed Explanation of Functions 4-303

4

4MELFA-BASIC IV
ZONE

[Function]
Checks if the specified position is within the specified area (a rectangular solid defined by two points).

[Format]

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area. (diagonal point)

Positions 1 to 3 set the XYZ coordinates variable system (P variable X, Y, Z, A, B, C, L1 and L2).

[Reference Program]
10 M1=ZONE(P1,P2,P3)

20 IF M1=1 THEN MOV P_SAFE ELSE END

[Explanation]
(1) This will check if position 1 is inside the rectangular solid defined by the two points, position 2 and posi-

tion 3. (The two points will become the diagonal points of the rectangular solid.) If the point is inside the
rectangular solid, 1 is returned; otherwise, 0 is returned.

(2) To check whether position 1 is inside that area, each element of position 1 (X, Y, Z, A, B, C, L1 and L2)
will be checked if it is between the values for position 2 and position 3.

(3) As for the posture angles (A, B, and C), they are checked by rotating in the positive direction from the
angle in position 2 to position 3 and by seeing if the target value is inside the swiped range.
Example) If P2.A is -100 and P3.A is +100, if P1.A is 50, the value is within the range. Similar checking
will be performed for B and C axes. (Refer to diagram below.)

(4) For components that are not checked or do not exist, if the unit is in degrees, position 2 will be set to -
360 and position 3 will be set to 360. If the unit is in millimeters, position 2 will be set to -10000 and
position 3 will be set to 10000.

(5) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2> and
<Position 3>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=ZONE(<Position 1>, <Position 2>, <Position 3>)

X

Y

Z

P2 P3

P1

+ -

±0°

<Position 2><Position 3>

±180°

Example) If the value passes through 0 from -90 to +90,
 the following setting is necessity.
 Sets the negative value to ABC of <position 2>.
 Sets the positive value to ABC of <position 3>.

Example) If the value passes through 180 from -90 to +90,
 the following setting is necessity.
 Sets the positive value to ABC of <position 2>.
 Sets the negative value to ABC of <position 3>.

+ -

±0°

<Position 3><Position 2>

±180°
-304 Detailed Explanation of Functions

 4MELFA-BASIC IV
ZONE 2

[Function]
Checks if the specified position is within the specified area (Cylindrical area defined by two points).

[Format]
This function is available for controller software version G5 or later

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area.
<Equation> Radius of the hemisphere on both ends.

[Reference Program]
10 M1=ZONE2(P1,P2,P3,50)
20 IF M1=1 THEN MOV P_SAFE ELSE END

[Explanation]
(1) This will check if position 1 is inside the cylindrical area (Refer to diagram below) defined by the two

points, position 2 and position 3, and the radius represented by the equation. If the point is inside the
space, 1 is returned; otherwise, 0 is returned.

(2) This function checks whether the check position (X, Y, and Z coordinates) is within the specified area,
but does not take the posture components into consideration.

(3) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2>, <Posi-
tion 3> and <Equation>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=ZONE2(<Position 1>, <Position 2>, <Position 3>, <Equation>)

P2 P3

P1
r
 Detailed Explanation of Functions 4-305

5

5Functions set with parameters
5 Functions set with parameters

This controller has various parameters listed in Table 5-2. It is possible to change various functions and
default settings by changing the parameter settings.

For the parameters regarding dedicated I/O signals, refer to Page 371, "6.3 Dedicated input/output". After
changing the parameters, make sure to turn the robot controller's power OFF and then turn ON.
Parameter settings will not be in effect until the power is turned on again. For detailed operating method for
parameters, refer to Page 54, "(1) Setting the parameters".

When changing parameters, check thoroughly the function and setting values first.
Otherwise, the robot may move unexpectedly, which could result in personal injury or
property damage.

5.1 Movement parameter
These parameters set the movement range, coordinate system and the items pertaining to the hand of the
robot.

Table 5-1:List Movement parameter

No. Classification Content Reference

1 Movement parameter These parameters set the movement range, coordinate system and the items
pertaining to the hand of the robot.

Page 306

2 Signal parameter These parameters set the items pertaining to signals. Page 314

3 Operation parameter These parameters set the items pertaining to the operations of the controller, T/
B and so forth.

Page 315

4 Command parameter These parameters set the items pertaining to the robot language. Page 318

5 Communication parameter These parameters set the items pertaining to communications. Page 322

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Joint movement
range

MEJAR Real value 16 Set the overrun limit value for the joint coordinate system.
Sets the movement range for each axis. Expanding of the move-
ment range is not recommended, since there is possibility that the
robot may strike the mechanical stopper.
Set the minus and plus directions. (-J1,+J1,-J2,+J2,......-J8,+J8)
Unit:deg

Setting value for
each mechanism

XYZ movement
range

MEPAR Real value 6 Set the overrun limit value for the XYZ coordinate system.
The movement range of the robot will be limited based on XYZ
coordinate system. This can be used to prevent the robot from
striking peripheral devices during manual operation when the robot
is installed within the device.
Set the minus and plus directions. (-X,+X,-Y,+Y,-Z,+Z) Unit:mm

(-X,+X,-Y,+Y,-
Z,+Z)=
-10000,10000,
-10000,10000,
-10000,10000

Standard tool coor-
dinates

Refer to
"5.6Standard Tool
Coordinates".

MEXTL Real value 6 Initial values will be set for the hand tip (control point) and the
mechanical interface (hand mounting surface). The factory default
setting is set to the mechanical interface as the control point.
Change this value if a hand is installed and the control point needs
to be changed to the hand tip.
 (This will allow posture control at the hand tip for XYZ or tool jog
operation.)
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool coordinate 1
Refer to
"M_TOOL"

MEXTL1 Real value 6 If the M_TOOL variable is substituted by 1, the tool data can be
switched using this parameter value.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool coordinate 2
Refer to
"M_TOOL"

MEXTL2 Real value 6 If the M_TOOL variable is substituted by 2, the tool data can be
switched using this parameter value.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool coordinate 3
Refer to
"M_TOOL"

MEXTL3 Real value 6 If the M_TOOL variable is substituted by 3, the tool data can be
switched using this parameter value.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

 CAUTION
-306 Movement parameter

 5Functions set with parameters
Tool coordinate 4
Refer to
"M_TOOL"

MEXTL4 Real value 6 If the M_TOOL variable is substituted by 4, the tool data can be
switched using this parameter value.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool base coordi-
nates

Refer to
"5.6Standard Tool
Coordinates"

MEXBS Real value 6 Sets the positional relationship between the base coordinate sys-
tem and the robot coordinate system. The factory default setting is
set so that the base coordinate system and the robot coordinate
system are identical.
This will be set when the coordinate system for the whole device is
changed. This parameter does not need to be changed very often.
This is set when the coordinate system for the whole device is to
be identical.
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

User area

Refer to
"5.8About user-
defined area"

Designate an area (rectangle defined with two XYZ coordinate
points.
A signal will be output if that area is outside the movement area
(interference), or if the robot's current position is within that area.
Up to eight limits can be set using the following four types of
parameters. For components that are not checked or do not exist,
if the unit is in degrees, set AREA*P1 to -360 and AREA*P2 to
360. If the unit is in mm, set AREA*P1 to -10000 and AREA*P2 to
10000 as the corresponding component.

AREA*P1
* is 1 to 8

Real value 8 Designate the first point of the area.
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C)=
0.0,0.0,0.0,-360.0,-
360.0,-360.0

AREA*P2
* is 1 to 8

Real value 8 Designate the secand point of the area.
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C)=
0.0,0.0,0.0,+360.0,+
360.0,+360.0

AREA*ME
* is 1 to 8

Integer 1 Designate the mechanism No. for which the user-defined area is to
be validated.
The mechanism No. is 1 to 4, but normally 1 is set.

0

AREA*AT
* is 1 to 8

Integer 1 Specify the behavior of the robot when the robot enters the user
definition area.
(Invalid / In-zone signal output/Error output=0/1/2)
Invalid:This function will be invalid.
In-zone signal output:The dedicated output signal USRAREA will
turn ON.
Error output:An error is generated. Posture data will be ignored.

0(Invalid)

USRAREA Defines the number of the signal that outputs the status.
Refer to Page 371, "6.3 Dedicated input/output"

-1,-1

Free plane limit

Refer to
"5.9Free plane
limit"

*The function [-1:
The operable area
is the side where
the robot coordi-
nate origin does
not exist] can be
used in the control-
ler's software ver-
sion J1 or later.

This is the overrun limit set on a free plane.
Create a plane with three coordinate points, and set the area that
does not include the origin as the outside-movement area. Up to
eight limits can be set using the following three types of parame-
ters.

SFC*P
* is 1 to 8

Real value 9 Designate three points for creating the plane.
X1,Y1,Z1:Origin position in the plane
X2,Y2,Z2:Position on the X-axis in the plane
X3,Y3,Z3:Position in the positive Y direction of the X-Y plane in the
plane

(X1,Y1,Z1,
X2,Y2,Z2,
X3,Y3,Z3)=0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0
.0,0.0

SFC*ME
* is 1 to 8

Integer 1 Designate the mechanism No. for which the free plane limit is to be
validated.
The mechanism No. is 1 to 3, but normally 1 is set.

0

SFC*AT
* is 1 to 8

Integer 1 Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot coordinate
origin does not exist.)

0(Invalid)

Safe point position JSAFE Real value 8 Specifies the safe point position. Robot moves to the safe point
position if the robot program executes MOV P_SAFE instruction or
receives input of the SAFEPOS signal, which is an external signal.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

Not allowed

User-designated
origin

USERORG Real value 8 Designate the user-designated origin position. This normally does
not need to be set.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

(J1,J2,J3,J4,J5,J6,
 J7,J8)=
0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-307

5

5Functions set with parameters
User-designated
origin

USERORG Real value 8 Designate the user-designated origin position. This normally does
not need to be set.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

(J1,J2,J3,J4,J5,J6,
 J7,J8)=
0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0

Select the function
of singular point
adjacent alarm
Refer to Page 344,
"5.17 About the sin-
gular point adjacent
alarm"
**This parameter
can be used for
controller software
version G8 or later.

MESNGLS
W

Integer 1 Designate the valid/invalid of the singular point adjacent alarm.
(Invalid/Valid=0/1)
When this parameter is set up "VALID", this warning sound is
buzzing even if parameter: BZR (buzzer ON/OFF) is set up "OFF".

1(Valid)

Jog setting JOGJSP Real value 3 Designate the joint jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High Unit: deg.
Inching L: Feed amount when jog speed is set to Low Unit: deg.
Maximum override: Operates at OP override x maximum override.

Setting value for
each mechanism

JOGPSP Real value 3 Designate the XYZ jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High
Unit: deg.
Inching L: Feed amount when jog speed is set to Low
Unit: deg.
Maximum override: Operates at OP override x maximum override.
Operation exceeding the maximum speed 250 mm/s cannot be
performed.

Setting value for
each mechanism

Jog speed limit
value

JOGSPMX Real value 1 Limit the robot movement speed during the teach mode.
Unit: mm/s
Even if a value larger than 250 is set, the maximum value will be
limited to 250.

250.0

Automatic return
setting after jog feed
at pause

Refer to
"5.10Automatic return
setting after jog feed
at pause"

*The "2: Return by
XYZ interpolation"
is available for con-
troller software ver-
sion H4 or later.

RETPATH Integer 1 While running a program, if the program is paused by a stop and
then the robot is moved by a jog feed for instance, at the time of
restart, this setting makes the robot return to the position at which
the program was halted before continuing. If this function is dis-
abled, movement instructions will be carried out from the current
position until the next point. The robot does not return to the posi-
tion where the program was halted.
 0: Invalid .
 1: Return by JOINT interpolation.
 2: Return by XYZ interpolation.
Note) When returning by XYZ interpolation, carry out shorter cir-

cuit movement by 3 axis XYZ interpolation.
Note) In the circle interpolation (MVC, MVR, MVR2, MVR3) com-

mand, this function is valid for H4 or later. Moreover, in the
circle interpolation command and the MVA command, even
if set up with 0, the operation is same as 1.

The RH-1000G and
1500G series and
RH-15UHC are 2..
The type other than
the above are 1.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-308 Movement parameter

 5Functions set with parameters
The gravity direc-
tion

*This parameter
can be used for
controller software
version H4 or later.

Note) This function
can be used in RV-
1A/2AJ, RV-4A/5AJ
series, and RV-
20A.

MEGDIR Real value 4 This parameter specifies the direction and magnitude of gravita-
tional acceleration that acts on the robot according to the installa-
tion posture for the X, Y, and Z axes of the robot coordinate
system, respectively (unit: mm/second2).
There are four elements: installation posture, gravitational acceler-
ation in the X axis direction, gravitational acceleration in the Y axis
direction, and then gravitational acceleration in the Z axis direction,
in this order from the left.

The example of the setting of gravity acceleration is shown below.
Example: If the robot is tilted 30 degrees forward (see the figure
below):
The direction gravity acceleration of X axis (Xg) = 9.8 x sin(30
degrees) = 4.9 .
The direction gravity acceleration of the Z axis (Zg) = 9.8 x cos(30
degrees) = 8.5 .
Note that the value is set to -8.5 because the direction is opposite
to the Z axis of the robot coordinate system.
The direction gravity acceleration of the Y axis (Yg) = 0.0
Therefore, the set value is (3.0, 4.9, 0.0, and -8.5)

0.0, 0.0, 0.0, 0.0

Hand initial state

Refer to
"5.13About default
hand status"

HANDINIT Integer 8 Set the pneumatic hand I/F output for when the power is turned
ON.
This parameter specifies the initial value when turning ON the
power to the dedicated hand signals (900’S) at the robot's tip.
To set the initial status at power ON when controlling the hand
using general-purpose I/Os (other than 900’S) or CC-Link (6000’S)
(specifying a signal other than one in 900’S by the HANDTYPE
parameter), do not use this HANDINIT parameter, but use the
ORST* parameter.
The value set by the ORST* parameter becomes the initial value of
signals at power ON.

1,0,1,0,1,0,1,0

Hand type

Refer to
"5.12About the
hand type"

HAND-
TYPE

Character
string 8

Set the single/double solenoid hand type and output signal No.
(D:double solenoid, S:single solenoid).
Set the signal No. after the hand type.
When D900 is set, the signal No. 900 and 901 will be output.
In the case of D (double solenoid), please configure the setting so
that the signals do not overlap

D900,D902,D904,D
906,,,,

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Installation
posture

Setting value (Installation posture,
gravitational acceleration in the X axis

direction, gravitational acceleration in the
Y axis direction, and then gravitational

acceleration in the Z axis direction)

On floor (0.0, 0.0, 0.0, 0.0)
Against wall (1.0, 0.0, 0.0, 0.0)
Hanging (2.0, 0.0, 0.0, 0.0)
Optional
posture*1

(3.0, ***, ***, ***)
 Movement parameter 5-309

5

5Functions set with parameters
Hand and work-
piece conditions
(Used in optimum
acceleration/decel-
eration and impact
detection)

Refer to "5.16Hand
and Workpiece Con-
ditions (optimum
acceleration/deceler-
ation settings)"

Set the hand conditions and work conditions for when OADL ON is
set with the program.
Up to eight conditions can be set. The condition combination is
selected with the LOADSET command.

HNDDAT0 Real value 7 Set the initial condition of the hand. (Designate with the tool coordi-
nate system.)
Immediately after power ON, this setting value is used.
To use the impact detection function during jog operation, set the
actual hand condition before using. If it is not set, erroneous detec-
tion may occur.

(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

RV-3S/3SJ/3SB/3SJB
3.50, 284.00, 284.00,
286.00, 0.00, 0.00,
75.00

RV-6S/6SL
6.00, 213.00, 213.00,
17.00, 0.00, 0.00,
130.00

RV-12S/12SL
12.00, 265.00, 265.00,
22.00, 0.00, 0.00,
66.00

RH-6SH
6.00, 99.00, 99.00,
76.00, 0.00, 0.00,
38.00

RH-12SH
12.00, 225.00, 225.00,
30.00, 0.00, 0.00,
15.00

RH-18SH
18.00, 258.00, 258.00,
34.00, 0.00, 0.00,
17.00

Other type are
secret.

HNDDAT*
* is 1 to 8

Real value 7 Set the initial condition of the hand. (Designate with the tool coordi-
nate system.)
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

Standard load
,0.0,0.0,0.0,0.0,0.0,
0.0

WRKDAT0 Real value 7 Set the work conditions. (Designate with the tool coordinate sys-
tem.)
Immediately after power ON, this setting value is used.
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

RV-S/RH-S series
0.0,0.0,0.0,0.0,0.0,0.0
,0.0
Other type are
secret.

WRKDAT*
* is 1 to 8

Real value 7 Set the work conditions. (Designate with the tool coordinate sys-
tem.)
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

0.0,0.0,0.0,0.0,0.0,0
.0,0.0

HNDHOLD*
* is 1 to 8

Integer 2 Set whether to grasp or not grasp the workpiece when HOPEN (or
HCLOSE) is executed.
(Setting for OPEN, setting for CLOSE)
(No grasp/grasp = 0/1)

0,1

Maximum acceler-
ation/deceleration
setting

Refer to "5.16Hand
and Workpiece Con-
ditions (optimum
acceleration/deceler-
ation settings)"

*This parameter
can be used for
controller software
version G1 or later.

ACCMODE Integer 1 Sets the initial value and enables/disables the optimum accelera-
tion/deceleration mode. (Invalid/Valid=0/1)

RH-A/RH-S/RV-S
series and RV-
100TH/150TH/
100THL/150THL
........1
Except the
above..............0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-310 Movement parameter

 5Functions set with parameters
Optimum
acceleration/
deceleration
adjustment rate

*This parameter
can be used for
controller software
version J2 or later.

JADL Real value 8 Set the initial value (value at power ON) of the acceleration/deceleration
adjustment rate (%) during optimum acceleration/deceleration. It is the
rate applied to the acceleration/deceleration speed calculated by optimum
acceleration/deceleration control. In the RV-S series, high-speed
operation can be performed by setting this value to a larger value.
However, if the robot is operated continuously for a certain period of time
at high speed, overload and overheat errors may occur. Lower the setting
value if such errors occur.
In the RV-S series, the initial values have been set so as to prevent
overload and overheat errors from occurring.
They are applied to both the deceleration and acceleration speeds.

* What is an overload error?
An overload error occurs when the load rate reaches a certain
value in order to prevent the motor from being damaged by heat
from high-speed rotation.
* What is an overheat error?
An overheat error occurs when the temperature reaches a certain
value in order to prevent the position detector from being damaged
by heat from high-speed rotation.
Note) This function is valid only in the RV-S series.

RV-3S/3SJ/3SB/
3SJB series
100,100,100,100,
100,100,100,100
(%)

RV-6S/12S
50,50,50,50,
50,50,50,50(%)

RV-6SL/12SL
35,35,35,35,
35,35,35,35(%)

Speed optimiza-
tion interpolation
functional switch

*This parameter
can be used for
controller software
version H7 or later.

SPDOPT Integer 1 Set enable/disable of speed optimization interpolation function just
after the power supply turned on
 1: Enable
 (Enable the speed optimization interpolation function at the
power on)
 0: Disable
 (Disable the speed optimization interpolation function at the
power on)
 -1: Disable the SPDOPT command
If the value of this parameter is 1 or 0, it is possible to switch
between enabling and disabling the speed adjustment interpola-
tion function using the SPDOPT instruction in a program.
If the value is -1, the speed adjustment interpolation function is
always disabled even if the SPDOPT instruction is used in a pro-
gram.
Note)This function is supported by limited models of RH-1000G
systems, etc.

Only RH-1000G
series is 1.
Other type are -1.

Impact Detection

*This parameter
can be used for
controller software
version J2 or later.

COL Integer 3 Define whether the impact detection function can/cannot be used,
and whether it is enabled/disabled immediately after power ON.
Element 1: The impact detection function can (1)/cannot (0) be
used.
Element 2: It is enabled (1)/disabled (0) as the initial state during
operation.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog
operation
The NOERR mode does not issue an error even if impact is
detected. It only turns off the servo. Use the NOERR mode if it is
difficult to operate because of frequently occurred errors when an
impact is detected.
Note) This function is valid only in the RV-S/RH-S series.

RV-S series is 0,0,1

RH-S series is 1,0,1

Detection level

*This parameter
can be used for
controller software
version J2 or later.

COLLVL Integer 8 Set the initial value of the detection level of each axis during
program operation.
Setting range: 1 to 500, unit: % * If a value exceeding the setting
range is specified, the closest value allowed within the range is
used instead.
Note) This function is valid only in the RV-S/RH-S series.

200,200,200,200,
200,200,200,200

Detection level
during jog
operation

COLLVLJG Real value 8 Set the detection level during jog operation. Unit (%)
To increase detection sensitivity, reduce the numeric value.
If an impact error occurs even when no impact occurs during jog
operation, increase the numeric value.
Note) This function is valid only in the RV-S/RH-S series.

The standard is
200,200,200,200,20
0,200,200,200, but
it varies with
models.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-311

5

5Functions set with parameters
Selection of wrist
rotation angle (axis
A) coordinate
system

RCD Integer 1 Switch the control and display method of the wrist rotation angle
(axis A of the XYZ coordinates system) of a vertical 5-axis type
robot. This parameter is invalid for robots of other types.
2: General angle method
Control axis A such that the hand's posture is maintained if the
value of axis A is the same before and after an operation. Note that
there are cases where the hand's posture cannot be maintained
depending on the attitude of the wrist (axis B of the XYZ
coordinates system). Under normal circumstances, use this
method without changing the setting at shipment from the factory.
0/1/3 = General angle method of the E series/joint angle method/
old general angle method
These options are prepared for the compatibility with programs
(position data) created for older models (e.g., RV-E3J, RV-E5NJ).
To use programs (position data) created for older models, change
the parameter value to the same value as the RCD value specified
for the given older model.

Note that these methods are not mutually compatible; the postures
of the hand in the middle of movement and at the registered
position may be different for two different values of this parameter,
even if the robot is moving toward the same position data. Make
sure to set the same method as when the position data was
registered in order to execute the program.

2 (general angle
method)

Warm-up operation
mode setting

*This parameter
can be used for
controller software
version J8 or later.

WUPENA Integer 1 Designate the valid/invalid of the Warm-up operation mode.
0:Invalid
1: Valid

Note: If a value other than the above is set, everything will be
disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

0(Invalid)

Warm-up operation
mode target axis

*This parameter
can be used for
controller software
version J8 or later.

WUPAXIS Integer 1 Specify the joint axis that will be the target of control in the warm-
up operation mode by selecting bit ON or OFF in hexadecimal
(J1, J2, from the lower bits).

Bit ON: Target axis
Bit OFF: Other than target axis

A joint axis that will generate an excessive difference error when
operated at low temperature will be a target axis.
Note: If the bit of a non-existent axis is set to ON, it will not be a

target axis.
Note: If there is no target axis, the warm-up operation mode will be

disabled.
Note: For multiple mechanisms, this mode is set for each

mechanism.

RV-6S/12S serires
:00111000
(J4, J5, J6 axis)

RV-3S/3SB
:00001110

RV-3SJ/3SJB
:
00000110

The type other than
the above are 0

Warm-up operation
mode control time

*This parameter
can be used for
controller software
version J8 or later.

WUPTIME Real value 2 Specify the time to be used in the processing of warm-up operation
mode. (Valid time, resume time) Unit: min.

Valid time: Specify the time during which the robot is operated in
the warm-up operation status and at a reduced speed.
(Setting range: 0 to 60)
Resume time: Specify the time until the warm-up operation status
is set again after it has been canceled if a target axis continues to
stop. (Setting range: 1 to 1440)

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the valid time is 0 min, the warm-up operation mode will be
disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

1, 60

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-312 Movement parameter

 5Functions set with parameters
Warm-up operation
override

*This parameter
can be used for
controller software
version J8 or later.

WUPOVRD Integer 2 Perform settings pertaining to the speed in the warm-up operation
status.
(Initial value, ratio of value constant time) Unit: %

Initial value: Specify the initial value of an override (warm-up
operation override) to be applied to the operation speed when in
the warm-up operation status. (Setting range: 50 to 100)
Ratio of value constant time: Specify the duration of time during
which the override to be applied to the operation speed when in
the warm-up operation status does not change from the initial
value, using the ratio to the valid time.
(Setting range: 0 to 50)

The correspondence between the values of warm-up operation
overrides and the setting values of various elements is shown in
the figure below.

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the initial value of an override is 100%, the warm-up
operation mode will be disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

70, 50

Functional setting
of compliance error

*This parameter
can be used for
controller software
version H6 or later.

CMPERR Integer 1 Setting this parameter prevents errors 2710 through 2740 (errors
that occur if the position command generated in compliance
control is abnormal) from occurring.

1: Enable error generation
0: Disable error generation

The contents of applicable errors are as follows:
2710: The displacement from the original position command is

too large.
2720: Exceeded the joint limit of the compliance command
2730: Exceeded the speed of the compliance command
2740: Coordinate conversion error of the compliance

command

If these errors occur, compliance control is not functioning
normally. It is thus necessary to re-examine the teaching position
and the program content to correct the causes of these errors.
Change this parameter value to 0 (disable error generation) only
when you can determine that doing so does not cause any
operational problem even if the current operation is not suspended
by an error.

1 (Enable error
generation)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

100%

Value constant time

Valid time of the warm-up operation status

Warm-up
operation override

Time during
which a target

axis is operating

Initial value
(First element)

Value constant time = Valid time x
Ratio of value constant time(Second element)
 Movement parameter 5-313

5

5Functions set with parameters
5.2 Signal parameter
These parameters set the items pertaining to signals

Table 5-2:List Signal parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Dedicated I/O
signal

For the parameters of the dedicated I/O signal, refer to Page 371,
"6.3 Dedicated input/output".

Stop input B
contact desig-
nation

INB Integer 1 Change the dedicated input (stop) between the A contact and B
contact.
(A contact/B contact = 0/1)

0(A contact)

Reads the pro-
gram number
from the numeri-
cal input when
the start signal
is input.

PST Integer 1 To select a program from the normal external input signal, set the
numerical input signal (IODATA) to the program number, establish
the number with the program select signal (PRGSEL), and start
with the START signal. If this function is enabled, the program
select signal becomes unnecessary, and when the START signal
turns ON, the program number is read from the numerical input sig-
nal (IODATA).
(Function invalid/Valid=0/1)

0(Invalid)

CC-Link error
release permis-
sion.

*This parame-
ter can be used
for controller
software version
H7 or later.

E7730 Integer 1 If the controller is used without connecting CC-Link even though it is
equipped with the CC-Link option, error 7730 is generated and the
controller becomes inoperable. This error cannot be canceled
under normal circumstances, but it becomes possible to temporarily
cancel the error by using this parameter.
(Enable temporary error cancellation/disable error cancellation = 1/
0)

This parameter becomes valid immediately after the value is
changed by the T/B or Personal Computer support software. It is
not necessary to turn the power supply off and on again. Note, how-
ever, that the value of this parameter returns to 0 again (it is no
longer possible to cancel the error) when the power supply is turned
off and on because changes of the parameter value are not stored.

0 (disable error
cancellation)

Output signal
reset pattern

Refer to
"5.14About the
output signal
reset pattern"

Set the operation to be taken when the general-purpose output sig-
nal for the CLR command or dedicated input (OUTRESET) is reset.
Signals are output in the pattern set here even when the power is
turned ON.
Set with a 32-bit unit for each signal using the following parame-
ters.(OFF/ON/hold=0/1/*)

ORST0 Character
string 4

Set the signal No. 0 to 31. 00000000,0000000
0,00000000,00000
000

ORST32
 :
ORST8016

Character
string 4

Set the signal No. 32 to 63.
 :
Set the signal No. 8016 to 8047

00000000,0000000
0,00000000,00000
000
 :

Output reset at
reset

SLRSTIO Integer 1 Designate the function to carry out general-purpose output signal
reset when the program is reset.
(Invalid/Valid=0/1)

0(Invalid)
-314 Signal parameter

 5Functions set with parameters
5.3 Operation parameter
These parameters set the items pertaining to the operations of the controller, T/B and so forth.

Table 5-3:List Operation parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Buzzer ON/
OFF

BZR Integer 1 Specifies the on/off of the buzzer sound that can be heard when an
error occurs in the robot controller.
(OFF/ON=0/ÇP)

1(ON)

Program reset
operation rights

PRSTENA Integer 1 Whether or not the operation right is required for program reset
operation
 (Required/Not required = 0/1)

If operation rights are abandoned, program can be reset from any-
where. However, this is not possible under the teaching mode for
safety reasons.

0(Required)

Program reset
when key
switch is
switched

MDRST Integer 1 Program paused status is canceled when the key switch is oper-
ated.
(Invalid/Valid=0/1)

0(Invalid)

Operation panel
display mode .

This parameter
is available for
controller soft-
ware version J1
or later.

OPDISP Integer 1 Setting of the 5-digit LED display when the key switch is changed
over
0: Override display takes effect when the key switch is changed
over (initial value).
1: The current display mode is maintained even after the key switch
is changed over.

Program selec-
tion rights set-
ting

OPPSL Integer 1 Specifies the program selection operation rights when the key
switch of the operation panel is in AUTO (OP) mode.
(External/OP=0/1)

1(OP)

RMTPSL Integer 1 Designate the program selection operation rights for the automatic
(Ext) mode.
(External/OP=0/1)

0(External)

TB override
operation rights

OVRDTB Integer 1 Specifies whether the operation rights are required when changing
override from T/B.
(Not required/Required = 0/1)

0(Not required)

Speed setting
during mode
change

OVRDMD Integer 2 Override is set automatically when the mode is changed.
First element..........override value when the mode is automatically

changed from teaching mode
Second element.....Override value when the mode is changed from

Auto to Teaching.
Current status is maintained if changed to 0.

0,0

Override
change opera-
tion rights

OVRDENA Integer 1 Specifies whether operation rights is required to change override.
(Not required/Required = 0/1)
If this is set to "Not required," override change can be set from any-
where.

0(Required)

This parameter
switches the
access target of
a program.
Refer to Page
345, "5.18
About ROM
operation/high-
speed RAM
operation func-
tion".

*This parameter
can be used for
controller soft-
ware version
H7 or later.

ROMDRV Integer 1 The access target of a program can be switched between RAM and
ROM.

0: RAM mode. (Standard mode.)
1: ROM mode. (Special mode.)
2: High-speed RAM mode (DRAM memory is used; can be used in
software version J1 or later)

0 (RAM mode.)
 Operation parameter 5-315

5

5Functions set with parameters
Copy the infor-
mation on the
RAM to the
ROM
Refer to Page
345, "5.18
About ROM
operation/high-
speed RAM
operation func-
tion".

*This parameter
can be used for
controller soft-
ware version
H7 or later.

BACKUP Character
string 1

Copy the program, the parameter, the common variable, and the
error log to the ROM from the RAM.

Do not change this parameter.

SRAM->FLROM
(unchangeable)

Restore the
information on
the ROM to the
RAM.

Refer to Page
345, "5.18
About ROM
operation/high-
speed RAM
operation func-
tion".

*This parameter
can be used for
controller soft-
ware version
H7 or later.

RESTORE Character
string 1

Restore the program, the parameter, the common variable, and the
error log to the RAM from the ROM.

Do not change this parameter.

FLROM->SRAM
(unchangeable)

Maintenance
forecast
* The parame-
ters pertaining
to maintenance
forecast can be
used in the con-
troller's soft-
ware version J1
or later.

MFENA Integer 1 This sets whether maintenance forecast is enabled or disabled.
1: Enable
0: Disable

Note) This function is limited to the RV-S/RH-S series. This param-
eter does not take effect on models that do not support the mainte-
nance forecast function.

RV-S/RH-S series
........1

Except the
above...........0

Maintenance
forecast execu-
tion interval

MFINTVL Integer 2 This sets the interval of collecting data for maintenance forecast.
1st element: Data collection level -- 1 (lowest) to 5 (highest)
2nd element: Forecast check execution interval (unit: hours)

1(lowest),6(hour)

Maintenance
forecast
announcement
method

MFEPRO Integer 2 This sets the maintenance forecast announcement method. Set 0
in order to stop a warning or signal output.
1st element: 1: Generates a warning, 0: Does not generate a warn-

ing
2nd element: 1: Outputs a dedicated signal, 0: Does not output a

dedicated signal

0 (Does not gener-
ate a warning) ,
0 (Does not output
a signal)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-316 Operation parameter

 5Functions set with parameters
Resetting
Maintenance
Forecast

Note)
When reading
this parameter
form the
teaching
pendant, enter
all parameter
names and
then read.

MFGRST Integer 1 Reset the accumulated data relating to grease in the maintenance
forecast function.
* When axes generated a warning (numbered in 7530's) that
prompts the replenishment of grease in the maintenance forecast
function and, as a result, grease was replenished, the data relating
to grease accumulated on the controller must be reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software (version
E1 or later). However, if a personal computer cannot be readied,
the accumulated data can be reset by entering this parameter from
the teaching pendant instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

MFBRST Integer 1 Reset the accumulated data relating to grease in the maintenance
forecast function.
* When axes generated a warning (numbered in 7530's) that
prompts the replacement of belt in the maintenance forecast
function and, as a result, the belt was replaced, the data relating to
the belt accumulated on the controller must be reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software (version
E1 or later). However, if a personal computer cannot be readied,
the accumulated data can be reset by entering this parameter from
the teaching pendant instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

Position
Restoration
Support

*This parameter
can be used for
controller soft-
ware version J2
or later.

DJNT Real value 8 The OP correction data obtained by the Position Restoration
Support tool is input. Do not change it with any tool other than the
Position Restoration Support tool. It can only be referenced on a
dedicated parameter screen in the Personal Computer Support
software.

It varies with models.

MEXDTL Real value 6 The standard tool correction data obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL1 Real value 6 The correction data for tool number 1 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL2 Real value 6 The correction data for tool number 2 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL3 Real value 6 The correction data for tool number 3 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL4 Real value 6 The correction data for tool number obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDBS Real value 6 The correction data for the base obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Operation parameter 5-317

5

5Functions set with parameters
5.4 Command parameter
This parameter sets the items pertaining to the program execution and robot language.

Table 5-4: List Program Execution Related Parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

No. of multi-
tasks

TASKMAX Integer 1 Designate the number of programs to be executed simultaneously. 8

Slot table
(Set during mul-
titask opera-
tion.)

Operation conditions for each task slot is set during multitask opera-
tions. These are set when the program is reset.

SLT*
* is 1 to 32

Character
string 4

Designate the [program name],[operation mode],[starting condi-
tions],[order of priority].

Program name: Selected program name. Use uppercase letters when
using alphabet. Lowercase characters are not recognized.

Operation mode: Continuous/1 cycle = REP/CYC
REP:The program will be executed repeatedly.
CYC:The program ends after one cycle is completed. (The program

does not end if it runs in an endless loop created by a GOTO
instruction.)

Starting conditions: Normal/Error/Always =START/ERROR/ALWAYS
START:This is executed by the START button on the operation panel or

by the start signal.
ALWAYS:This is executed immediately after the controller's power is

turned on. This program does not affect the status such as
startup. To edit a program whose attribute is set to ALWAYS,
first cancel the ALWAYS attribute.
A program with the ALWAYS attribute is being executed con-
tinuously and therefore cannot be edited. Change ALWAYS to
START and turn on the controller's power again to stop the
constant execution.

ERROR:This is executed when an error is generated. This program
does not affect the status such as startup.

Programs with ALWAYS or ERROR set as the starting condition cannot
execute the following movement instructions. An error will be gener-
ated if any of them is executed.
MOV,MVS,MVR,MVR2,MVR3,MVC,MVA,
DRIVE,GETM,RELM,JRC

Order of priority: 1 to 31 (31 is the maximum)
This value shows the number of lines to be executed at a time. This has
the same meaning as the number of lines in the PRIORITY instruction.
For instance, when two slots are used during execution, if SLT1 is set
to 1 and SLT2 is set to 2, after one line of program in SLT1 is executed,
two lines of program in SLT2 is executed.
Therefore, more SLT2 programs will be executed and as a result, prior-
ity of SLT2 is higher.

"",REP,START,1
-318 Command parameter

 5Functions set with parameters
Program selec-
tion save

SLOTON Integer 1 This parameter specifies whether or not to store the program name in
the SLT1 parameter at program selection, as well as whether or not to
maintain the program selection status at the end of cycle operation.

(1) Enabling program name storage at program selection
 (Bit 0, enable/disable storage = 1/0)
Enable storage: The name of the current program is stored in the SLT1

parameter at program selection for slot 1. Moreover,
the program specified in the SLT1 parameter is
selected when the power supply is turned on.

Disable storage: The name of the current program is not stored in SLT1
parameter at program selection for slot 1. In the same
way as when the storage is enabled, the program spec-
ified in the SLT1 parameter is selected when the power
supply is turned on.

(2) Maintaining program at the end of cycle operation
 (Bit 1, maintain/do not maintain = 1/0)
Maintain: The status of program selection is maintained at the end

of cycle operation. The parameter value does not
become P.0000.

Do not maintain: The status of program selection is not maintained at
the end of cycle operation. The parameter value
becomes P.0000.

Setting values and operations

0: Disable storage, do not maintain
1: Enable storage, do not maintain (initial value)
2: Disable storage, maintain
3: Enable storage, maintain

1(Valid)

Setting that allows
the execution of
X** instructions
and SERVO
instruction in an
ALWAYS pro-
gram.
Refer to
"5.11Automatic exe-
cution of program at
power up"

ALWENA Integer 1 XRUN, XLOAD, XSTP, XRST, SERVO and RESET ERR instructions
become available in a program whose SLT* parameter is set to "con-
stantly execute" (startup condition is set to ALWAYS).

Furthermore, the XRUN instruction can directly be executed from the T/
B's edit screen or support software in the controller's software version
J1 or later.

Enable/Disable = 1/0

0(Not allowed)

User base pro-
gram

Refer to
"4.3.24User-
defined external
variables"

PRGUSR Character
string 1

User base program is a program that is set when user-defined external
variables are to be used. In case of DEF number, variable declaration
instructions such as INTE and DIM are described.
If an array variable is declared in the user base program using the DIM
instruction, the same variable name must be redefined using the DIM
instruction in the program that uses the user base program. Variables
need not be redefined if the variable is not an array.

""(Non)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Command parameter 5-319

5

5Functions set with parameters
Continue func-
tion

CTN Integer 1 For only the program execution slot 1, the state when the power is
turned OFF is held, and the operation can be continued from the saved
state when the power is turned ON next. The saved data is the program
execution environment (override, execution step line, program vari-
ables, etc.), and the output signal state. When this function is valid, if
the robot is operated when the power is turned OFF, the robot will start
in the standby state when the power is turned ON next. To continue
operation, turn the servo power ON, and input start. (Function invalid/
Valid=0/1)

<Precautions>
(1) This function stores the status of execution memory at the time of
power off using a part of program memory area. Therefore, this function
cannot be used unless there is free space of at least 100K bytes in the
program memory area.
Please follow the precautions listed below when using this function.
The program may become destroyed if the precautions are not fol-
lowed.
1) Back up all programs in a PC and delete all programs in the control-
ler.
2) Set the "CTN" parameter to 1 and turn the power ON again.
3) Reload only the necessary programs onto the controller. If there is
not sufficient empty space at this point, this function cannot be used. If
there is not enough space, revert the parameters.
(2) Do not change the parameters while the program is still left on,
because the program will be destroyed.
Although there are 210K bytes of standard memory, available space
will be 110K bytes when this function is enabled.
Reduction of 1100 points in position count conversion
Reduction of 2200 steps in step count conversion
With the standard specifications, the memory will drop by 56%. Number
of points = 2500 -> 1400 points/Prg. Number of steps = 5000 -> 28000
steps/Prg.
(3)As for robots with axes without brakes (J4 and J6 axes of RV-1A/
2AJ, or J4 axis of RH-5AH), the arm may lower due to gravitational
weight or rotate itself when the power is turned off. Thus, extra care is
necessary when using this function.
(4)Program that can continue using the Continuity function is the one
loaded in task slot 1. Programs in task slot 2 or subsequent slots will
not continue but will restart in program reset state.
(5)The following parameters cannot be changed after this function is
enabled. Be sure to change them, if necessary, prior to enabling this
function.
SLTn, SLOTON, TASKMAX.
(6)If parameters in the slot table (SLT*) are changed after enabling this
function, the changes are not reflected in the slot table. Disable the
continue function once, turn the power supply off and then on, and then
change parameters in the slot table.

0(Invalid)

JRC command
(Multiple rota-
tion function of
axes)

*This parameter
can be used for
controller soft-
ware version
E4 or later.

Set the execution status of the JRC instruction.
JRCEXE Integer 1 Set the validity of the JRC command execution.

Execution valid/invalid = (1/0)
0(Execution
invalid)

JRCQTT Real value 8 JSet the change amount to increment or decrement with the JRC com-
mand in the order of J1, J2, J3 to J8 axes from the head element.
The setting is valid only for the user-defined axis, so the J7 and J8 axes
will be valid for the robot's additional axis, and a random axis for the
mechanism's additional axis.
The unit relies on the parameter AXUNT.

JRC execution
valid robot
0,0,0,0,0,360,0,
0 or
0,0,0,360,0,0,0,
0

JRC execution
invalid robot
0,0,0,0,0,0,0,0

JRCORG Real value 8 Set the origin coordinate value for executing the JRC O command and
setting the origin.
This setting is valid only for the user-defined axis.
The unit relies on the parameter AXUNT.

0,0,0,0,0,0,0,0

Setting of addi-
tional axis

AXUNT Integer 16 Set the unit system for the additional axis.
Angle(degree)/Length(mm) = 0/1

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-320 Command parameter

 5Functions set with parameters
User error set-
ting

UER1
 to UER20

Integer 1,
Character

string 3

Sets the message, cause, and method of recovery for errors from the
ERROR instruction. Maximum of 20 user errors can be set.
First element ... error number to set (9000 to 9299 is the available
range). The default value 9900 is not available. Change the value
before proceeding.
Second element ... Error message
Third element ... Cause
Fourth element ... Method of recovery
If a space character is included in the message, enclose the entire
message in double quotation marks ("").
Example)9000,"Time Out","No Signal","Check Button"

9900,"mes-
sage","cause","t
reat"

Unit setting for
the rotational
element of posi-
tion data

PRGMDEG Integer 1 Specifies the unit used for describing the rotational element of position
data in the robot program.
0:RAD
1:DEG
Example)M1=P1.A (Unit for this case is specified.)
(Default unit for referencing data components is radian.)
The default rotational element for the position constant (P1=(100, 0,
300, 0, 180, 0, 180) (7, 0)) is DEG. This parameter is irrelevant.

0(RAD)

Set the delay
time of the GC/
GO command
and the moving
command.

*This parameter
is valid for
using the
MOVEMAS-
TER command
only.

*This parameter
can be used for
controller soft-
ware version
H7 or later.

HANDDLY Integer 1 The delay time of hand open/close in MOVEMASTER command is the
time specified by GP command. (Default value is 0.3 sec.)
The delay time of hand open/close can be specified by this parameter.

The units of the delay time specified by GP command are 1 / 10 sec-
onds.
The units of the delay time specified with this parameter are 1 / 1000
seconds (=msec).

-1

Robot language
setting

RLING Integer 1 Select the robot language
1:MELFA-BASIC IV
0:MOVEMASTER COMMAND
Note) This function is only available for certain types of robots, such as
RV-1A. Please verify that the type of robot that you are using is listed in
the "Command List" of "Separate Volume: Standard Specification"
before using this instruction.

1

Display lan-
guage Note1)

LNG Character
string 1

Set up the display language.
"JPN":Japanese
"ENG":English

The following language is changed.
(1)The display LCD of teaching pendant.
(2) Personal computer support software.
*alarm message of the robot.
*Parameter explanation list.
(3)Alarm message that read from the robot with external communica-
tion. (Standard RS232C, Extended serial I/F, Ethernet I/F)

The "JPN" is
Japanese spec-
ification.
The "ENG" is
English specifi-
cation.

Extension of
external vari-
able

PRGGBL - Sets "1" to this parameter, and turns on the controller power again, then
the capacity of each program external variable will double.
However, if a variable with the same name is being used as a user-
defined external variable, an error will occur when the power is turned
ON, and it is not possible to expand. It is necessary to correct the user
definition external variable.

0

Note1) The parameter is set up based on the order specifications before shipment.
Order to dealer when the instruction manual of the other language is necessity.
More, the caution seals that stuck on the robot arm and the controller are made based on the
language of the order specification. Use it carefully when selecting the other language.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Parameter value Motorized hand Pneumatic hand
-1 When the status of

the hand changes,
the delay timer
specified by GP
command is taken.

The delay time specified
by the GP instruction is
stored in this parameter
when opening/closing the
hand, regardless of
whether or not the hand
status has changed.

0 No delay No delay
Value

Unit(msec)
When the status of the hand changes, the delay
timer specified with this parameter is taken.
 Command parameter 5-321

5

5Functions set with parameters
5.5 Communication parameter
These parameters set the items pertaining to communications

Table 5-5:List Communication parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Communication
setting

Refer to
"5.15About the
communication
setting"

Communication environment is set for RS-232C in the front of the robot
controller. However, since this is used by the PC support software, this
normally does not need to be changed.
When connecting vision sensors, etc., use of optional expansion serial
interface is recommended.

COMDEV Character
string 8

This configures which lines will be assigned to COM1 and COM2 when
using communication lines in the OPEN instruction in MELFA BASIC IV.
This parameter must be set if data link (used by the OPEN instruction)
is to be performed.
This parameter specifies the device that corresponds to COMn speci-
fied in the OPEN statement in the program (n is between 1 and 8).
Parameters are starting from the left COM1, COM2, ... , COM8 in that
order.
To use expansion serial interface as COM,
if CH1 is installed in option slot 1, "OPT11" should be entered as the
value for the parameter.
If CH2 (RS232) is installed in slot 1, "OPT12" should be entered as the
value for the parameter.
If CH2 (RS422) is installed in slot 1, "OPT13" should be entered as the
value for the parameter.
If CH1 is installed in slot 2, "OPT21" should be entered as the value for
the parameter.
If CH2 (RS232) is installed in slot 2, "OPT22" should be entered as the
value for the parameter.
If CH2 (RS422) is installed in slot 2, "OPT23" should be entered as the
value for the parameter.

For instance, if CH1 is used in slot 1 and is to be assigned to COM2,
use '"RS232", "OPT11", , , , ,'.
If CH2 is used in slot 2 and is to be assigned to COM3, use '"RS232", ,
"OPT22", , , , ,'.
If Ethernet interface is to be used as COM and is installed in option slot
1 with
NETPORT1, enter "OPT11" for the parameter value.
NETPORT2, enter "OPT12" for the parameter value.
NETPORT3, enter "OPT13" for the parameter value.
NETPORT4, enter "OPT14" for the parameter value.
NETPORT5, enter "OPT15" for the parameter value.
NETPORT6, enter "OPT16" for the parameter value.
NETPORT7, enter "OPT17" for the parameter value.
NETPORT8, enter "OPT18" for the parameter value.
NETPORT9, enter "OPT19" for the parameter value.

COM1 is already assigned the standard RS232C in the front of the con-
troller. The following restrictions apply when optional cards are installed.
Option slot 1: Additional axis, expansion serial interface, Ethernet
Option slot 2: Additional axis, expansion serial interface, CC-Link
Option slot 3: Additional axis
Additional axis cards are for CR1-only cases.
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".
For optional expansion serial interface, refer to "Ethernet Interface
Instruction Manual ".

"RS232", , , , , , ,

CBAU232 Integer 1 Baud rate(9600,19200)
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".

9600

CPRTY232 Integer 1 Parity bit(0: None, 1: Odd, 2: Even)
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".

2 (Even)

CSTOP232 Integer 1 Stop bit(1,2)
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".

2 (Stop bit)
-322 Communication parameter

 5Functions set with parameters
CTERM232 Integer 1 End code(0:CR 1:CR+LF)
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".

0 (CR)

CPRC232 Integer 1 Communication method(protocol)
0: For support software (Non-procedure)
If data link is to be performed (OPEN, PRINT and INPUT instructions
are executed from the program) under this setting, the external device
must attach three characters "PRN" at the beginning when transmitting
data.
1: For support software (With procedure) PC side must also be
changed.
2: For data link with the robot program (used when communicating with
vision sensors, etc.)
Be advised that under this setting, connection with the support software
cannot be made. Use the optional expansion serial interface.
For optional expansion serial interface, refer to "Expansion Serial Inter-
face Instruction Manual".

0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Communication parameter 5-323

5

5Functions set with parameters
5.6 Standard Tool Coordinates
Tools data must be set if the robot's control point is to be set at the hand tip when the hand is installed on the
robot. The setting can be done in the following three manners.

1) Set in the MEXTL parameter.
2) Set in the robot program using the TOOL instruction.
3) Set a tool number in the M_TOOL variable. (Allowed in the controller's software version J1 or later.)

The values set by the MEXTL1 to 4 parameters are used as tool data.
Refer to Page 261, " M_TOOL".

The default value at the factory default setting is set to zero, where the control point is set to the mechanical
interface (flange plane).

Structure of tools data : X, Y, Z, A, B, C
X, Y and Z axis:Shift from the mechanical interface in the tool coordinate system
A axis :X-axis rotation in the tool coordinate system
B axis :Y-axis rotation in the tool coordinate system
C axis :Z-axis rotation in the tool coordinate system

<A case for a vertical 6-axis
robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0
2) Sample TOOL instruction set-
ting
10 TOOL (0,0,95,0,0,0)

A 6-axis robot can take various
postures within the movement
range.

<A case for a vertical 5-axis
robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0
2) Sample TOOL instruction set-
ting
10 TOOL (0,0,95,0,0,0)

Only the Z-axis component is
valid for a 5-axis robot for move-
ment range reasons. Data input to
other axes will be ignored.

Zt

Yt

Xt

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ
Zr

Yr
Xr

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Tool coordinate
system after the change：Ｘｔ，Ｙｔ，Ｚｔ

Example） 95mm

Zt

Yt

Xt

A case for a vertical 6-axis robot

Zt

Default tool coordinate system：Ｚｔ

Zr

Yr
Xr

Zt

 A case for a vertical 5-axis robot

Mechanical interface

Tool coordinate
system after the change：Ｚｔ

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Example） 95mm
-324 Standard Tool Coordinates

 5Functions set with parameters
<A case for a horizontal 4-axis robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, -10, 0, 0, 0
2) Sample TOOL instruction setting
10 TOOL (0,0,-10,0,0,0)

Horizontal 4-axis robots can basically
offset using parallel shifting. Note that
the orientation of the tool coordinate
system is set up differently from that
of vertical robots.

<A case for a RP series robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, -10, 0, 0, 0
2) Sample TOOL instruction set-
ting
10 TOOL (0,0,-10,0,0,0)

RP-series robots use the same
coordinate system as the hori-
zontal 4-axis robots. Note that
the orientation of the tool coordi-
nate system is set up differently
from that of vertical robots.

<A case for a palletizing robot>
1) Sample parameter setting
Parameter name: MEXTL
 Value: 0, 0, +10, 0, 0, 0
2) Sample TOOL instruction set-
ting
10 TOOL (0,0,+10,0,0,0)

<Other robots>
The following models basically use the same coordinate system as the horizontal 4-axis robots.

Liquid crystal glass transportation robot: RH-1000G***, RH-1500G***, RC-1000GW***,
Palletizing robot : RV-100TH*, RV-150TH

Zt

Yt
Xt

Xr
Yr

Zr

A case for a horizontal 4-axis robot

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

A case for a RP series robot

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Yr

Xr

Zr

YrXrXt
Yt

Zt

Zr

Xr

Yr

Xｔ
Yｔ

A case for a palletizing robot

Mechanical interface

Default tool coordinate system: Xt, Yt, Zt

Robot coordinate system: Xｒ, Yｒ, Zｒ

Zｔ
 Standard Tool Coordinates 5-325

5

5Functions set with parameters
An axis element of the tool conversion data may or may not be valid depending on the robot model.
See Table 5-6 to set the appropriate data.

Table 5-6:Valid axis elements of the tool conversion data depending on the robot model

Type Number of
axis

An axis element of the tool conversion data Note1)

Note1) O: Valid, @: Invalid. This is meaningless and ignored if set., X: The setting value is fixed to 0.
If a value other than 0 is set, operation may be adversely affected.

X Y Z A B C

RP-1AH/3AH/5AH 4 O O O X X O
RV-1A, RV-2A, RV-4A,
RV-3AL , RV-3S, RV-3SB,
RV-6S, RV-12S/SL, RV-18S

6 O O O O O O

RV-2AJ, RV-3AJ, RV-5AJ,
RV-4AJL, RV-3SJ, RV-3SJB 5 @ @ O @ @ @

RH-5AH/10AH/15AH
RH-6SH/12SH/18SH 4

O O O @ @ O

RH-15UHC O O O X X O
RH-1000GH Series 4 O O O X X O
RH-1000GJ Series

5
O O O X X O

RH-1500GJ Series O O O X X O
RH-1500G Series 6 O O O O O O
RC-1000G Series 4 O O O X X ONote2)

Note2) All elements were added (This is not relative calculation)

RV-60TH
RV-100TH/150TH
RV-100THL/150THL

4 O O O X X O

RS-30FG, RS-30AG 4 O O O O X XNote2)

RV-15AJ/15AP 5/10 O @ O @ @ @
-326 Standard Tool Coordinates

 5Functions set with parameters
5.7 About Standard Base Coordinates
When shifting the robot origin to a position other than the center position of the J1 axis of the robot, the con-
version is performed using the base coordinate system. The setting will be done from the following two
points. When base data is changed, the coordinates of teaching positions will be values based on the base
coordinate system.

1) Set in the MEXTL parameter.
2) Set in the robot program using the BASE instruction.

The factory default setting value is set to zero at the base coordinate system position, which is identical to
the robot origin.
Structure of base coordinate system data: X, Y, Z, A, B, and C
X, Y and Z axis : The position of robot coordinate system from the base coordinate system origin
A axis : X-axis rotation in the base coordinate system
B axis : Y-axis rotation in the base coordinate system
C axis : Z-axis rotation in the base coordinate system

(Example)
1) Sample parameter setting
Parameter name: MEXBS
ValueÅF100,150,0,0,0,-30
2) Sample BASE instruction setting
10 BASE (100,150,0,0,0,-30)

Normally, the base coordinate system
need not be changed. If you wish to
change it, see the sample above when
configuring the system. Note that the
BASE instruction within the robot pro-
gram may shift the robot to an unex-
pected position. Exercise caution when
executing the instruction.

An axis element of the base conversion data may or may not be valid depending on the robot model.
See Table 5-7 to set the appropriate data.

Table 5-7:Valid axis elements of the base conversion data depending on the robot model

Type Number of
axis

An axis element of the base conversion data Note1)

Note1) O: Valid, @: Invalid. This is meaningless and ignored if set., X: The setting value is fixed to 0.

X Y Z A B C

RP-1AH/3AH/5AH 4 O O O X X O
RV-1A, RV-2A, RV-4A,
RV-3AL , RV-3S, RV-3SB,
RV-6S, RV-12S/SL, RV-18S

6 O O O O O O

RV-2AJ, RV-3AJ, RV-5AJ,
RV-4AJL, RV-3SJ, RV-3SJB 5 O O O @ @ @

RH-5AH/10AH/15AH
RH-6SH/12SH/18SH 4

O O O @ @ O

RH-15UHC O O O X X O
RH-1000GH Series 4 O O O X X O
RH-1000GJ Series

5
O O O X X O

RH-1500GJ Series O O O X X O
RH-1500G Series 6 O O O O O O
RC-1000G Series 4 O O O X X ONote2)

Note2) All elements were added (This is not relative calculation)

RV-60TH
RV-100TH/150TH
RV-100THL/150THL

4 O O O X X O

RS-30AG, RS-30AG 4 O O O O X XNote2)

RV-15AJ/15AP 5/10 @ @ @ @ @ ONote3)

Note3) The setting is made in units of 45 degrees

Zr

Yr

Xr

Zb

Yb

Xb

Cr

150mm

100mm

-30°

Base coordinate system：Ｘb，Ｙb，Ｚb

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ
 About Standard Base Coordinates 5-327

5

5Functions set with parameters
5.8 About user-defined area
When operation is performed together with
peripheral devices, work area may have to
be shared. Under such circumstances, one
device must let the other know when it is
within the shared area. For this purpose, a
robot can be configured to output a signal
while it is in a certain area by setting
parameters.
For instance, in the diagram to the left, the
following parameter setting will output the
signal 10 when operating in area (1) and
output the signal 11 when operating in area
(2).

Similar confirmation is possible using the
M_UAR variable if checking within the pro-
gram. Refer to Page 262, "M_UAR".

*1 Enter the coordinates (x, y, and z) for x11 to z22.
*2 In the setting sample above, since the posture data (A, B, and C) are ignored, a signal will be output

regardless of the posture. To set the posture data (A, B, and C), set the values in the AREA*P1 to
AREA*P2 direction. (Example: In the case of -10 -> +30, evaluation as in-area occurs in the range from
-10 to + 30, but in the case of +30 -> -10 evaluation as in-area occurs in the range from +30 to -10.)

*3 For a non-existent axis of the posture data (for instance the A- and B-axes of horizontal multi-joint type
robots), make sure that AREA*P1 is set to -360 and AREA*P2 is set to +360.

*4 AREA*ME specifies to which mechanism will the area checking configuration apply. Under the standard
configuration (one unit is connected), this is set to 1.

*5 AREA*AT specifies the type of area checking. The meaning of the value is shown below.
0 = Does not check, 1 = Outputs a signal, 2 = Generates an error.
If 2, posture data, L1 and L2 are ignored.

*6 If additional axes are used, set an area for axes L1 and L2 respectively.

Parameter name Meaning of the value Value
AREA1P1 Position data for the first point: X,Y,Z,A,B,C,L1,L2 x11, y11, z11, -360, -360, -360,0,0
AREA1P2 Position data for the second point: X,Y,Z,A,B,C,L1,L2 x12, y12, z12, 360, 360, 360,0,0
AREA1ME Target mechanism number: Usually 1 1
AREA1AT Invalid/Output signal/Error: 0/1/2 1
AREA2P1 Position data for the first point: X,Y,Z,A,B,C,L1,L2 x21, y21, z21, -360, -360, -360,0,0
AREA2P2 Position data for the second point: X,Y,Z,A,B,C,L1,L2 x22, y22, z22, 360, 360, 360,0,0
AREA2ME Target mechanism number: Usually 1 1
AREA2AT Invalid/Output signal/Error: 0/1/2 1
USRAREA Output signal: starting number, end number 10, 11

(Information regarding whether or not the robot is in
AREA1 is output to the signal 10, and whether or not
the robot is in AREA2 is output to the signal 11.)
Set 10,10 in the case of one area.

X

Y

Z

AREA1P1

(x11,y11,z11)
AREA1P2

(x12,y12,z12)
AREA2P1

(x21,y21,z21)
AREA2P2

(x22,y22,z22)

(1) (2)

+ -

±0°

<AREA*P1><AREA*P2>

±180°

Example) If the value passes through 0 from -100 to +100,
 the following setting is necessity.
 Sets the negative value to ABC of <AREA*P1>.
 Sets the positive value to ABC of <AREA*P2>.
Example) If the value passes through 180 from -100 to +100,
 the following setting is necessity.
 Sets the positive value to ABC of <AREA*P1>.
 Sets the negative value to ABC of <AREA*P2>.
-328 About user-defined area

 5Functions set with parameters
5.9 Free plane limit
Defines any plane in the robot coordinate system, determines the front or back of the plane, and generates
a free plane limit error.

As can be seen in the diagram to the left, any
plane can be defined by three points (P1, P2, and
P3), after which an evaluation of which side of the
plane it is in (the side that includes the robot origin
or the other side) can be performed.
This function can be used to prevent collision with
the floor or interference with peripheral devices.
Maximum of eight planes can be monitored.
There is no limit to the plane.

After setting the parameters above, turn the controller's power ON again. This will allow the generation of
free plane limit error when it crosses the plane.

Parameter and value Explanation

SFCnP(n=1 to 8) Specifies the 3 points that define the plane.
P1 coordinates X1, Y1, and Z1: The origin of the plane
P2 coordinates X2,Y2,Z2: A position on the X axis of the plane
P3 coordinates X3,Y3,Z3: A position in the positive Y direction of the X-Y plane in the plane

SFCnME(n=1 to 3) Specifies the mechanism number to which the free plane limit applies. Usually, set up 1.
In the case of multiple mechanisms, the mechanism numbers are specified.

SFCnAT(n=1 to 8) Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot coordinate origin does not exist. The control-
ler software version J1 or later.)

Ｐ１

Ｐ２

P３
 Free plane limit 5-329

5

5Functions set with parameters
5.10 Automatic return setting after jog feed at pause
This specifies the path behavior that takes place when the robot is paused during automatic operation or
during step feed operation, moved to a different position using a jog feed with T/B, and the automatic opera-
tion is resumed or the step feed operation is executed again. See the following diagram.

*1: The "RETPATH=2" is available for controller software version H4 or later.

The table below lists the values that can be specified for each interpolation instruction and controller soft-
ware version.

Table 5-8:Interpolation instruction and RETPATH setting value

Parameter and value Description of the operation

RETPATH=1 (Default) 1) Returns to the original position where the pause took place using joint interpolation.
2) Resumes from the line that was paused.

RETPATH=0 Resumes from the line that was paused from the position resulting after the jog operation. Therefore,
movement will take place using the interpolation method of the instruction under execution from the
current position to the next target position.

RETPATH=2 *1 1) Return by XYZ interpolation to the interrupted position.
2) Resume the interrupted line.

Interpolation
command Is before than H4 edition Note1)

Note1) If "RETPATH=2" is set for versions earlier than H4, the same operation as when "RETPATH=1" is
set is obtained. (Returns to interrupted position by JOINT interpolation)

Is H4 edition or later

MOV
MVS

0
1

0
1
2

MVC
MVR
MVR2
MVR3

0
1

0 (The same operation as 1) Note2)

1
2

Note2) Note that the operation when RETPATH=0 is set depends on the software version at circular
interpolation (MVC, MVR, MVR2, MVR3). For versions later than H4, the same operation as when
RETPATH=1 is set is obtained even if RETPATH=0 is set. (Returns to interrupted position by JOINT
interpolation)

MVA 0 (The same operation as 1) Note3)

1

Note3) In the MVA command, even if set up with RETPATH=0, the operation is same as RETPATH=1.
(Returns to interrupted position by JOINT interpolation)

0 (The same operation as 1) Note3)

1
2

RETPATH=1 or 2 RETPATH=0

Move to target
positionJog feed

Interrupt here

Resume the
automatic
execution

Return to interrupted position
RETPATH=1:JOINT interpolation

RETPATH=2:XYZ interpolation

Jog feed

Interrupt here

Move to target
position

Resume the
automatic
execution
-330 Automatic return setting after jog feed at pause

 5Functions set with parameters
[Caution] If movement other than a joint jog (XYZ, tools, cylindrical, etc.) has been used when the "RET-
PATH" parameter is set to 1, joint interpolation will be used to return to the original position at the
time pause took place. Therefore, be careful not to interfere with peripheral devices.

[Caution] If the parameter "RETPATH" is set to 2 for a robot whose structure data is valid or with multiple
rotations, and the robot is moved from a suspended position by joint jog, the robot is moved to a
position different from the original structure data and/or multiple-rotation data and may become
unable to return to the suspended position. In this case, adjust the position of the robot to the sus-
pended position and resume moving the robot.

If "RETPATH=1 or 2" is set as shown in the figure below, and the robot is operated continuously (continuous
path operation) using the CNT instruction, the robot returns to a position on the travel path from P1 to P2
instead of the suspended position. When "RETPATH=0" is set, the robot moves to the target position from
the current position.

P1

P2

P1

P2

RETPATH=1 or 2 RETPATH=0

Move to target
position

Jog feed

Interrupt here

Resume the
automatic
execution

Jog feed

Move to target
position

Resume the
automatic
execution

Interrupt here
 Automatic return setting after jog feed at pause 5-331

5

5Functions set with parameters
5.11 Automatic execution of program at power up
The following illustrates how to automatically run a robot program when the controller's power is turned on.
However, since the robot starts operating simply by turning the power on, exercise caution upon using this
function.

Related parameters

(1) First, create an ALWAYS program and an operating program.
<Program #2, ALWAYS program>

< Program #1, operating program > (this can be any program)

(2) Set the parameter.

After the setting is complete, turn the controller's power OFF.

(3) Turn the power ON.
In the sample above, after the controller's power is turned on, when the key switch is turned to AUTO (Ext.),
program #1 is executed and the robot starts its operation.

Parameter and value Description of the operation

SLT* Exmple) SLT2=2,ALWAYS,REP
Specifies the program name, start condition, and operation status. The point here is the start condition.

ALWENA 0->7
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRUN and
XLOAD, and also the SERVO instruction.

100 ' Auto Start Sample Program
110 '
120 ' Execute Program #1 if the key switch is AUTO (Ext.).
130 ' Stop the program and return the execution line to the beginning of the program if the key switch is not AUTO
(Ext.).
140 '
150 IF M_MODE<>3 AND (M_RUN(1)=1 OR M_WAI(1)=1) THEN GOSUB *MTSTOP
160 IF M_MODE=3 AND M_RUN(1)=0 AND M_WAI(1)=0 THEN GOSUB *MTSTART
165 IF M_MODE=2 THEN HLT ' for DEBUG
170 END
180 '
190 *MTSTART
200 XRUN 1,"1"
210 RETURN
220 '
230 *MTSTOP
240 XSTP 1
250 XRST 1
260 RETURN

100 'Main Program (Position data is for RV-2AJ.)
110 SERVO ON
120 M_OUT(8)=0
130 MOV P1
140 M_OUT(8)=1
150 MOV P2
160 END
P1=(+300.00,-200.00,+200.00,+0.00,+180.00,+0.00)(6,0)
P2=(+300.00,+200.00,+200.00,+0.00,+180.00,+0.00)(6,0)

Parameter and value Description of the operation

SLT2 SLT2=2,ALWAYS,REP ’Execute program #2 in ALWAYS mode.

ALWENA 0->7
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRUN and
XLOAD, and also the SERVO instruction.
-332 Automatic execution of program at power up

 5Functions set with parameters
5.12 About the hand type
The factory default setting assumes that the double-solenoid type hand will be used. If the single-solenoid
type is used or if a general-purpose signal is to be used to control the robot, the HANDTYPE parameter
must be set as described below.

Table 5-9:Factory default parameter settings

Note) The default settings are D224, D226, D192 and D194 in the case of the RC-1300G series.

From the left, the values correspond to hand #1, #2, and so on. The default value is shown below.
Hand 1 = accesses signals #900 and #901
Hand 2 = accesses signals #902 and #903
Hand 3 = accesses signals #904 and #905
Hand 4 = accesses signals #906 and #907
The hand numbers 1 through 4 (or 8) will be used as the argument in the hand open/close instructions
(HOPEN or HCLOSE).

<Setting method>
When a double-solenoid type is used, 'D' must be added in front of the signal number to specify the number.
In the case of double-solenoid type, hand number will be from 1 to 4.
When a single-solenoid type is used, 'S' must be added in front of the signal number to specify the number.
In the case of single-solenoid type, hand number will be from 1 to 8.

<Example>
1) To assign two hands of the double-solenoid type from the general-purpose signal #10

HANDTYPE=D10,D12, , , , ,
2) To assign three hands of the double-solenoid type from the general-purpose signal #10

HANDTYPE=S10,S,11,S12, , , , ,
3) To assign hand 1 to the general-purpose signal #10 as the single-solenoid type while assigning hand

2 to the general-purpose signal #12 as the single-solenoid type
HANDTYPE=D10,S12, , , , ,

Parameter name Value

HANDTYPE D900,D902,D904,D906, , , ,
 About the hand type 5-333

5

5Functions set with parameters
5.13 About default hand status
The factory default setting is shown below.

A single controller can control multiple robots. If pneumatic hand interface is to be used for each robot, the
hand output signal number is assigned in the following manner.
Mechanism #1 = #900 to #907 (This will be the case for standard configuration with one unit connected.)
Mechanism #2 = #910 to #917
Mechanism #3 = #920 to #927
When electric-powered hand interface is used, the system will use the 900's using special controls. The
users should not access the 900's directly but instead use the hand control instructions or the hand opera-
tion from T/B only. If you access the 900's, normal opening and closing of the hand will not be possible.

The default parameters are set as shown below so that all hands start as "Open" immediately after power
up.

The above describes the situation for standard configuration (one unit is connected). When multiple mecha-
nisms are used, specify the mechanism number to set the HANDINIT parameter.

If for instance hand 1 alone needs to be closed when the power is turned ON, the following should be set.
Similarly, in the case of electric-powered hand (hand number is fixed to 1), the hand will be closed when the
power is turned on if the following configuration is applied.

[Caution1] If you set the initial hand status to "Open," note that the workpiece may be dropped when the
power is turned ON.

[Caution2] This parameter specifies the initial value when turning ON the power to the dedicated hand sig-
nals (900’s) at the robot's tip.
To set the initial status at power ON when controlling the hand using general-purpose I/Os (other
than 900’s) or CC-Link (6000’s) (specifying a signal other than one in 900Åfs by the HANDTYPE
parameter), do not use this HANDINIT parameter, but use the ORST* parameter.
The value set by the ORST* parameter becomes the initial value of signals at power ON.

Hand type Status
Status of output signal number

Mechanism #1 Mechanism #2 Mechanism #3
When pneumatic hand inter-
face is installed (double-sole-
noid is assumed)

Hand 1 = Open

Hand 2 =Open

Hand 3 =Open

Hand 4 =Open

900=1
901=0
902=1
903=0
904=1
905=0
906=1
907=0

910=1
911=0
912=1
913=0
914=1
915=0
916=1
917=0

920=1
921=0
922=1
923=0
924=1
925=0
926=1
927=0

When electric-powered hand
interface is installed

Hand open M_OUT (9*0) through M_OUT (9*7) are used by the system and therefore
unavailable to the user. If used, normal opening and closing of the hand
will not be possible.

I/F before interface installation - M_OUT (9*0) through M_OUT (9*7) do not function.

Parameter name Signal number Value

HANDINIT 900, 901, 902, 903, 904, 905, 906, 907 1, 0, 1, 0, 1, 0, 1, 0

Parameter name Signal number Value

HANDINIT 900, 901, 902, 903, 904, 905, 906, 907 0, 1, 1, 0, 1, 0, 1, 0, 1
-334 About default hand status

 5Functions set with parameters
5.14 About the output signal reset pattern
The factory default setting sets all general-purpose output signals to OFF (0) at power up. The status of gen-
eral-purpose output signals after power up can be changed by changing the following parameter. Note that
this parameter also affects the general-purpose output signal reset operation (called by dedicated I/O sig-
nals) and the reset pattern after executing the CLR instruction.

The value corresponds to bits from the left.
Setting is "0", "1", or "*".
"0" = Set to off
"1" = Set to on
"*" = Maintain status with no change. (Set to off at power up.)

Parameter name Value (Values are all set to 0 at the factory default setting.)

R
em

ot
e

I/O

ORST0 Signal number
0----------7 8--------15 16--------23 24-------31
00000000, 00000000, 00000000, 00000000

ORST32 32------40 41------49 50-------57 58-------66 (Same as above)
00000000, 00000000, 00000000, 00000000

ORST64 00000000, 00000000, 00000000, 00000000

ORST96 00000000, 00000000, 00000000, 00000000

ORST128 00000000, 00000000, 00000000, 00000000

ORST160 00000000, 00000000, 00000000, 00000000

ORST192 00000000, 00000000, 00000000, 00000000

ORST224 00000000, 00000000, 00000000, 00000000

P
R

O
FI

B
U

S
 o

pt
io

n

ORST2000 00000000, 00000000, 00000000, 00000000

ORST2032 00000000, 00000000, 00000000, 00000000

ORST2064 00000000, 00000000, 00000000, 00000000

ORST2096 00000000, 00000000, 00000000, 00000000

ORST2128 00000000, 00000000, 00000000, 00000000

ORST2160 00000000, 00000000, 00000000, 00000000

ORST2192 00000000, 00000000, 00000000, 00000000

ORST2224 00000000, 00000000, 00000000, 00000000

ORST2256 00000000, 00000000, 00000000, 00000000

ORST2288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST4984 00000000, 00000000, 00000000, 00000000

ORST5016 00000000, 00000000, 00000000, 00000000

C
C

-L
in

k
op

tio
n

ORST6000 00000000, 00000000, 00000000, 00000000

ORST6032 00000000, 00000000, 00000000, 00000000

ORST6064 00000000, 00000000, 00000000, 00000000

ORST6096 00000000, 00000000, 00000000, 00000000

ORST6128 00000000, 00000000, 00000000, 00000000

ORST6160 00000000, 00000000, 00000000, 00000000

ORST6192 00000000, 00000000, 00000000, 00000000

ORST6224 00000000, 00000000, 00000000, 00000000

ORST6256 00000000, 00000000, 00000000, 00000000

ORST6288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST7984 00000000, 00000000, 00000000, 00000000

ORST8016 00000000, 00000000, 00000000, 00000000
 About the output signal reset pattern 5-335

5

5Functions set with parameters
For instance, if you want to always turn ON immediately after power up the general-purpose signals 10, 11
and 12 of the standard I/O and 32, 33 and 40 of the expansion I/O, the robot should be set to the configura-
tion shown below.

In addition to the above, to make 20, 21 and 22 retain their individual on/off status upon a general-purpose
output signal reset, the robot should be set to the configuration shown below.

In the case above, general-purpose signals 20, 21 and 22 will start up as 0 (off) after a power up. The setting
cannot be made in such a way that will turn the signal to 1 (on) after power up and will retain the current sta-
tus upon a general-purpose output signal reset.

[Caution] When editing the parameters, do not enter an incorrect number of zeros. If the number of zeros is
incorrect, an error is generated next time the power is turned on.

Parameter name Value

ORST0 00000000, 00111000, 00000000, 00000000

ORST32 11000000, 10000000, 00000000, 00000000

Parameter name Value

ORST0 00000000, 00111000, 0000***0, 00000000

ORST32 11000000, 10000000, 00000000, 00000000
-336 About the output signal reset pattern

 5Functions set with parameters
5.15 About the communication setting
(1) Overview

The controller for the CRn series can support 1 standard RS-232C, 2 optional expansion serial cards (2
ports per card), totaling 5 ports. The optional expansion serial interface card has two ports, where one is RS-
232C only and the other can select either RS-232C or RS-422. Up to two expansion serial cards can be
used.
Standard RS-232C port normally connects to a PC for robot program transferring and debugging done with
the PC support software. Optional cards can link with vision sensor and external devices for data communi-
cation. Communication is performed using the communication instructions (OPEN, CLOSE, PRINT, INPUT,
etc.) in the robot program. This is referred to as data link. The controller cannot be controlled from external
devices such as a PC (i.e., automatic execution or status monitoring). If this is necessary, contact the dealer
or branch from where the robot has been purchased for further consultation.

Caution)The example above is for robot controller CR1. Controllers other than the CR1 do not require
expansion option box.

(2) Performing data link with the outside using RS-232C
Although the standard RS-232C can be used as the data link port, it is recommended that the standard RS-
232C be reserved for robot program correction and monitoring at the time of start up and an optional expan-
sion serial interface be provided as a dedicated data link port. The following sample program shows how to
use an expansion serial interface.
<Parameter setting> The communication setting of the expansion serial interface is described below.

For expansion serial interface, refer to "Expansion Serial Interface Instruction Manual."

Parameter name Default value After change Meaning

COMDEV RS232, , , , , , , RS232,OPT11, , , , , , When using CH1 in option slot 1

CBAUE11 9600 <- Baud rate = 9600bps

CPRTYE11 2 <- Parity = Even

CSTOPE11 2 <- Stop bit = 2

CTERME11 0(CR) 1(CRLF) Termination code = CRLF (carriage return and line feed)

CPRCE11 0 2 Switch to data link
This setting is for communicating with the outside using
OPEN, PRINT, INPUT and CLOSE instructions in the robot
program.

Communication example OPEN "COM2:" AS #1
PRINT #1, "ABC"
M1 = 10
PRINT #1, M1
INPUT #1, C1$
INPUT #1, M1

 Robot External
"ABC"CRLF->

"10"CRLF->
 <-"RUN"CRLF
 <-"20"CRLF

Machine cable

Machine cable

Vision unit

Expansion serial

Expansion option

Use of PC with the support software

Standard RS-232C

Example of standard RS-232C port usage

Use of PC with the support software

Standard RS-232C

Example of expansion RS-232C port usage
 About the communication setting 5-337

5

5Functions set with parameters
<Sample robot program>
The following is a sample program which moves to the camera position, obtains correction data from RS-
232C, moves to the position above the corrected position, moves to the target position, closes hand, and
breaks away.

In this example, the camera origin position must be stored in robot coordinates through teaching in advance.
The Z-axis also must allow the grasping of the workpiece.

<Communication data> (Data string sent by the external devices such as the sensor.)
Data sent to the robot is sent in the order of X, Y, and then C. CR (carriage return = 0d in hexadecimal) is
sent as the termination code. The units are mm, mm, and deg (degree), respectively. In the following exam-
ple, data sent is X = 12.34 mm, Y = 0.39 mm, and C = 56.78degree.

(3) Notes on using both the PC support software and the data link software on standard port
If the standard port on the front face of the controller is to be used to connect to both the PC support soft-
ware at power up and to an external device (such as a PC that is running specialized software) via the data
link during operation, the data transmitted to the controller from external devices must have "PRN" at the
beginning of each data string.

These letters are required to distinguish between PC support software protocol and data link communica-
tion. After "PRN", data should follow immediately; do not insert a space.

Therefore, if the communication protocol from the external device cannot be changed, then the device can-
not be used under the default standard port setting. Although it is possible to set a parameter (CPRC232) so
that the "PRN" is not required, changing of this parameter disallows the use of PC support software. There-
fore, if "PRN" cannot be added to the transmission data from the external device, use the optional expansion
serial interface.

Vision sensor AS50VS from Mitsubishi comes with the standard functions to support this "PRN", which
allows them to be supported at the standard port. However, with only the standard port, PC support software
and vision sensor cannot be used at the same time since there is only one port.

Command Comment

10 OPEN "COM2:" AS #1 'Opens RS232C communication.

20 MOV P1,-50 'Moves to camera position.

30 M_OUT(10)=1 DLY 0.5 'Outputs camera start signal (start up the sensor).

40 PX=P1 'Obtains the camera origin.

50 INPUT #1,MX,MY,MC 'Inputs correction data.

60 PX.X=PX.X+MX 'Applies correction data in the X direction.

70 PX.Y=PX.Y+MY 'Applies correction data in the Y direction.

80 PX.C=PX.C+RAD(MC) 'Applies correction data in the C axis.

90 MOV PX,-50 'Moves to a position above the workpiece.

100 OVRD 30 'Slows down.

110 MVS PX 'Moves to the target position.

120 DLY 0.3 'Waits for positioning.

130 HCLOSE 'Closes hand.

140 DLY 0.3 'Waits for hand closing to complete.

150 MVS ,-50 'Breaks away.

: : :

"12.34,0.39,56.78(CR)"

Example) "PRN12.34,0.39,56.78(CR)"
-338 About the communication setting

 5Functions set with parameters
(4) How to ensure stable communication between the personal computer support software and the robot con-
troller.

When communicating with the robot controller (hereinafter referred to as the R/C) using the Personal
Computer Support Software (hereinafter referred to as the Software), depending on the personal computer
model and settings the communication may become unstable in a batch backup or program upload/down-
load
where large amounts of data are transmitted. To ensure stable communication with the R/C, change the
communication settings (communication protocol) of the R/C and the Software as shown below. If the
communication settings of the R/C and the Software do not match, normal communication cannot be
established. Be sure to change the settings on both the R/C and Software sides.
<The Robot Controller>
As for the R/C communication settings, change the following parameters:

To communicate with the personal computer via an extended RS-232C port by using an extension serial
interface board, change the parameters of the extended RC-232C port.

<The Personal Computer Support Software>
Change the communication settings of the personal computer support software through the "communication
server."

When communicating with the R/C using your custom software, reset the R/C protocol setting to "Non-Pro-
cedural" in advance.

Parameter Default Change to
Communication protocol (CPRC232) 0 (Non-Procedural) 1 (Procedural)

Parameter Default
Protocol Non-Procedural Procedural

Change to procedural.

 About the communication setting 5-339

5

5Functions set with parameters
5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
Optimum acceleration/deceleration control allows the optimum acceleration/deceleration to be performed by
LOADSET and OADL instructions automatically in response to the load at the robot tip. The following
parameters must be set correctly in order to obtain the optimum acceleration/deceleration.
This parameter is also used in the impact detection function installed in the RV-S/RH-S series.
When using the impact detection function during jog operation, set HNDDAT0 and WRKDAT0 correctly.
The factory default setting is as follows.

Parameter values define, from the left in order, weight, size X, Y, and Z, and center of gravity X, Y, and Z. Up
to eight hand conditions and eight workpiece conditions can be set. For the size of a hand, enter the length
of a rectangular solid that can contain a hand. Optimal acceleration/deceleration will be calculated from the
hand condition and the workpiece condition specified by a LOADSET instruction.

Parameter values that define grasping or not grasping is shown from the left for cases where the hand is
open or closed.
"0" = Set to not grasping
"1" = Set to grasping
Depending on the hand's open/close status, optimum acceleration/deceleration calculation will be per-
formed for either hand-alone condition or hand-and-workpiece condition.

The hand's open/close status can be changed by executing the HOPEN/HCLOSE instruction.

The coordinate axes used as references when setting the hand and workpiece conditions are shown below
for each robot model. The references of the coordinate axes are the same for both the hand and workpiece
conditions. Note that all the sizes are set in positive values.

Parameter Value

se
tti

ng
 th

e
ha

nd
 c

on
di

tio
ns

HNDDAT0 It varies with models. (It is released only with the RV-S/RH-S series.)

HNDDAT1 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT2 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT3 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT4 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT5 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT6 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT7 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT8 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

se
tti

ng
 th

e
w

or
kp

ie
ce

 c
on

di
tio

ns

WRKDAT0 It varies with models. (It is released only with the RV-S/RH-S series.)

WRKDAT1 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT2 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT3 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT4 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT5 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT6 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT7 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT8 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

Parameter Value(Factory default)
HNDHOLD1 0, 1

HNDHOLD2 0, 1

HNDHOLD3 0, 1

HNDHOLD4 0, 1

HNDHOLD5 0, 1

HNDHOLD6 0, 1

HNDHOLD7 0, 1

HNDHOLD8 0, 1
-340 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)

 5Functions set with parameters
*RP-A series

*RV-A, RV-S series

+Z

+X

+Y

Definitions of Coordinate Axes
In the coordinate system with the tip of the
J4 axis as the origin:
Z axis: The upward direction is positive.
X axis: The direction of extension in the arm

orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X and Y elements of the center of
gravity and the X and Y elements of the size
must be set.

+Z

Definitions of Coordinate Axes
The tool coordinate is used for the coordinate axes.

Axes that must be set:
Only the X, Y and Z elements of the center of gravity and the X, Y
and Z elements of the size must be set.

+Y

+X

6-axis type5-axis type

*Example of RV-1A/2AJ

+Z

+Y

+X
 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-341

5

5Functions set with parameters
*RH-A, RH-S series

*RH-1000G***

*RH-1500G***

+Z

+X +Y

Definitions of Coordinate Axes
In the coordinate system with the tip of
the J4 axis as the origin:
Z axis: The upward direction is positive.
X axis: The direction of extension in the

arm orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X element of the center of
gravity and the X and Y elements of the
size must be set.

+Z

+X

+Y

Definitions of Coordinate Axes
In the coordinate system with the center of the
J5 axis as the origin for the 5-axis type and
with the center of the J4 axis as the origin for
the 4-axis type:
Z axis: The upward direction is positive.
X axis: The direction of extension in the arm

orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X element of the center of gravity and
the X and Y elements of the size must be set.

+Z

+X

+Y

Definitions of Coordinate Axes
In the coordinate system with the center of
the J6 axis as the origin for the 6-axis type
and with the center of the J5 axis as the
origin for the 5-axis type:
Z axis: The upward direction is positive.
X axis: The direction of extension in the arm

orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X element of the center of gravity
and the X and Y elements of the size must
be set.
-342 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)

 5Functions set with parameters
*RC-1000GHWDC-SA/1000GHWLC-SA

*RV-100TH/100THL/150TH/150THL/60TH

+Z

+Y

+X
Definitions of Coordinate Axes
In the coordinate system with the center of the
flange as the origin:
Z axis: The upward direction is positive.
X axis: The front of the left hand is the plus

direction
Y axis: The front of the right hand is the plus

direction
Axes that must be set:
Only the X element of the center of gravity and
the X and Y elements of the size must be set.

*The hand of the figure is an example.

+Z

+X

+Y

Definitions of Coordinate Axes
In the coordinate system with the center
of the J4 axis as the origin:

Z axis: The upward direction is positive.
X axis: The direction of extension in the

arm orientation is positive.
Y axis: A right hand coordinate system
(In the figure, the front direction)

Axes that must be set:
Only the X and Y elements of the center
of gravity and the X and Y elements of
the size must be set.
 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-343

5

5Functions set with parameters
5.17 About the singular point adjacent alarm
When a robot having a singular point is being operated using a T/B, a singular point adjacent alarm is gen-
erated to warn the operators of the robot if the control point of the robot approaches a singular point.
Even if an alarm is generated, the robot continues to operate as long as it can perform operation unless
operation is suspended. Also, an alarm is reset automatically when the robot moves away from a singular
point. The following describes the details of the singular point adjacent alarm.
Note that this function is supported by the controller with the software version of G9 or later.

(1) Operations that generate an alarm
An alarm is generated if the control point of a robot approaches a singular point while a robot is performing
any of the following operations using the T/B.

1) Jog operation (other than in joint jog mode)
2) Step feed and step return operations
3) MS position moving operation
4) Direct execution operation

If the robot approaches a singular point by any of the operations listed above, the buzzer of the controller
keeps buzzing (continuous sound). However, the STATUS. NUMBER display on the operation panel does
not change.
Also, in the case of "[1] Jog operation (other than joint jog mode)" above, a warning is displayed on the T/B
screen together with the sound of the buzzer.

Fig.5-1:Warning Display During Jog Operation

(2) Operations that do not generate an alarm
No alarm is generated when a robot is performing any of the operations listed below even if the control point
of the robot approaches a singular point.

1) Additional axis jog operation initiated in joint jog mode using the T/B
2) When the joint interpolation instruction is executed even by an operation from the T/B

(Execution of the MOV instruction, MO position moving operation)
3) When the program is running automatically
4) Jog operation using dedicated input signals (such as JOGENA and JOGM)
5) When the robot is being operated using external force by releasing the brake
6) When the robot is stationary

XYZ 100%
 X: +360.00
 Y: +280.00
 Z: +170.00

XYZ 100%
 !X: +360.00
 !Y: +280.00
 !Z: +170.00
-344 About the singular point adjacent alarm

 5Functions set with parameters
5.18 About ROM operation/high-speed RAM operation function

Because the ROM operation /high-speed RAM function has some restrictions on
program operation and data retention, please use it after thoroughly understanding
the specifications.

(1) Overview
Initially, the robot programs are saved in the RAM (SRAM) that is backed up in the battery.
By saving the robot programs in Flash ROM (FLROM), a loss of files due to the depletion of the backup bat-
tery, damage to the programs due to unexpected power shutoff (including momentary power failure) during
a file access operation, or changes or deletion of the programs and position data due to an erroneous oper-
ation.
By changing the parameter values, the access target of the programs can be switched between ROM and
RAM. Once the access target of the programs is switched to ROM, it is referred to as in or during the ROM
operation.
This function can be used with controller software version H7 or later.
Additionally, the high-speed RAM operation (using DRAM memory) function can be used in the controller's
software version J1 or later.
Table 5-10:ROM operation/high-speed RAM parameter list

Table 5-11:Relationship between the role of each memory and the ROMDRV parameter

Caution 1)"Save Parameters" and "Save Error Log" in order to save system data. The data files to be read
or written by the programs (OPEN/PRINT/INPUT) are included.

Caution 2)Program management operation refers to the operations, such as copying, deleting and renaming
the programs in the controller, by using the T/B and personal computer support software.

Parameter Description and value
ROMDRV Switches the access target of the programs between ROM and RAM.

0 = RAM mode (initial value)
1 = ROM mode
2 = High-speed RAM mode (high-speed RAM operation : DRAM memory is used. Can be used in software ver-
sion J1 or later)

BACKUP Copies programs, parameters, common variables and error logs from the RAM area into the ROM area.
SRAM -> FLROM (fixed) * If this processing is canceled while being executed, "CANCEL" is displayed in the
value field.

RESTORE Rewrites programs, parameters, common variables and error logs in the ROM area into the RAM area.
FLROM -> SRAM (fixed) * If this processing is canceled while being executed, "CANCEL" is displayed in the
value field.

Memory
type Feature

ROMDRVparameter

0(RAM mode) 1(ROM mode) 2(High-speed RAM mode)

DRAM High-speed execution
possible
Execution of programs
that are erased when the
power is OFF

Execution of programs
(Discard the execution result)

Execution of programs
(Discard the execution result)

SRAM Not erased by power OFF
Erased when a battery is
consumed.
Read/write enabled

Execution of programs
(Save the execution
result)
Program management
operation
Read/write system data
Read/write common
variables
Read/write programs

Read/write system data
Program management
operation
Read/write system data
Read/write common variables
Read/write programs

ROM Not erased by power OFF
Not Erased when a bat-
tery is consumed.
Read only enabled

(Program management oper-
ation disabled)

Read/write common variables
Read/write programs
 About ROM operation/high-speed RAM operation function 5-345

5

5Functions set with parameters
Table 5-12:ROM operation/high-speed RAM operation function image

DRAM is used as execution memory during ROM operation/high-speed RAM operation; it can perform lan-
guage processing at a maximum speed of about 1.2 times faster than that of SRAM memory used for nor-
mal RAM operation. (The speed varies depending on the contents of each program.)
Note that the operations of the robot, such as program execution and step operation, can be performed sim-
ilar to RAM operations (when starting in the RAM mode); however, there are restrictions on some opera-
tions. Please refer to the following precautions.

parameter
ROMDRV

Power ON

ROM
mode (1)

RAM
mode(0)

high-speed RAM
mode (2)

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

･Target of executable programs.
･Programs to be backed up.
･Changing parameters.
･Saving error logs.
･Reading programs.
･Editing (writing) programs.
･Copying, moving and renaming programs.
･Files to be access by the OPEN instruction.
・Program Exection Area.
・Save the execution result.

・Save the execution result.

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

･Target of executable programs.
･Programs to be backed up.
･Reading programs.
　　　　　　　　　　　　　→　　　　Enble

･Editing (writing) programs.
･Copying, moving and renaming programs.
 ・rename 　　　　→　　　Error

･Changing parameters.
･Saving error logs.
･Files to be accessed by the OPEN
instruction.
-346 About ROM operation/high-speed RAM operation function

 5Functions set with parameters
 Precautions

* About variables
Variables may be changed by executing programs during the ROM operation/high-speed RAM operation;
however, the changed values will be discarded when the controller power is turned off. The following lists
the handling of variables during the ROM operation.

* Changing variables during program execution
If the execution of a program is aborted during the ROM operation and "Variable Monitor" (refer to Page 50,
"3.12 Operating the monitor screen".) of the T/B is used, the program cannot be resumed. Although the stop
lamp stays lit, if the program is executed, the program will be executed from the first line. Be careful
because peripheral devices may interfere with the robot.

The values of variables cannot be changed by using "Variable Monitor" (refer to Page 50, "3.12 Operating
the monitor screen".) of the T/B during the ROM operation. Program Monitor (watch function) of PC support
software can be used to change the values of variables in task slots other than the editing slot.

* About programs
The target of program editing also becomes the ROM area. The programs in the controller is placed in the
protected state (protect ON), and they cannot be canceled during the ROM operation. Once the ROM oper-
ation is switched to the RAM operation, the protect information reverts to the state set during the RAM oper-
ation.
Programs may be read during the ROM operation, but they cannot be written. Similarly, programs can nei-
ther be copied nor renamed.

* About parameters
Parameters and error log files are always saved in the RAM area regardless of switching between the ROM
operation and the RAM operation. However, the RLNG parameter (for switching the robot language, refer to
Page 321, " RLING".) cannot be changed during the ROM operation.
Only a limited number of robot models can use the RLNG parameter.

* About backup
During the ROM operation, programs are backed up from the ROM area, and parameters and error log files
are backed up from the RAM area.

* About direct executio
While in the ROM operation, local variables cannot be rewritten by direct execution.

Variable Note1)

Note1)There are numeric value variables, character string variables, position variables and joint variables.

In ROM operation In high-speed RAM
operation In RAM operation

Local variable The values of local variables are
retained during program operation;
however, they will be discarded when
switching programs by the OP or
external I/O signal, as well as when
the power is turned off. The values of
variables in the program called by the
CALLP instruction will be discarded
when they return to the called pro-
gram.
The values of variables in a program
called by a CALLP instruction are dis-
carded upon returning to the calling
program.

The values of variables used in
a program being executed
when the power was shut down
are discarded.
They are saved when a pro-
gram is selected or a CALLP
instruction finishes.

The values of variables
are retained even after
the power is turned off.
Note2)

Note2)However, if a program is rewritten by using PC support software, the values of local variables used by
programs will be discarded.

Program external variable The values of variables are retained
until the power is turned off. (They
will not be discarded by switching
programs. The contents of changes
will be discarded when the power is
turned off.)

The values of variables are
retained as they are even after
the power is shut down.

The values of variables
are retained even after
the power is turned off.

User-defined external vari-
able

The contents of changes are
discarded when the power is
shut down.
 About ROM operation/high-speed RAM operation function 5-347

5

5Functions set with parameters
* About the continue function
While in the ROM operation, the continue function is disabled even if it is set.
The continue function saves the execution status at the time of power OFF, and starts operating from the
saved status the next time the power is turned on.

*About extension memory
When extension memory is installed or removed during the ROM operation, an error will occur. Install or
remove extension memory only after switching to the RAM operation.

* About operating times
The operating times (power ON time and remaining battery time) are updated regardless of switching
between the ROM and RAM operations.

* About production information
The production information monitor (program operation count, cycle time, etc.) of Personal Computer sup-
port software is not added or updated during the ROM operation.

(2) Procedures for switching between ROM and RAM
RAM operation,The following shows the procedures for switching ROM operation, RAM operation and high-
speed RAM operation:

For more information about the operating procedure of each of the above, see the following pages.

P o w e r O N

E n t e r B A C K U P
p a r a m e t e r

C a n c e l?

C a n c e l
p a r a m e t e r

P o w e r O F F t o O N

C h a n g e R O M D R V
p a r a m e t e r f r o m 0

t o 1

P o w e r O F F t o O N

E n d

P o w e r O N

E n t e r R E S T O R E
p a r a m e t e r

C a n c e l?

C a n c e l
p a r a m e t e r

P o w e r O F F t o O N

C h a n g e R O M D R V
p a r a m e t e r f r o m 1

t o 0

P o w e r O F F t o O N

E n d

P r o c e d u r e f o r s w i t c h i n g
f r o m R A M o p e r a t i o n t o R O M o p e r a t i o n

P r o c e d u r e f o r s w i t c h i n g
f r o m R O M o p e r a t i o n t o R A M o p e r a t i o n

Y e s

N o

Y e s

N o

M a n ip u la t e
o p e r a t i o n p a n e l

M a n ip u la t e
o p e r a t i o n p a n e l

(3) - [1]

(3) - [2] ・ ・ ・

(3) - [3]

(4) - [1]

(4) - [2] ・ ・ ・

(4) - [3]

P r o c e d u r e f o r s w i t c h i n g
f r o m R A M o p e r a t i o n t o h i g h - s p e e d

R A M o p e r a t i o n

P o w e r O N

C h a n g e R O M D R V
p a r a m e t e r f r o m

0 t o 2

P o w e r O F F t o O N

E n d

(7) - ①

P r o c e d u r e f o r s w i t c h i n g
f r o m h i g h - s p e e d R A M o p e r a t i o n t o

R A M o p e r a t i o n

P o w e r O N

C h a n g e R O M D R V
p a r a m e t e r f r o m

2 t o 0

P o w e r O F F t o O N

E n d

(7) - ②
-348 About ROM operation/high-speed RAM operation function

 5Functions set with parameters
(3) Switching to the ROM operation
Use the following procedure (steps [1] to [3]) to switch to the ROM operation.

[1] Prepare to copy the information in the RAM area into the ROM area.

The programs created before the RAM operation was switched
to the ROM operation are saved in the RAM area of the file sys-
tem of the controller. First, copy these programs into the ROM
area using the following procedure.
After the programs in the ROM area are cleared once, they are
copied from the RAM area.

1) Display the parameter setting screen from the
maintenance screen.

2) Enter "BACKUP" in the parameter name field, and
press the [INP] key.

3) When "SRAM->FLROM" is displayed in the data
field, press the [INP] key again as is.
* Do not change the content of the data field.

A self-check is performed to check whether or not
the programs are normal prior to writing them into
the ROM area. The ALWAYS program is
automatically stopped during the self-check. When
the program check is complete, the cursor moves to
the parameter name field. If any abnormality is
found during the program check, an error is output
and the date of ROM write operation is registered in
an error log.

[Cancel Operation]
To cancel switching to the ROM operation, press the
[INP] key again here. When "CANCEL" is displayed
in the data field, press the [INP] key again.

4) Be sure to shut off the power here. Also, be sure to
shut off the power during [Cancel Operation] in step
3) above. Copy to the ROM area is performed the
next time the power is turned on. If the power is not
shut off after the operation in step 3), data will not be
properly copied into the ROM area.

5) Turn on the power to the controller.
After the power is turned on, "OK" is displayed in
"STATUS NUMBER" on the operation panel. After
verifying that "OK" is displayed, press the [START]
button on the operation panel. (The following page
describes the detail of this operation.)

File system of the controller

ROM area RAM area

[1]

Copy

Programs
Parameters

Common
variables
Error logs

Programs
Parameters

Common
variables
Error logs

<PARAM>
(BACKUP)()
(CANCEL)
SET DATA

<PARAM>
(BACKUP)()
()
SET PARAM.NAME

<PARAM>
(BACKUP)()
(SRAM->FLROM)
SET DATA

［ＩＮＰ］ key

［ＩＮＰ］ key

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

［5］ key

［1］ key

ｃ

* Do not change the
content of the data field.

<PARAM>
(BACKUP)()
(SRAM->FLROM)
SET PARAM.NAME

To cancel, press the
[INP] key again here.

Power shutoff

Cancel

Power shutoff

Switch to ROM operation

<PARAM>
(BACKUP)()
(CANCEL)
SET PARAM.NAME

Press the [INP] key again.
 About ROM operation/high-speed RAM operation function 5-349

5

5Functions set with parameters
[2] Execute a copy operation by manipulating the operation panel.

The time required to start up after the power is turned on is based on controller software version H7.
It varies depending on the version in use and how memory is used.

[3] Change the parameter value and switch to the ROM operation.

Change the value of the ROMDRV parameter from 0 to 1.

After changing it, be sure to shut off the power, and turn it on again.

 If switching from the RAM operation to the ROM operation is performed without
copying any program into the ROM area, there would be no program to execute, or
a program in which the corrected content has not been reflected would be executed.
Therefore, be sure to perform the program copy operation described above.

START

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

Power
ON

Approx. 8 sec.

Approx. 12 sec.

Approx. 22 sec.
STATUS NUMBER

Power
ON

The completion of writing into the ROM area is
displayed.
This display varies depending on whether or
not there is extension memory.
OK0: W hen standard memory is used
OK3: W hen 2 MB extension memory is used

W hen 2 MB extension memory is used, it takes
approximately 28 seconds longer to start up
after the power is turned on.

Approx. 12 sec.

Press the [START] button on the operation panel.
"88888" is displayed in STATUS NUMBER just like
for normal operation.

Power ON at
normal operation

Power ON after a write
operation into the ROM area

 Caution

<ﾊﾟﾗﾒｰﾀ>
(ROMDRV)()
(0)
ﾃﾞｰﾀ ｦ ｼﾃｲ

<ﾊﾟﾗﾒｰﾀ>
(ROMDRV)()
(1)
ﾃﾞｰﾀ ｦ ｼﾃｲ

値を［１］に変更

［ＩＮＰ］キー

<PARAM>
(ROMDRV)()
(0)
SET DATA

<PARAM>
(ROMDRV)()
(1)
SET DATA

Change the value to 1.

[INP] key
-350 About ROM operation/high-speed RAM operation function

 5Functions set with parameters
(4) Display during the ROM operation
A dot is lit in the right edge of "STATUS NUMBER" on the operation panel during the ROM operation.

(5) Program editing during the ROM operation
It is possible to read the programs in the controller during the ROM operation; however, if a rewrite operation
is performed, an error will occur. To edit a program, cancel the ROM operation (change the value of the
ROMDRV parameter from 1 to 0, and reset the power to the controller) first, and then edit it. To switch back
to the ROM operation after the completion of program editing, be sure to perform the operation "Copy Pro-
grams to ROM Area."

STATUS NUMBER STATUS NUMBER

STATUS NUMBER STATUS NUMBER

STATUS NUMBERSTATUS NUMBER

In ROM operation In RAM operation

During override
display

During program
number display

During line number
display

A dot is lit in the right edge of the display.
 About ROM operation/high-speed RAM operation function 5-351

5

5Functions set with parameters
(6) Switching to the RAM operation
Use the following procedure (steps [1] to [3]) to switch to the RAM operation.

[1] Prepare to write the information in the ROM area back to the RAM area.

Write the programs and parameters written into the ROM area
when the RAM operation was switched to the ROM operation
back into the RAM area.

At this point, after the information (programs, parameters, val-
ues of common variables, and error logs) in the RAM area is
cleared once, restore processing is performed from the ROM
area.

1) Display the parameter setting screen from the
maintenance screen.

2) Enter "RESTORE" in the parameter name field, and
press the [INP] key.

3) When "FLROM->SRAM" is displayed in the data
field, press the [INP] key again as is.
* Do not change the content of the data field.

Prepare to restore the information back into the
RAM area. At this point, the ALWAYS program does
not stop. When the preparation is complete, the
cursor moves to the parameter name field.

[Cancel Operation]
To cancel switching to the RAM operation, press the
[INP] key again here. When "CANCEL" is displayed
in the data field, press the [INP] key again. The
cursor moves to the parameter name field.

4) Be sure to shut off the power here. Also, be sure to
shut off the power during [Cancel Operation] in step
3) above. Copy to the RAM area is performed the
next time the power is turned on. If the power is not
shut off after the operation in step 3), data will not be
properly copied into the RAM area.

5) Turn on the power to the controller.
After the power is turned on, "OK" is displayed in
"STATUS NUMBER" on the operation panel. After
verifying that "OK" is displayed, press the [START]
button on the operation panel. (The following page
describes the detail of this operation.)

 If the information in the RAM area is restored into the ROM area, all the
contents of the parameters changed during the ROM operation, the values of
common variables, and logs of errors occurred are discarded. If any parameter
was changed during the ROM operation, change the parameter again after
switching to the RAM operation is complete.

File system of the controller

[1]

Copy

ROM area RAM area
Programs

Parameters
Common
variables
Error logs

Programs
Parameters

Common
variables
Error logs

 CAUTION

<PARAM>
(RESTORE)()
(CANCEL)
SET PARAM.NAME

<PARAM>
(RESTORE)()
()
SET PARAM.NAME

<PARAM>
(RESTORE)()
(FLROM->SRAM)
SET DATA

［ＩＮＰ］ key

［ＩＮＰ］ key

<MENU>
1.TEACH 2.RUN
3.FILE 4.MONI
5.MAINT 6.SET

<MAINT>
1.PARAM 2.INIT
3.BRAKE 4.ORIGIN
5.POWER

［5］ key

［1］ key

ｃ

* Do not change the
content of the data field.

<PARAM>
(RESTORE)()
(FLROM->SRAM)
SET PARAM.NAME

To cancel, press the
[INP] key again here.

Power shutoff

Cancel

<PARAM>
(RESTORE)()
(CANCEL)
SET DATA

Press the [INP] key again.

Power shutoff

Return to RAM operation
-352 About ROM operation/high-speed RAM operation function

 5Functions set with parameters
[2] Execute a restore operation by manipulating the operation panel

[3] Change the parameter value and switch to the RAM operation.

Change the value of the ROMDRV parameter from 1 to 0.

After changing it, be sure to shut off the power, and turn it on
again.

START

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

Power ON

Approx. 8 sec.

Approx. 12 sec.

Approx. 8 sec.
STATUS NUMBER

Power ON

The completion of restoring into the RAM area
is displayed.
This display varies depending on whether or
not there is extension memory.
OK4: W hen standard memory is used
OK7: W hen 2 MB extension memory is used

* The time required to start up after the power
is turned on is almost the same as the normal
operation, which is different from when writing
to the ROM area.

Approx. 12 sec.

Press the [START] button on the operation panel.
"88888" is displayed in STATUS NUMBER just like
for normal operation.

Power ON at
normal operation

Power ON after a write
restoring into the ROM area

<PARAM>
(ROMDRV)()
(1)
SET DATA

<PARAM>
(ROMDRV)()
(0)
SET DATA

Change the value to 0.

[INP] key
 About ROM operation/high-speed RAM operation function 5-353

5

5Functions set with parameters
(7) Switching to the high-speed RAM operation(DRAM operation)
Use the following procedure to switch to the high-speed RAM operation.
[1]Change the applicable parameter and switch to high-speed RAM operation (DRAM operation).

Change the value of the ROMDRV parameter from 0 to 2.

After changing it, be sure to shut off the power, and turn it on
again.

[2]Change back the parameter and return to RAM operation.

Change the value of the ROMDRV parameter from 2 to 0.

After changing it, be sure to shut off the power, and turn it on
again.

<PARAM>
(ROMDRV)()
(0)
SET DATA

<PARAM>
(ROMDRV)()
(2)
SET DATA

Change the value to 2.

[INP] key

<PARAM>
(ROMDRV)()
(2)
SET DATA

<PARAM>
(ROMDRV)()
(0)
SET DATA

Change the value to 0.

[INP] key
-354 About ROM operation/high-speed RAM operation function

 5Functions set with parameters
5.19 Warm-Up Operation Mode

(1) Functional Overview
The acceleration/deceleration speed and servo system of Mitsubishi robots are adjusted so that they can be
used with the optimum performance in a normal temperature environment. Therefore, if robots are operated
in a low temperature environment or after a prolonged stop, they may not exhibit the intrinsic performance
due to change in the viscosity of grease used to lubricate the parts, leading to deterioration of position accu-
racy and a servo error such as an excessive difference error. In this case, we ask you to operate robots in
actual productions after conducting a running-in operation (warm-up operation) at a low speed. To do so, a
program for warm-up operation must be prepared separately.
The warm-up operation mode is the function that operates the robot at a reduced speed immediately after
powering on the controller and gradually returns to the original speed as the operation time elapses. This
mode allows you to perform a warm-up operation easily without preparing a separate program. If an exces-
sive difference error occurs when operating the robot in a low temperature environment or after a prolonged
stop, enable the warm-up operation mode.
This function can be used in software version J8 or later of the controller.

*To Use the Warm-Up Operation Mode
To use the warm-up operation mode, specify 1 (enable) in the WUPENA parameter and power on the con-
troller again.

Note: To use the warm-up operation mode on the robot other than the RV-S series, it is necessary to specify
a joint axis to be the target of the warm-up operation mode in the WUPAXIS parameter, other than the
WUPENA parameter. For more information, see "(2)Function Details"

*When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status (the speed is automatically reduced). In the warm-up operation status, the robot operates at a speed
lower than the specified operation speed, then gradually returns to the specified speed as the operation time
of a target axis elapses. The ratio of reducing the speed is referred to as the warm-up operation override.
When this value is 100%, the robot operates at the specified speed. In parameter setting at shipment from
the factory, the value of a warm-up operation override changes as shown in the Fig. 5-2 below according to
the operation time of a target axis.

Fig.5-2:Changes in Warm-Up Operation Override

Even in the warm-up operation status, the robot does not decrease its speed if the
MODE switch on the controller's front panel is set to "TEACH," for a jog operation or
for an operation by real-time external control (MXT instruction), and operates at the
originally specified speed.

100%

Time during which
values are constant

(30 sec)
Valid time of the warm-up operation status

(60 sec)

Warm-up operation
override

Time during
which a target

axis is operating

Initial value
(70%)

 CAUTION
 Warm-Up Operation Mode 5-355

5

5Functions set with parameters
In the warm-up operation status, because the robot operates at a speed lower than
the originally specified speed, be sure to apply an interlock with peripheral units.

If the operating duty of the target axis is low, a servo error such as an excessive dif-
ference error may occur even when the warm-up operation mode is enabled.
In such a case, change the program, and lower the speed as well as the acceleration/
deceleration speed.

Also, when STATUS NUMBER on the controller's front panel is set to override display in the warm-up oper-
ation status, an underscore (_) is displayed in the second digit from the left so that you can confirm the
warm-up operation status.

Fig.5-3:Override Display in the Warm-Up Operation Status

When a target axis operates and the warm-up operation status is canceled, the robot operates at the speci-
fied speed. Note that the joint section cools down at a low temperature if the robot continues to stop after the
warm-up operation status is canceled. Therefore, if a target axis continues to stop for a prolonged period
(the setting value at shipment from the factory is 60 min), the warm-up operation status is set again and the
robot operates at a reduced speed.

Note 1: When powering off the controller and then powering on again, if the power-off period is short, the
temperature of the robot's joint section does not decrease too much. Therefore, when powering off
the controller and then powering on again after the warm-up operation status is canceled, if the
power-off period is short, the robot starts in the normal status instead of the warm-up operation sta-
tus.

Note 2: A target axis refers to the joint axis that is the target of control in the warm-up operation mode. It is
the joint axis specified in the WUPAXIS parameter.

 CAUTION

 CAUTION

Normal Status Warm-Up Operation Status
-356 Warm-Up Operation Mode

 5Functions set with parameters
(2) Function Details
1)Parameters, Dedicated I/O Signals and Status Variables of the Warm-Up Operation Mode

The following parameters, dedicated I/O signals and status variables have been added in the warm-up operation
mode. Refer to Page 306, "5.1 Movement parameter", Page 371, "6.3 Dedicated input/output" and Page 60, "4

MELFA-BASIC IV" for details.

Table 5-13:Parameter List of the Warm-Up Operation Mode

Table 5-14:Dedicated I/O Signal List of Warm-Up Operation Mode

Table 5-15:Status Variable of Warm-Up Operation Mode

Parameter name Description and value
WUPENA Designate the valid/invalid of the Warm-up operation mode.

0:Invalid/ 1: Valid
WUPAXIS Specify the joint axis that will be the target of control in the warm-up operation mode by selecting bit ON or

OFF in hexadecimal (J1, J2, Åc from the lower bits).
Bit ON: Target axis/ Bit OFF: Other than target axis

WUPTIME Specify the time (unit: min.) to be used in the processing of warm-up operation mode. Specify the valid time in
the first element, and the resume time in the second element.
Valid time: Specify the time during which the robot is operated in the warm-up operation status and at a

reduced speed. (Setting range: 0 to 60)
Resume time: Specify the time until the warm-up operation status is set again after it has been canceled if a

target axis continues to stop. (Setting range: 1 to 1440)
WUPOVRD Perform settings pertaining to the speed in the warm-up operation status. Specify the initial value in the first

element, and the value constant time in the second element. The unit is % for both.
Initial value: Specify the initial value of an override (warm-up operation override) to be applied to the operation

speed when in the warm-up operation status. (Setting range: 50 to 100)
Ratio of value constant time: Specify the duration of time during which the override to be applied to the opera-

tion speed when in the warm-up operation status does not change from the ini-
tial value, using the ratio to the valid time. (Setting range: 0 to 50)

Parameter name Class Function
MnWUPENA (n=1t o 3)
(Operation right required)

Input Enables the warm-up operation mode of each mechanism. (n: FMechanism No.)
Output Outputs that the warm-up operation mode is currently enabled. (n: FMechanism No.)

MnWUPMD(n=1 to 3) Output Outputs that the status is the warm-up operation status, and thus the robot will operate at a
reduced speed. (n: FMechanism No.)

Status variable Function
M_WUPOV Returns the value of an override (warm-up operation override) to be applied to the command speed in

order to reduce the operation speed when in the warm-up operation status.
M_WUPRT Returns the time during which a target axis in the warm-up operation mode must operate to cancel the

warm-up operation status.
M_WUPST Returns the time until the warm-up operation status is set again after it has been canceled.
 Warm-Up Operation Mode 5-357

5

5Functions set with parameters
2) To Use the Warm-Up Operation Mode
To use the warm-up operation mode, enable its function with parameters. The function can also be enabled
or disabled with a dedicated input signal.

*Specifying with a Parameter
To enable the warm-up operation mode with a parameter, set 1 in the WUPENA parameter. After changing
the parameter, the warm-up operation mode is enabled by powering on the controller again. In the following
cases, however, the warm-up operation mode will not be enabled even if 1 is set in the WUPENA parame-
ter.
• When 0 is set in the WUPAXIS parameter (a target axis in the warm-up operation mode does not exist)
• When 0 is set in the first element of the WUPTIME parameter (the warm-up operation status period is 0

min)
• When 100 is set in the first element of the WUPOVRD parameter (the speed is not decreased even in the

warm-up operation status)
When using the warm-up operation mode, change these parameters to appropriate setting values.

Note: For robots other than the RV-S series, the setting value of the WUPAXIS parameter at shipment from
the factory has been set to 0. When using the warm-up operation mode, specify a target axis in the
warm-up operation mode (the joint axis to be the target of control in the warm-up operation mode; for
example, a joint axis that generates an excessive difference error when operating in a low tempera-
ture environment).

*Switching with a Dedicated Input Signal
By assigning the MnWUPENA (n = 1 to 3: mechanism number) dedicated input signal, the warm-up opera-
tion mode can be enabled or disabled without powering on the controller again. Also, the current enable/dis-
able status can be checked with the MnWUPENA (n = 1 to 3: mechanism number) dedicated output signal.

Note 1:In order for the dedicated input signal above to function, it is necessary to enable the warm-up oper-
ation mode in advance by setting the parameters described previously.

Note 2:This dedicated input signal requires the operation right of external I/O. Also, no input is accepted
during operation or jog operation.

Note 3:The enable/disable status specified by this dedicated input signal is held even after the control right
of external I/O is lost.

3) When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
In the warm-up operation status, the robot operates at a speed lower than the actual operation speed by
applying a warm-up operation override to the specified speed. The operation speed is gradually returned to
the specified speed as the operation time of a target axis elapses. When the warm-up operation status is
canceled, the robot will start operating at the specified speed.

*Initial Status Immediately After Power On
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
However, when powering off the controller and then powering on again after the warm-up operation status is
canceled, if the power-off period is short, the robot starts in the normal status instead of the warm-up opera-
tion status as the temperature of the robot's joint section has not been lowered much from power-off. To be
specific, the robot starts in the normal status if the following condition is satisfied:
Condition: The robot starts in the normal status if the time during which a target axis continues to stop from

the cancellation of the warm-up operation status to powering on is shorter than the time specified
in the second element of the WUPTIME parameter (the resume time of the warm-up operation
status).

Note that if the warm-up operation mode is switched to be enabled with the MnWUPENA (n = 1 to 3: mech-
anism number) dedicated input signal, the warm-up operation status is always set.
-358 Warm-Up Operation Mode

 5Functions set with parameters
*Methods to Check the Warm-Up Operation Status
Whether the current status is the warm-up operation status or normal status can be checked in the following
three methods:
• Checking with STATUS NUMBER on the controller's front panel

The current status can be checked by setting STATUS NUMBER to override display. In the warm-up oper-
ation status, an underscore (_) is displayed in the second digit from the left.

Fig.5-4:Override Display in the Warm-Up Operation Status

• Checking with a status variable
The current status can be checked by monitoring the value of the M_WUPOV status variable (the value of a
warm-up operation override). In the normal status, the value of M_WUPOV is set to 100%; in the warm-up
operation status, it is below 100%.

• Checking with a dedicated output signal
In the warm-up operation status, the MnWUPMD (n = 1 to 3: mechanism number) dedicated output signal is
output.

*Switching Between the Normal Status and the Warm-Up Operation Status
When in the warm-up operation status, if a target axis in the warm-up operation mode continues operating
and its operation time exceeds the valid time of the warm-up operation status, the warm-up operation status
is canceled and the normal status is set. Thereafter, if the robot continues to stop, the joint section is cooled
down in a low temperature environment. When a target axis continues to stop over an extended period of
time and the resume time of the warm-up operation status is exceeded, the normal status switches to the
warm-up operation status again.

• Canceling the warm-up operation status
If the accumulated time a target axis has operated exceeds the valid time of the warm-up operation status,
the warm-up operation status is canceled and the normal status is set. Specify the valid time of the warm-up
operation status in the first element of the WUPTIME parameter. (The setting value at shipment from the
factory is 1 min.) If a multiple number of target axes exist, the warm-up operation status is canceled when all
target axes exceed the valid time. Note that, with the M_WUPRT status variable, you can check when the
warm-up operation status will be canceled after how much more time a target axis operates.

• Switching from the normal status to the warning-up operation status
If the time during which a target axis continues to stop exceeds the resume time of the warm-up operation
status, the normal status switches to the warm-up operation status. Specify the resume time of the warm-up
operation status in the second element of the WUPTIME parameter. (The setting value at shipment from the
factory is 60 min.)
If a multiple number of target axes exist, the warm-up operation status is set when at least one of the axes
exceeds the resume time of the warm-up operation status.
Note that, with the M_WUPST status variable, you can check when the status is switched to the warm-up
operation status after how much more time a target axis continues to stop.
Note: If a target axis is not operating even when the robot is operating, it is determined that the target axis is

stopping.

Normal Status Warm-Up Operation Status
 Warm-Up Operation Mode 5-359

5

5Functions set with parameters
The following Fig. 5-5 shows an example of a timing chart for switching from the normal status to the warm-
up operation status.

Fig.5-5:Example of Switching Between the Normal Status and the Warm-Up Operation Status

*Warm-Up Operation Override Value
An override to be applied to the operation speed in order to reduce the speed in the warm-up operation sta-
tus is referred to as the warm-up operation override. The warm-up operation override changes as shown in
the figure below according to the time during which a target axis operates, and is immediately reflected in
the operation of the robot. Specify the initial value of the warm-up operation override and the ratio of the
time during which the override does not change in relation to the valid time of the warm-up operation status
using the WUPOVRD parameter. (The initial value is 70% and the ratio is 50% (= 30 sec) in the settings at
shipment from the factory.)
These values can be checked with the M_WUPOV status variable.

Fig.5-6:Changes in Warm-Up Operation Override

Normal status

Operating

Stopping

Accumulated value
of target axis

operation time

Time during which
a target axis

continues to stop

Warm-up
operation status

Valid time

Resume time

Because the accumulated
operation time reaches the valid
time, the warm-up operation
status is canceled.

Target axis
operation

Because a target axis
continues to stop for the
time specified as the
resume time, the status
changes to the warm-up
operation status again.

Time

100%

Value constant time

Valid time of the warm-up operation status

Warm-up operation
override

Time during which a
target value is operating

Initial value

Change to the warm-up operation status Cancel the warm-up operation status

・Initial value: First element of the WUPOVRD parameter
・Valid time: Second element of the WUPTIME parameter
・Value constant time: Valid time x ratio specified in the second

element of the WUPOVRD parameter
-360 Warm-Up Operation Mode

 5Functions set with parameters
Note that the actual override in the warm-up operation status is as follows:
• During joint interpolation operation = (operation panel (T/B) override setting value) x (program override

(OVRD instruction)) x (joint override (JOVRD instruction)) x warm-up operation override
• During linear interpolation operation = (operation panel (T/B) override setting value) x (program override

(OVRD instruction)) x (linear specification speed (SPD instruction)) x warm-up operation override

Note 1:If the MODE switch on the controller's front panel is set to "TEACH," or for a jog operation or an oper-
ation by real-time external control (MXT instruction), the warm-up operation override is not reflected
and the robot operates at the originally specified speed.

Note 2:In the warm-up operation status, because the robot operates at a speed lower than the originally
specified speed, be sure to apply an interlock with peripheral units.

Note 3:If a multiple number of target axes exist, the warm-up operation override is calculated using the min-
imum operation time among the target axes. If a certain target axis does not operate and the value of
the M_WUPRT status variable does not change, the value of the warm-up operation override does
not change regardless how much other target axes operate.
Also, the value may return to the initial value before reaching 100% depending on whether each tar-
get axis is operating or stopping.
For example, when the value of a warm-up operation override is larger than the initial value, if a cer-
tain target axis switches from the normal status to the warm-up operation status, the operation time
of that axis becomes the smallest (the operation time is 0 sec) and the warm-up operation override
returns to the initial value.

(3) If alarms are generated
1) An excessive difference error occurs even if operating in the warm-up operation status.
• If an error occurs when the warm-up operation override is set to the initial value, decrease the value of the

initial value (the first element of the WUPOVRD parameter).
• If an error occurs while the warm-up operation override is increasing to 100%, the valid time of the warm-

up operation status or the value constant time may be too short. Increase the value of the first element of
the WUPTIME parameter (valid time) or the second element of the WUPOVRD parameter (value constant
time ratio).

• If an error cannot be resolved after taking the above actions, change the operation program, and lower the
speed and/or the acceleration/deceleration speed.

2) An excessive difference error occurs if the warm-up operation status is canceled.
• Increase the value of the first element of the WUPTIME parameter, and extend the valid time of the warm-

up operation status.
• Check to see if the robot's load and the surrounding temperature are within the specification range.
• Check whether the target axis continues to stop for an extended period of time after the warm-up operation

status has been canceled. In such a case, decrease the value of the second element of the WUPTIME
parameter, and shorten the time until the warm-up operation status is set again.

• If an error cannot be resolved after taking the above actions, change the operation program, and reduce
the speed and/or the acceleration/deceleration speed.

3) The warm-up operation status is not canceled at all.
• Check the setting value of the WUPAXIS parameter to see if a joint section that does not operate at all is

set as a target axis in the warm-up operation mode.
• Check to see if a target axis has been stopping longer than the resume time (the second element of the

WUPTIME parameter) of the warm-up operation status.
• Check to see if an operation is continuing at an extremely low specified speed (about 3 to 5% in override

during joint interpolation). If the specified speed is low, there is no need to use the warm-up operation
mode. Thus, disable the warm-up operation mode.
 Warm-Up Operation Mode 5-361

5

5Functions set with parameters
5.20 About singular point passage function
(1) Overview of the function

Mitsubishi's robots calculate linear interpolation movement and store teaching positions as position data in
the XYZ coordinates system. In the case of a vertical 6-axis robot, for example, the position data is
expressed using coordinate values of the robot's X, Y, Z, A, B and C axes, but the robot can be in several
different postures even if the position data is the same. For this reason, the robot's position can be selected
among the possible options using the coordinate values and the structure flag (a flag indicating the posture).
However, there can be an infinite number of combinations of angles that a particular joint axis can take.
Even if the structure flag is used, at the positions where this flag is switched, it may not be possible to oper-
ate the robot with the desired position and posture (for example, in the case of a vertical 6-axis robot, axes
J4 and J6 are not uniquely determined when axis J5 is 0 degree). Such positions are called singular points,
and they cannot be reached through XYZ jog and linear interpolation-based operation. To avoid this prob-
lem in the past, the operation layout had to be designed such that no singular points would exist in the work-
ing area, or the robot had to be operated using joint interpolation if it could not avoid passing a singular
point.
The singular point passage function allows a robot to pass singular points through XYZ jog and linear inter-
polation, which helps increasing the degree of freedom for the layout design by enlarging the working area
by linear interpolation.

*Positions of singular points that can be passed
The positions of singular points that the singular point passage function allows the robot to pass are as fol-
lows.

In the case of vertical 6-axis robots

<1> Positions where axis J5 = 0 degree
In these positions, the structure flag
switches between NonFlip and Flip.

<2> Positions where the center of axis J5 coincides with the
rotation axis of axis J1

In these positions, the structure flag switches between Right
and Left.

In the case of vertical 5-axis robots

<1> Positions where the center of mechanical interface coincides with the rotation
axis of axis J1

In these positions, the structure flag switches between Right and Left.
-362 About singular point passage function

 5Functions set with parameters
*Operation when the singular point passage function is valid
When the singular point passage function is made valid, the robot can move from position A to position C via
position B (the position of a singular point) and vice versa through XYZ jog and linear interpolation opera-
tion. In this case, the value of the structure flag switches before and after passing position B.
If the singular point passage function is invalid (or not supported), the robot stops before moving from posi-
tion A to position B, as an error occurs. The robot stops immediately before position B in the case of XYZ jog
operation.

The robot can pass a singular point when the robot's motion path passes through the singular point. If the
motion path does not go through the singular point (passes near the singular point), the robot continues
operation without switching the value of the structure flag.
•Positions D -> E -> F: The robot's motion path passes through a singular point

(the structure flag switches before and after position E).

•Positions G -> H -> I: The robot's motion path passes near a singular point
(the structure flag is not switched).

When passing near a singular point, the robot may rotate in a wide circle as in the
case of position H in the figure above. Be sure to keep an eye on the robot and avoid
getting in the way when working near the robot, such as when teaching positions.

Position A Position B Position C

Position D Position E Position F

Position G Position H Position IPosition H

 CAUTION
 About singular point passage function 5-363

5

5Functions set with parameters
*How to use the singular point passage function
In order to use the singular point passage function in jog operation, specify 1 (valid) for parameter FSP-
JOGMD and turn the power supply to the controller off and on again. To use the function in automatic oper-
ation, specify 2 for constant 2 in the TYPE specification of the interpolation instruction.

*Applicable models
The models supporting the singular point passage function are the RV-3S/3SJ/3SB/3SJB series and the
function can be used in controller software of version K1 or later. If the singular point passage function is
made valid for non-applicable models, conventional motion is performed in the case of jog operation and an
error occurs in the case of automatic operation.

*Limitations
There are the following limitations to the use of the singular point passage function.

(1) The singular point passage function cannot be used if additional axes are used for multiple mecha-
nisms.

(2) The singular point passage function cannot be used if synchronization control is used for additional
axes of a robot.

(3) The singular point passage function cannot be used if the compliance mode is valid.
(4) The singular point passage function cannot be used if the collision detection function is valid.
(5) The information collection level of the maintenance forecast function must be set to level 1 (factory

setting).
(6) MELFA-BASIC IV has instructions corresponding to the singular point passage function, but there are

no corresponding commands for the MOVEMASTER COMMAND. Use MELFA-BASIC IV to use the
singular point passage function.

(2) Singular point passage function in jog operation
In case of jog operation, the singular point passage function is specified to be valid (1) or invalid (0) by
parameter FSPJOGMD.

1) For robots that cannot use the singular point passage function, changing the setting value of parameter
FSPJOGMD has no effect; the same operation as in the past is performed (the models supporting the
singular point passage function are the RV-3S/3SJ/3SB/3SJB series).

2) It is not possible to specify multiple axes to perform jog operation at the same time when passing a sin-
gular point. If it is attempted to operate an axis while another axis is operating, the operation is ignored.

3) A singular point adjacent alarm is generated if the robot comes near a singular point when performing jog
operation using a T/B. See Page 344, "5.17 About the singular point adjacent alarm".

4) The specification of parameter FSPJOGMD is reflected in jog operation via dedicated input signals as
well.

(3) Singular point passage function in position data confirmation (position jump)
The specification of parameter FSPJOGMD is also reflected in position data confirmation (position jump).

If an interpolation instruction (e.g., MVS P1) is executed directly from T/B when
parameter FSPJOGMD is set to 1 (valid), the robot operates with the singular point
passage function enabled even if the function is not made valid by the TYPE specifi-
cation.

FSPJOGMD XYZ jog TOOL jog 3-axis XYZ jog CYLINDER jog JOINT jog
0

(Factory setting) Same as in the past Same as in the past Same as in the past Same as in the past Same as in the past

1 Singular point pas-
sage XYZ jog

Singular point pas-
sage TOOL jog Same as in the past Same as in the past Same as in the past

FSPJOGMD MO position movement MS position movement
0

(Factory setting) Same as in the past Same as in the past

1 Same as in the past Singular point passage position movement

 CAUTION
-364 About singular point passage function

 5Functions set with parameters
(4) Singular point passage function in automatic operation
In order to use the singular point passage function in automatic operation, make the function valid in the
TYPE specification for each target interpolation instruction.

TYPE (Type)

[Function]
Specify the singular point passage function in the TYPE specification of an interpolation instruction. The
interpolation instructions that support this function are linear interpolation (MVS), circular interpolation
(MVR, MVR2 and MVR3) and circular interpolation (MVC). These instructions can be used in controller soft-
ware of version K1 or later.

[Format]

[Terminology]
<Constant 1> 0/1 : Short cut/detour
<Constant 2> 0/1/2 : Equivalent rotation/3-axis XYZ/singular point passage

[Reference Program]
10 MVS P1 TYPE 0,2 ' Perform linear interpolation from the current position to P1 with the sin-

gular point passage function enabled.
20 MVR P1,P2,P3 TYPE 0,2 ' Perform circular interpolation from P1 to P3 with the singular point pas-

sage function enabled.

[Explanation]
(1) A runtime error occurs if 2 is specified for constant 2 for robots that do not support the singular point pas-

sage function.
(2) The structure flag is not checked between the starting point and the end point if the singular point passage

function is specified. Moreover, since the structure flag of the target position cannot be identified, the move-
ment range is not checked for the target position and intermediate positions before the start of operation.

(3) If a speed is specified with the SPD instruction, the specified speed is set as the upper limit and the robot
automatically lowers the speed down to the level where a speed error does not occur near a singular point.

(4) The optimal acceleration/deceleration is not applied for interpolation instructions for which the singular
point passage function is specified; the robot operates with a fixed acceleration/deceleration. At this point, if
the acceleration time and the deceleration time are different due to the specification of the ACCEL instruc-
tion, the longer time is used for both acceleration and deceleration.

(5) The specification of the CNT instruction is not applied to interpolation instructions for which the singular
point passage function is specified; the robot operates with acceleration/deceleration enabled.

(6) If the current position and the starting point position are different when a circular interpolation instruction is
set to be executed, the robot continues to operate until the starting point using 3-axis XYZ linear interpola-
tion even if the singular point passage function is specified in the TYPE specification.

(7) If an interpolation for which the singular point passage function is specified is paused and the operation is
resumed after jog movement, the robot moves to the position at which the operation was paused according
to parameter RETPATH. If parameter RETPATH is set to 0 (invalid: do not return to the paused position),
the structure flag is not switched unless the motion path after resuming the operation does not pass a sin-
gular point as in the figure below. Thus, the posture of the robot at the completion of interpolation may be
different from the case where the operation is not paused.

TYPE[]<Constant 1>, <Constant 2>
 About singular point passage function 5-365

5

5Functions set with parameters
(8) If the singular point passage function is specified, the operation speed may be lowered compared to nor-
mal linear interpolation, etc. Moreover, the singular point passage function may affect the execution speed
of programs as the function involves complicated processing. Specify the singular point passage function
only for interpolation instructions where the function is required.

NonFlip

Singular point

The structure flag changes from NonFlip to
Flip as the robot passes a singular point

NonFlip

Singular point

The structure flag remains NonFlip as the
robot does not pass a singular point

Pause

Jog
Resume
-366 About singular point passage function

 6External input/output functions
6 External input/output functions
6.1 Types

(1)Dedicated input/output................ These I/O signals are used to indicate various statuses, such as the
statuses of remote operations including the execution and stopping of
robot programs, status information during execution, and status of the
servo power supply.
A desired function is assigned to each I/O signal. Functions are
assigned in two ways: one is to set the applicable signal number in
each dedicated parameter (Refer to "6.3 Dedicated input/output" on
page 371), while the other is to use an emergency stop input (Refer to
"6.6 Emergency stop input" on page 389). Frequently used functions
have been assigned to signals in advance. The user may add new func-
tions or modify the existing functions.

(2)General-purpose input/output..... These I/O signals are used to communicate with the PLC, etc., via robot
programs. They are used to acquire positioning signals from peripheral
devices or check the robot position. Usage is not limited.

(3)Hand input/output These I/O signals are used in the control of robot hands, for example, to
instruct the hand to open or close or to acquire information from the
sensors installed in the hand. They can be controlled with user pro-
grams. Wiring is performed until near the tip of the robot hand. (Hand
outputs are optional.)

Table 6-1:Overall I/O Signal Map

I/O Signal number How to use

Standard remote I/Os 0 to 31 (15)Note1)

Note1)The descriptions in parentheses apply to the CR1 controller.

Refers/assigns with the
M_IN,M_INB,M_INW,M_OUT,M_OUTB or M_OUTW vari-
able

Example) IF M_IN(0)=1 THEN M_OUT(0)=1

Expansion remote I/Os 32 to 255 (240) Note1) Same as the above.

Hand input/output 900 to 907 Same as the above. May be substituted by the HOPEN
and HCLOSE instructions.

Example) IF M_IN(900) THEN M_OUT(900)=1
 HOPEN 1 , HCLOSE 1

CC-Link Bit Note2)

Note2)For details on CC-Link, refer to "CC-Link Interface Instruction Manual."

When one station is occupied:6000 to 6031
When four station is occupied:6000 to 6127
(This is the signal number for station number
1. The last 2 bits cannot be used.)

Refers/assigns with the M_IN, M_INB, M_INW, M_OUT,
M_OUTB or M_OUTW variable

Example) IF M_IN(6000)=1 THEN M_OUT(6000)=1

CC-Link Register
Note2)

When one station is occupied:6000 to 6003
When four station is occupied:6000 to 6015
(This is the signal number for station number
1.)

Referenced or assigned by the M_DIN and M_DOUT vari-
ables.

Example) IF M_DIN(6000)=1000 THEN
M_OUT(6000)=200
 Types 6-367

6

6External input/output functions
6.2 Connection method
The robot and external input/output device are connected by connecting the optional external input/output
cable to the parallel input/output unit connector in the controller and the external input/output device. One
parallel input/output unit is mounted in the controller as a standard. However, up to eight units can be
mounted using options.
The power supply (24VDC) for the remote input/output unit installed outside of the controller, and the power
supply (12 to 24VDC) for the input/output circuit must be prepared by the user.
The standard input/output unit pin Nos. and signal assignment are shown in Table 6-2 and Table 6-3. The
pin layout is shown in Fig. 6-1. Refer to the Table 6-4, for the CR1 controller source type.
Refer to the separate "Standard Specifications" for details on the electrical specifications of the input/output
circuit.

<Differences between Controller Models>
The number of standard I/O points provided by the CR1 controller is 16 for input points and 16 for output
points.
Controllers other than CR1 (CR2, CR3, CR4, CR7, CR8 and CR9) provide 32 input points and 32 output
points as the standard.

Table 6-2:Table of standard parallel input/output unit CN100 pin Nos. and signal assignments

Pin
No.

2A-CBL
wire color

Note1)

Note1)The wire colors indicate the identification of the optional external input/output cables.

Function name
Pin
No.

2A-CBL
 wire color

Note1)

Function name

General-purpose Dedicated/power
supply, common General-purpose Dedicated/power

supply, common
1 Orange/red A FG 26 Orange/blue A FG
2 Gray/red A 0V: for pins 4-7 27 Gray/blue A 0V: for pins 29-32
3 White/red A 12/24V: for pins 4-7 28 White/blue A 12/24V: for pins 29-32
4 Orange/red A General-purpose output 0 Running Note2)

Note2)These are assigned as the default. The assignment can be changed with the dedicated input/output
parameter. Refer to "6.3 Dedicated input/output" on page 371.

29 Yellow/blue A General-purpose output 4
5 Pink/red A General-purpose output 1 During servo ON Note2) 30 Pink/blue A General-purpose output 5
6 Orange/red B General-purpose output 2 During error

occurrenceNote2)
31 Orange/blue B General-purpose output 6

7 Gray/red B General-purpose output 3 Operation rights Note2) 32 Gray/blue B General-purpose output 7
8 White/red B 0V: for pins 10-13 33 White/blue B 0V: for pins 35-38
9 Orange/red B 12/24V: for pins 10-13 34 Yellow/blue B 12/24V: for pins 35-38
10 Pink/red B General-purpose output 8 35 Pink/blue B General-purpose output 12
11 Orange/red C General-purpose output 9 36 Orange/blue C General-purpose output 13
12 Gray/red C General-purpose output 10 37 Gray/blue C General-purpose output 14
13 White/red C General-purpose output 11 38 White/blue C General-purpose output 15
14 Orange/red C COM0(12V/24V(COM)) :

for pins 15-22
39 Yellow/blue C COM1(12V/

24V(COM)) : for pins
40-47

15 Pink/red C General-purpose input 0 Stop (all slots stop) Note3)

Note3)The stop input assignment is fixed to the input signal 0.

40 Pink/blue C General-purpose input 8
16 Orange/red D General-purpose input 1 Servo OFF Note2) 41 Orange/blue D General-purpose input 9
17 Gray/red D General-purpose input 2 Error reset Note2) 42 Gray/blue D General-purpose input 10
18 White/red D General-purpose input 3 Servo ON Note2) 43 White/blue D General-purpose input 11
19 Orange/red D General-purpose input 4 Operation rights Note2) 44 Yellow/blue D General-purpose input 12
20 Pink/red D General-purpose input 5 45 Pink/blue D General-purpose input 13
21 Orange/red E General-purpose input 6 46 Orange/blue E General-purpose input 14
22 Gray/red E General-purpose input 7 47 Gray/blue E General-purpose input 15
23 White/red E 48 White/blue E
24 Orange/red E 49 Yellow/blue E
25 Pink/red E 50 Pink/blue E
-368 Connection method

 6External input/output functions
Table 6-3:Table of standard parallel input/output unit CN300 pin Nos. and signal assignments

Table 6-4:Standard parallel I/O interface CN100pin No. and signal assignment list<Source type of CR1 controller>

Pin
No.

2A-CBL
 wire color

Note1)

Note1) The wire colors indicate the identification of the optional external input/output cables.

Function name
Pin
No.

2A-CBL
 wire color

Function name

General-purpose Dedicated/power
supply, common General-purpose Dedicated/power

supply, common
1 Orange/red A FG 26 Orange/blue A FG
2 Gray/red A 0V: for pins 4-7 27 Gray/blue A 0V: for pins 29-32
3 White/red A 12/24V: for pins 4-7 28 White/blue A 12/24V: for pins 29-32
4 Orange/red A General-purpose output 16 29 Yellow/blue A General-purpose output 20
5 Pink/red A General-purpose output 17 30 Pink/blue A General-purpose output 21
6 Orange/red B General-purpose output 18 31 Orange/blue B General-purpose output 22
7 Gray/red B General-purpose output 19 32 Gray/blue B General-purpose output 23
8 White/red B 0V: for pins 10-13 33 White/blue B 0V: for pins 35-38
9 Orange/red B 12/24V: for pins 10-13 34 Yellow/blue B 12/24V: for pins 35-38
10 Pink/red B General-purpose output 24 35 Pink/blue B General-purpose output 28
11 Orange/red C General-purpose output 25 36 Orange/blue C General-purpose output 29
12 Gray/red C General-purpose output 26 37 Gray/blue C General-purpose output 30
13 White/red C General-purpose output 27 38 White/blue C General-purpose output 31
14 Orange/red C COM0(12V/24V(COM)) :

for pins 15-22
39 Yellow/blue C COM1(12V/

24V(COM)) : for pins
40-47

15 Pink/red C General-purpose input 16 40 Pink/blue C General-purpose input 24
16 Orange/red D General-purpose input 17 41 Orange/blue D General-purpose input 25
17 Gray/red D General-purpose input 18 42 Gray/blue D General-purpose input 26
18 White/red D General-purpose input 19 43 White/blue D General-purpose input 27
19 Orange/red D General-purpose input 20 44 Yellow/blue D General-purpose input 28
20 Pink/red D General-purpose input 21 45 Pink/blue D General-purpose input 29
21 Orange/red E General-purpose input 22 46 Orange/blue E General-purpose input 30
22 Gray/red E General-purpose input 23 47 Gray/blue E General-purpose input 31
23 White/red E 48 White/blue E
24 Orange/red E 49 Yellow/blue E
25 Pink/red E 50 Pink/blue E

Pin
No.

2A-CBL
wire color

Note1)

Note1) The wire colors indicate the identification of the optional external input/output cables.

Function name
Pin
No.

2A-CBL
wire color

Function name

General-purpose Dedicated/power supply,
common General-purpose Dedicated/power

supply, common
1 Orange/Red A FG 26 Orange/Blue A FG
2 Gray/Red A 0V:For pins 4-7, 10-13 27 Gray/Blue A 0V:For pins 29-32, 35-38
3 White/Red A 12V/24V:For pins 4-7, 10-13 28 White/Blue A 12V/24V:For pins 29-32,

35-38
4 Yellow/Red A General-purpose output 0 Running 29 Yellow/Blue A General-purpose output 4
5 Pink/Red A General-purpose output 1 Servo on 30 Pink/Blue A General-purpose output 5
6 Orange/Red B General-purpose output 2 Error 31 Orange/Blue B General-purpose output 6
7 Gray/Red B General-purpose output 3 Operation rights 32 Gray/Blue B General-purpose output 7
8 White/Red B Reserved 33 White/Blue B Reserved
9 Yellow/Red B Reserved 34 Yellow/Blue B Reserved
10 Pink/Red B General-purpose output 8 35 Pink/Blue B General-purpose output

12
11 Orange/Red C General-purpose output 9 36 Orange/Blue C General-purpose output

13
12 Gray/Red C General-purpose output

10
37 Gray/Blue C General-purpose output

14
13 White/Red C General-purpose output

11
38 White/Blue C General-purpose output

15
14 Yellow/Red C COM0(12V/24V(COM)) :For

pins 15-22
39 Yellow/Blue C COM1(12V/24V(COM))

:For pins 40-47
15 Pink/Red C General-purpose input 0 Stop(All slot) Note2)

Note2) The assignment of the dedicated input signal "STOP" is fixed.

40 Pink/Blue C General-purpose input 8
16 Orange/Red D General-purpose input 1 Servo off 41 Orange/Blue D General-purpose input 9
17 Gray/Red D General-purpose input 2 Error reset 42 Gray/Blue D General-purpose input 10
18 White/Red D General-purpose input 3 Start 43 White/Blue D General-purpose input 11
19 Yellow/Red D General-purpose input 4 Servo on 44 Yellow/Blue D General-purpose input 12
20 Pink/Red D General-purpose input 5 Operation rights 45 Pink/Blue D General-purpose input 13
21 Orange/Red E General-purpose input 6 46 Orange/Blue E General-purpose input 14
22 Gray/Red E General-purpose input 7 47 Gray/Blue E General-purpose input 15
23 White/Red E Reserved 48 White/Blue E Reserved
24 Yellow/Red E Reserved 49 Yellow/Blue E Reserved
25 Pink/Red E Reserved 50 Pink/Blue E Reserved
 Connection method 6-369

6

6External input/output functions
The signals assigned as a dedicated input can be used as general-purpose inputs
during program execution. However, for safety purposes, these must not be
shared with the general-purpose inputs except for inputting values. The signals
assigned as dedicated outputs cannot be used in the program. If used, an error will
occur during operation

.

Fig.6-1:Parallel input/output unit connection and pin layout

 CAUTION

50

1

25

26

＜CN100＞ ＜CN300＞
Input 16 to 31
Output 16 to 31

Input 0 to 15
Output 0 to 15

(Channel No. is set to 0 at shipment)

Connection and pin layout

Control unit

 * 2A-RZ361 is an input/output
32/32 point unit (Occupies
one station)

 CAUTION [*1]The channel number is set to "0".
The channel No. of 8 to F is used for the
maker test. If any value of 8 to F is set, it may
be dangerous since the robot unexpectedly
moves. Don't set any value of 8 to F.
There is no station number setting switch in
the I/O card equipped in the standard of CR1
controller.
-370 Connection method

 6External input/output functions
6.3 Dedicated input/output
The functions shown in Table 6-5 are available for the dedicated input/output signals. These are used by the
parallel input/output unit by assigning the signal No. in the parameter.
The signal No. is assigned by the signal No. used in the order of "input signal" and "output signal" in each
parameter. Refer to "(1)Setting the parameters" in "3.13 Operation of maintenance screen" on page 54 for
details on setting the parameters. If a "-1" is designated for the assigned signal No., that signal will be inval-
idated.
The I/O parameters can be set on the T/B parameter screen or by using the maintenance tool of the PC sup-
port software (optional).
To use the dedicated I/O signals, set the key switch on the operation panel to AUTO (Ext.) beforehand.

Table 6-5:Table of dedicated input/output

Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

RCREADY Input - - -1(No meaning),
-1Output Controller power ON

ready
Outputs that the power has been turned ON and that the external
input signal can be received.

ATEXTMD Input - - -1(No meaning),
-1Output Remote mode output This output indicates that the key switch on the operation panel is

set to AUTO (Ext.), which is a remote operation mode.
This signal must be turned ON before any control tasks using I/O
signals can be performed.

TEACHMD Input - - -1(No meaning),
-1Output Teaching mode output This output indicates that the key switch on the operation panel is

set to Teaching mode.
ATTOPMD Input - - -1(No meaning),

-1Output Automatic mode output This output indicates that the key switch on the operation panel is
set to AUTO (OP),

IOENA Input Operation rights input
signal

Sets the validity of the operation rights for the external signal con-
trol.

Level 5,

3Output Operation rights output
signal

Outputs the operation rights valid state for the external signal con-
trol.
The operation right is given when the operation right input signal is
ON, the mode switch is set to AUTO (Ext.), and there is no other
device that currently has the operation right.

START
(Operation
right required)

Input Start input This input starts a program. To start a specific program, select the
program using the program selection signal "PRGSEL" and numer-
ical input "IODATA," and then input the start signal. Note that when
the parameter "PST" is enabled, the system reads the program
number from the numerical input (IODATA) and starts the corre-
sponding program (i.e., program selection becomes no longer nec-
essary).
All task slots are executed during multitask operation.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.

Edge 3,

 0Output Operating output This output indicates that a program is being executed. During mul-
titask operation, this signal turns ON when at least one task slot is
operating.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.

STOP Input Stop input This input stops the program being executed. (This does not apply
to slots whose starting condition is set to ALWAYS or ERROR.)
The stop input signal No. is fixed to 0, and cannot be changed.
All task slots are stopped during multitask operation.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.
Contacts A and B may be changed using the parameter INB.

Level 0(Cannot
change),

-1
Output Pausing output This output indicates that the program is paused.

Turns ON when there is not slot multitask running, and at least one
slot is pausing.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.
 Dedicated input/output 6-371

6

6External input/output functions
Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

STOP2 Input Stop input This input stops the program being executed.
(The specification is the same as for the STOP parameter.)
Unlike the STOP parameter, signal numbers can be changed.

Level -1

-1Output Pausing output This output indicates that the program is paused.
(The specification is the same as for the STOP parameter.)

STOPSTS Input - - -1(No meaning),
-1Output Stop signal input Outputs that the stop is being input. (Logical ADD of all devices.)

SLOTINIT
(Operation
right required)

Input Program reset This input cancels the paused status of the program and brings the
executing line to the top. Executing a program reset makes it pos-
sible to select a program.
In the multitask mode, the program reset is applied to all task slots.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.

Edge -1,

-1
Output Program selection

enabled output
Outputs that in the program selection enabled state.
Turns ON when program are not running or pausing.
In multitask operation, this output turns ON when all task slots are
neither operating nor paused.
However, slots whose starting condition is set to ALWAYS or
ERROR via a parameter "SLT**" will not be executed.

ERRRESET Input Error reset input signal Releases the error state. Edge 2,
2Output Error occurring output

signal
Outputs that an error has occurred.

SRVON
(Operation
right required)

Input Servo ON input signal This input turns ON the servo power supply for the robot.
With a multi-mechanism configuration, the servo power supplies
for all mechanisms will be turned ON.

Edge 4,

1Output In servo ON output sig-
nal

This output turns ON when the servo power supply for the robot is
ON. If the servo power supply is OFF, this output also remains
OFF.
With a multi-mechanism configuration, this output turns ON when
the servo of at least one mechanism is ON.

SRVOFF Input Servo OFF input signal This input turns OFF the servo power supply for the robot.(Applica-
ble to all mechanisms)
The servo cannot be turned ON while this signal is being input.

Level 1,

-1
Output Servo ON disable out-

put signal
This output indicates a status where the servo power supply can-
not be turned ON. (Echo back)

AUTOENA Input Automatic operation
enabled input

Disables automatic operation when inactive. If this signal is inac-
tive, and the AUTO mode is entered, E5010 will occur.
This input is used to interlock the operations via the operation
panel with the I/O signals. Use of this input is not a requirement.

Level -1,

 -1Output Automatic operation
enabled output

Outputs the automatic operation enabled state.

CYCLE Input Cycle stop input signal Starts the cycle stop. Edge -1,
-1Output In cycle stop operation

output signal
Outputs that the cycle stop is operating.
Turns OFF when the cycle stop is completed.

MELOCK
(Operation
right required)

Input Machine lock input sig-
nal

Sets/releases the machine lock state for all mechanisms.
This can be set or released when all slots are in the program selec-
tion state.
Signal level will be set to Level when program selection is enabled.

Level -1,

-1
Output In machine lock state

output signal
Outputs the machine lock state.
This turns On when at least one mechanism is in the machine lock
state. During the machine lock state, the robot will not move, and
program operation will be enabled.

SAFEPOS
(Operation
right required)

Input Safe point return input
signal

Requests the safe point return operation.
This signal initiates a joint interpolation movement to the position
set by the parameter "JSAFE." The speed is determined by the
override setting. Be careful not to interfere with peripheral devices.

Edge -1,

-1
Output In safe point return out-

put signal
Outputs that the safe point return is taking place.

BATERR Input - - -1,
-1Output Battery voltage drop Outputs that the battery voltage has dropped.

OUTRESET
(Operation
right required)

Input General-purpose out-
put signal reset

Resets the general-purpose output signal.
The operation at the input is set with parameters ORST0 to
ORST224.

Edge -1,

-1(No meaning)Output - -
-372 Dedicated input/output

 6External input/output functions
Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

HLVLERR Input - - -1(No meaning),
-1Output High level error output

signal
Outputs that a high level error is occurring.

LLVLERR Input - - -1(No meaning),
-1Output Low level error output

signal
Outputs that a low level error is occurring.

CLVLERR Input - - -1(No meaning),
-1Output Warning level error out-

put signal
Outputs that a warning level error is occurring.

EMGERR Input - - -1(No meaning),
-1Output Emergency stop output

signal
Outputs that an emergency stop is occurring.

SnSTART
(n=1 to 32)
(Operation
right required)

Input Slot n start input Starts each slot. n=1 to 32 Edge -1,
-1Output Slot n in operation out-

put
Outputs the operating state for each slot. n=1 to 32

SnSTOP
(n=1 to 32)

Input Slot n stop input Outputs the operating state for each slot. n=1 to 32 Level -1,
-1Output Slot n in pausing output Outputs that each slot and program is temporarily stopped.

n=1 to 32
MnSRVOFF
(n=1 to 3)

Input Mechanism n servo
OFF input signal

This signal turns OFF the servo for each mechanism. n=1 to 3
The servo cannot be turned ON while this signal is being input.

Level -1,

-1

Output Mechanism n servo ON
disabled output signal

Outputs the servo ON disabled state. (Echo back)

MnSRVON
(n=1 to 3)
(Operation
right required)

Input Mechanism n servo ON
input signal

Turns the servo for each mechanism ON.
n=1 to 3

Edge -1,

-1Output Mechanism n in servo
ON output signal.

Turns the servo for each mechanism ON.
n=1 to 3

MnMELOCK
(n=1 to 3)
(Operation
right required)

Input Mechanism n machine
lock input signal

Sets/releases the machine lock state for each mechanism.
n=1 to 3

Level -1,
-1

Output Mechanism n in
machine lock output
signal

Outputs that the machine lock state is entered.
n=1 to 3

PRGSEL
(Operation
right required)

Input Program selection input
signal

Designates the setting value for the program No. with numeric
value input signals.
The program for slot 1 is selected. Output this signal when at least
30 ms has elapsed following the start of output to the numerical
input (IODATA). This signal should also be output to the robot for at
least 30 ms.

Edge -1,
Note5)

-1(No meaning)Output - -
OVRDSEL
(Operation
right required)

Input Override selection input
signal

Designates the setting value for the override with the numeric
value input signals.
Output this signal when at least 30 ms has elapsed following the
start of output to the numerical input (IODATA). This signal should
also be output to the robot for at least 30 ms.

Edge -1,
Note5)

-1(No meaning)Output - -
IODATA Input Numeric value input

(Start bit number,
 end bit number)

Numerical values are read as binary values.
*Program number (Read by the PRGSEL)
 If the parameter "PST" is enabled, it is read by the start signal.
*Override (Read by the OVRDSEL)
The bit width can be set arbitrarily. However, the accuracy of output
values cannot be guaranteed when they exceed the set bit width.
Output this input to the robot for at least 30 ms before inputting the
PRGSEL or other setting signals.

Level -1(Start bit),
-1(End bit),
Note1)
Note5)

-1(Start bit),
-1(End bit)

Output Numeric value output
(Start bit number,
 end bit number)

Numerical values are output as binary values.
*Program number (Output by the PRGOUT),
*Override (Output by the OVRDOUT),
*Outputs the line number (output by the LINEOUT)
*Error number (output by the ERROUT).
The bit width can be set arbitrarily. However, the accuracy of output
values cannot be guaranteed when they exceed the set bit width.
Read this signal when at least 30 ms has elapsed following the
start of input of a program number (PRGOUT) or other signal to the
robot.
 Dedicated input/output 6-373

6

6External input/output functions
Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

DIODATA Input Numeric value input
(Register number)

The specified numeric values are loaded.
For numeric values, it is possible to enter real numbers consisting
of 16 bits. Similar to the IODATA parameter, "program number,"
"override value" and other values are input to the specified regis-
ters. When inputting to the robot, input PRGSEL (program number
selection) and OVRDSEL (override selection) after outputting at
least for 30 ms.
Note) This parameter is exclusively used for CC-Link. Also, if the

IODATA parameter is set, the numeric values set in the
IODATA parameter take precedence.

Level -1

-1Output Numeric value output
(Register number)

The numeric values of the specified items are output.
For numeric values, it is possible to output real numbers consisting
of 16 bits. Similar to the IODATA parameter, "program number,"
"override value," "line number," "error number" and other values
are output to the specified registers. When LINEOUT (line number
output request) and ERROUT (error number output request) are
input, these values are output to the specified registers. Be sure to
wait for at least 30 ms after that, and then load these values.
Note) This parameter is exclusively used for CC-Link. Also, if the

IODATA parameter is set, the numeric values set in the
IODATA parameter and this parameter are output.

PRGOUT Input Program No. output
request

The program number for task slot 1 is output to the numerical out-
put (IODATA). After the start of inputting this signal to the robot,
wait at least 30 ms before reading the numerical output (IODATA)
signal.

Edge -1,
Note5)

-1Output Program No. output sig-
nal

The "program number output in progress" status is output to the
numerical output.

LINEOUT Input Line No. output request The line number for task slot 1 is output to the numerical output
(IODATA). After the start of inputting this signal to the robot, wait at
least 30 ms before reading the numerical output (IODATA) signal.

Edge -1,
Note5)

-1Output Line No. output request The "line number output in progress" status is output to the numer-
ical output.

OVRDOUT Input Override value request The OP override is output to the numerical output (IODATA). After
the start of inputting this signal to the robot, wait at least 30 ms
before reading the numerical output (IODATA) signal.

Edge -1,
Note5)

-1Output Override value output
signal

The "override output in progress" status is output to the numerical
output.

ERROUT Input Error No. output request The error number is output to the numerical output (IODATA). After
the start of inputting this signal to the robot, wait at least 30 ms
before reading the numerical output (IODATA) signal.

Edge -1,
Note5)

-1Output Error No. output signal The "error number output in progress" status is output to the
numerical output.

JOGENA
(Operation
right required)

Input Jog valid input signal Jogs the designated axis in the designated mode.
Operation takes place while this signal is ON.

Level -1,

-1Output Jog valid output signal Outputs that the jog operation is entered.
JOGM Input Jog mode input

(start No., end No.)
Designates the jog mode.
0/1/2/3/4 = Joint, XYZ, cylindrical, 3-axis XYZ, tool

Level -1(Start bit),
-1(End bit),
-1(Start bit),
-1(End bit)

Output Jog mode output
(start No., end No.)

Outputs the current jog mode.

JOG+ Input Jog feed plus side for 8-
axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and J8 axes from the
start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2 axes from the start num-
ber.
CYLINDER jog mode: X, Éý, Z, A, B, C, L1 and L2 axes from the
start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6 axes from the start
number.
TOOL jog mode: X, Y, Z, A, B and C axes from the start number.

jiku -1,
Note3)

-1

Output - -
-374 Dedicated input/output

 6External input/output functions
Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

JOG- Input Jog feed minus side for
8-axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and J8 axes from the
start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2 axes from the start num-
ber.
CYLINDER jog mode: X, Éý, Z, A, B, C, L1 and L2 axes from the
start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6 axes from the start
number.
TOOL jog mode: X, Y, Z, A, B and C axes from the start number.

Level -1,
Note3)
-1

Output - -
JOGNER
(Operation
right required)

Input Errors during jog opera-
tion
Temporarily ignoring
input signal

Temporarily ignores errors that cannot be reset during jog opera-
tion.
* This signal is applicable to only machine 1. The controller soft-
ware version J2 or later.

Level -1,

-1Output Errors during jog opera-
tion
Temporary ignoring out-
put signal

Outputs that the error is being ignored temporarily.
* This signal is applicable to only machine 1. The controller soft-
ware version J2 or later.

HNDCNTLn
(n=1 to 3)

Input - -
Output Mechanism n hand out-

put signal state
(start No., end No.)

Outputs the hand output(n=1) 900 to 907 state.
Outputs the hand output(n=2) 910 to 917 state.
Outputs the hand output(n=3) 920 to 927 state.
Example) To output the four points from 900 through 903 to gen-
eral-purpose output signals 3, 4, 5 and 6, set the HNDCNTL1 to (3,
6).

-1(Start bit),
-1(End bit)

HNDSTSn
(n=1 to 3)

Input - -
Output Mechanism n hand input

signal state
(start No., end No.)

Outputs the hand input(n=1) 900 to 907 state.
Outputs the hand input(n=2) 910 to 917 state.
Outputs the hand input(n=3) 920 to 927 state.
Example) To output the four points from 900 through 903 to gen-
eral-purpose output signals 3, 4, 5 and 6, set the HNDCNTL1 to (3,
6).

-1(Start bit),
-1(End bit)

HNDERRn
(n=1 to 3)

Input Mechanism n hand error
input signal

Requests the hand error occurrence.
A LOW level error (error number 30) will be generated.

Level -1,

-1Output Mechanism n hand error
output signal

Outputs that a hand error is occurring.

AIRERRn
(n=1 to 5)

Input Mechanism n pneumatic
pressure error input sig-
nal

Request the pneumatic pressure error occurrence.
A LOW level error (error number 31) will be generated.

Level -1,

-1

Output Mechanism n pneumatic
error output signal

Outputs that a pneumatic pressure error is occurring.

USRAREA

Refer to "5.8
About user-
defined area"
on page 328

Input - -
-1(Start bit),
-1(End bit)

Note4)

Output User-designated area 8-
points
(start No., end No.)

Outputs that the robot is in the user-designated area.
The output is made sequentially for areas 1, 2 and 3, as designed
from the one closest to the start number.
The area is set with parameters AREA1P1, AREA1P2 to AREA8P1
and AREA8P2.
Setting example)
When USRAREA is used as an example:
If only area 1 is used, USRAREA: 8, 8 Setting valid
If only area 1,2 is used, USRAREA: 8, 9 Setting valid
USRAREA:-1,-1 to Setting invalid
USRAREA: 8,-1 to Setting invalid(No Error)
USRAREA:-1,8 to Setting invalid(No Error)
USRAREA:9,8 to Setting invalid(Error L6643)

MnPTEXC
(n=1 to 3)

Input - - -1,(No meaning)
Output Warning for mainte-

nance parts replace-
ment time

This output notifies that the replacement time of maintenance parts
has been reached.

Level -1
 Dedicated input/output 6-375

6

6External input/output functions
Note 1) Set in the order of input start No., input end No., output start No. and output end No.
When using as the input or output of an actual value, use from the start No. to the end No., and
express as a binary. The start No. indicates the low-order bit, and the end No. indicates the high-order
bit. Set only the numbers required to express the value.
For example, when using for program selection and only programs 1 to 6 are available, the expression
can be created by setting 3 bits. Up to 16 bits can be set.

Assignment examples are shown below.
Example)To set the start input signal in general-purpose input 16, and the operating output signal in

general-purpose output 25.
Parameter START ={16, 25}

Example)When setting 4 bits of numerical input to general-purpose inputs 6 to 9, and 5 bits of numeri-
cal output to general-purpose outputs 6 to 10.
Parameter IODATA = {6, 9, 6, 10}

Note 2) Set in the order of input start No., input end No., output start No. and output end No.
When using as the actual jog mode, use from the start No. to the end No., and express as a binary.
The start No. indicates the low-order bit, and the end No. indicates the high-order bit. Set only the num-
bers required to express the value.
For example, when using only the joint mode and XYZ mode, the expression can be created by setting
2 bits. Up to 3 bits can be set.

Note 3) They are in the order of an input starting number and then an input end number. Specify the J1/X axis
for the input starting number and the J8/L2 axis for the input end number at its maximum.
For example, when using a 6-axis robot, only 6 bits need to be set.
Even if using a 4-axis robot, when using the XYZ mode, the C axis is required, so 6 bits must be set.
Up to 8 bits can be set.

Note 4) Set in the order of output start No. and output end No. The start number specifies area 1, while the end
number specifies area 8 in the largest configuration.
For example, setting 2 bits will suffice if only two areas are used. A maximum of 8 bits can be set.

Note 5) The meanings of the signal level are explained below.
Level: The designated function is validated when the signal is ON, and the function is invalidated

when the signal is OFF. Make sure the signal is turned ON for at least 30 ms.
Edge: The designated function is validated when the signal changes from the OFF to ON state, and

the function maintains the original state even when the signal returns to the OFF state. .

Parameter
name Class Name Function

Signal
level
Note5)

Factory shipment
signal number.
Input, output

MnWUPENA
(n=1 to 3)
(Operation
right required)

Input Mechanism n warm-up
operation mode enable
input signal

Enables the warm-up operation mode of each mechanism. (n=1 to
3)
Note: To switch the warm-up operation mode from enable to dis-
able or vice versa using this input signal, it is necessary to enable
the warm-up operation mode with the WUPENA parameter, etc. If
the warm-up operation mode has been disabled with a parameter,
inputting this input signal will not enable the mode.

Level -1,

Output Mechanism n warm-up
operation mode output
signal

Outputs that the warm-up operation mode is currently enabled.
(n=1 to 3)

-1

MnWUPMD
(n=1 to 3)

Input - - -1,(No meaning)
Output Mechanism n warm-up

operation status output
signal

Outputs that the status is the warm-up operation status, and thus
the robot will operate at a reduced speed. (n=1 to 3)

-1

Set an interval of at least 300 ms

IODATA

PRGSEL

START

Set an interval of at least 300 ms

Example)
-376 Dedicated input/output

 6External input/output functions
6.4 Enable/disable status of signals
Note that depending on the input signal type, the function may not occur even if the target signal is input
depending on the robot state at that time, such as during operation or when stop is input.
The relation of the robot status to the input signal validity is shown below.

Table 6-6:Validity state of dedicated input signals
Parameter

name Name Validity of symbol on left according to robot states.

SLOTINIT Program reset

These do not function in the operation state (when START output is ON).

SAFEPOS Safe point return input
OUTRESET General-purpose output signal

reset
PRGSEL Program selection input
MnWUPENA Mechanism n warm-up operation

mode enable input
START
SnSTART
(n=1 to 32)

Start input

These function only when the external input/output has the operation rights
(when IOENA output is ON).

SLOTINIT Program reset
SRVON
MnSRVON
(n=1 to 3)

Servo ON input

MELOCK
MnMELOCK
(n=1 to 3)

Machine lock input

SAFEPOS Safe point return input
PRGSEL Program selection input
OVRDSEL Override selection input
JOGENA Jog enable input
MnWUPENA Mechanism n warm-up operation

mode enable input
START Start input

These do not function in the stop input state (when STOPSTS is ON).
SLOTINIT Program reset
SAFEPOS Safe point return input
JOGENA Jog enable input
SRVON Servo ON input This does not function in the servo OFF input state.
MELOCK Machine lock input This functions only in the program selection state (when SLOTINIT output

is ON).
 Enable/disable status of signals 6-377

6

6External input/output functions
6.5 External signal timing chart

6.5.1 Individual timing chart of each signal

(1) RCREADY (Controller's power ON completion output)

(2) ATEXTMD (Remote mode output)

(3) TEACHMD (Teach mode output)

(4) ATTOPMD (Auto mode output)

(5) IOENA (Operation right input signal/operation right output signal)

(6) START (Start input/operating output)

(7) STOP (Stop input/aborting output)

(8) STOPSTS (Output during stop signal input)

<Output>

Power ON (RCREADY) (Indicates the status in which the controller can receive signals.)

Remote mode output
(ATEXTMD)

(Indicates when the key switch on the operation panel is "Auto (Ext)")

<Output>

Teach mode output
(TEACHMD) (Indicates when the key switch on the operation panel is "TEACH.")

<Output>

Auto mode output
(ATTOPMD)

(Indicates when the key switch on the operation panel is "Auto (Op.)")

<Output>

Operation right input (IOENA)

Operation right output (IOENA)

<Intput>

<Output>

Level

When the STOP signal, or the emergency stop or other signal was input, or after
the completion of the CYCLE signal

Start input (START)

Operating output (START)

<Intput>

<Output>

30 ms or more

When the START, SnSTART or SLOTINIT signal was input

Stop input (STOP)

Aborting output (STOP)

<Intput>

<Output>

30 ms or more

During stop signal input
(STOPSTS)

(Indicates that the STOP is being input.)

<Output>
-378 External signal timing chart

 6External input/output functions
(9) SLOTINIT (Program reset input/program selectable output)

(10) ERRRESET (Error reset input/output during error occurrence)

(11) SRVON (Servo ON input/output during servo ON))

(12) SRVOFF (Servo OFF input/servo ON disable output)

(13) AUTOENA (Auto operation input/auto operation enable output)

(14) CYCLE (Cycle stop input/output during cycle stop operation)

When the START or SnSTART signal was input

Program reset (SLOTINIT)

Program selectable output
(SLOTINIT)

<Intput>

<Output>

30 ms or more

Error reset input (ERRRESET)

Output during error occurrence
(ERRRESET)

<Intput>

<Output>

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Servo ON input (SRVON)

Output during servo ON (SRVON)

<Intput>

<Output>

30 ms or more

Servo OFF input (SRVOFF)

Servo ON disable output (SRVOFF)

<Intput>

<Output>

30 ms or more

Auto operation enable input
(AUTOENA)

Auto operation enable output
(AUTOENA)

<Intput>

<Output>

When a cycle operation is finished

Cycle stop input (CYCLE)

Output during cycle stop operation
(CYCLE)

<Intput>

<Output>
 External signal timing chart 6-379

6

6External input/output functions
(15) MELOCK (Machine lock input/output during machine lock)

(16) SAFEPOS (Return to retreat point input/output during return to retreat point)

(17) BATERR (Low battery voltage output)

(18) OUTRESET (General-purpose output signal reset request input)

(19) HLVLERR (Output during high level error occurrence)

(20) LLVLERR (Output during low level error occurrence)

(21) CLVLERR (Output during warning level error occurrence)

(22) EMGERR (Output during emergency stop)

(23) SnSTART (Slot n start input/output during slot n operation)

Machine lock input (MELOCK)

Output during machine lock
(MELOCK)

<Intput>

<Output>

When returning to retreat point is complete

Return to retreat point input
(SAFEPOS)

Output during return to retreat point
(SAFEPOS)

<Intput>

<Output>

30 ms or more

<Output>

Low battery voltage (BATERR) (Indicates that the battery voltage is low.)

<Intput>
General-purpose output signal reset
(OUTRESET)

(Resets the general-purpose output signal.)

30 ms or more

<Output>

High level error output (HLVLERR) (Indicates that a high level error is occurring.)

<Output>

Low level error output (LLVLERR) (Indicates that a low level error is occurring.)

<Output>

Warning level error output
(CLVLERR)

(Indicates that a warning level error is occurring.)

<Output>

Emergency stop output (EMGERR) (Indicates that an emergency stop is occurring.)

When the STOP, SnSTOP or emergency stop signal was input

Slot n start input (SnSTART)

Output during slot n operation
(SnSTART)

<Intput>

<Output>
-380 External signal timing chart

 6External input/output functions
(24) SnSTOP (Slot n stop input/output during slot n aborting)

(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)

(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)

(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)

(28) PRGSEL (Program selection input)
* This is used together with the numeric value input (IODATA).

When the START, SnSTART or SLOTINIT signal was input

Slot n stop input (SnSTOP)

Output during slot n aborting
(SnSTOP)

<Intput>

<Output>

30 ms or more

When the SRVON, SnSRVON or SRVON signal was input

Mechanical n servo OFF input
(MnSRVOFF)

Mechanical n servo ON disable output
(MnSRVOFF)

<Intput>

<Output>

30 ms or more

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Mechanical n servo ON input
(MnSRVON)

Output during mechanical n servo ON
(MnSRVON)

<Intput>

<Output>

30 ms or more

Mechanical n machine lock input
(MnMELOCK)

Output during mechanical n machine
lock (MnMELOCK)

<Intput>

<Output>

Program number

When the output request of a line number, override value or
error number was input

Program number output request
(PRGOUT)

Outputting program number (PRGOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more
 External signal timing chart 6-381

6

6External input/output functions
(29) OVRDSEL (Override selection input)
 * This is used together with the numeric value input (IODATA).

(30) IODATA (Numeric value input/numeric value output)
* This is used together with PRGSEL, OVRDSEL, PRGOUT, LINEOUT, OVRDOUT or ERROUT.

(31) PRGOUT (Program number output request input/outputting program number)
* This is used together with the numeric value output (IODATA).

(32) LINEOUT (Line number output request input/outputting line number)
* This is used together with the numeric value output (IODATA).

(33) OVRDOUT (Override value output request/outputting override value)
* This is used together with the numeric value output (IODATA).

Override value

When the output request of a program number, line number
or error number was input

Override value output request
(OVRDOUT)

Override value output request
(OVRDOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more

Program number

When the output request of a line number, override value or
error number was input

Program number output request
(PRGOUT)

Outputting program number (PRGOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more

Line number

When the output request of a program number, override
value or error number was input

Line number output request (LINEOUT)

Outputting line number (LINEOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more

Override value

When the output request of a program number, line number
or error number was input

Override value output request
(OVRDOUT)

Override value output request
(OVRDOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more
-382 External signal timing chart

 6External input/output functions
(34) ERROUT (Error number output request/outputting error number)
* This is used together with the numeric value input (IODATA).

(35) JOGENA (Jog enable input/output during jog enabled)

(36) JOGM (Jog mode input/jog mode output)

(37) JOG+ (Input for 8 axes on jog feed plus side)

(38) JOG- (Input for 8 axes on jog feed minus side)

(39) HNDCNTLn (Mechanical n hand output signal status)

Error number

When the output request of a program number, override
value or line number was input

Error number output request (ERROUT)

Outputting error number (ERROUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more

Jog enable input (JOGENA)

Output during jog enabled (JOGENA)

<Intput>

<Output>

Jog mode

(Replies the setting value of the jog mode input signal with jog mode output.)

Jog mode input (JOGM)

Jog mode output (JOGM)

<Intput>

<Output>

30 ms or more

Jog mode

Jog operation axis8 axes on jog feed plus side (JOG+)

<Intput>

(Specify the axis that will perform jog operation in the plus direction.)

8 axes on jog feed minus side (JOG-) Jog operation axis

(Specify the axis that will perform jog operation in the minus direction.)

<Intput>

(Indicates the output signal status of the hand.)

Mechanical n hand output signal status
(HNDCNTLn)

<Output>

Hand output signal status
 External signal timing chart 6-383

6

6External input/output functions
(40) HNDSTSn (Mechanical n hand input signal status)

(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)

(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)

(43) USRAREA (User-specified area 8 points output)

(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up opera-
tion mode output signal)

(45) MnWUPMD (Mechanism n warm-up operation status output signal)

* If the mechanism n warm-up operation status output (MnWUPMD) is assigned together with the mecha-
nism n warm-up operation mode enable input (MnWUPENA), the timing chart is as shown below.

(Indicates the input signal status of the hand.)

Mechanical n hand input signal status
(HNDSTSn)

<Output>

Hand input signal status

Mechanical n hand error input
(HNDERRn)

Output during mechanical n hand error
occurrence (HNDERRn)

<Intput>

<Output>

Mechanical n pneumatic error input
(AIRERRn)

Outputting mechanical n pneumatic
error (AIRERRn)

<Intput>

<Output>

Within the user
specified areaUser-specified area 8 points

(USRAREA)

<Output>

(Indicates that it is within the area specified by areas 1 though 8.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation mode
output signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD)

(Indicates the warm-up operation status.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD)

When the warm-up operation status is canceled while
the warm-up operation mode is enabled
-384 External signal timing chart

 6External input/output functions
6.5.2 Timing chart example

(1) External signal operation timing chart (Part 1)

Fig.6-2:Example of external operation timing chart (Part 1)

Program reset

Program selection input signal

Cycle stop input signal

<Input>

Numeric value input

Start input

Stop input

Operation rights input signal

Error reset input signal

Program number output request

<Output>

Numeric value output

Operating status output

Waiting status output

Program selection enabled output

Cycle stop operating status output signal

Error occurring status output signal

IODATA

PROGSEL

START

STOP

IOENA

SLOTINIT

CYCLE

ERRRESET

IOENA

IODATA

START

STOP

SLOTINIT

ERRRESET

PRGOUT

CYCLE

１ ２ ３

１ ２ ３

E
rro

r o
ccu

rrin
g statu

s

P
ro

gram
 se

lec
tio

n

P
ro

gram
 start

S
to

p

R
estart

S
to

p

P
ro

gram
 reset

E
rro

r re
set

C
ycle sto

p

P
ro

gram
 E

N
D

Operation rights output signal

Program No. 2 Program No. 3

P
ro

gram
 se

lec
tio

n

P
ro

gram
 start

E
rro

r o
ccu

rrin
g

R
estart

P
ro

gram
 reset

S
to

p

P
ro

gram
 se

lec
tio

n

P
ro

gram
 start

Program No. 1
 External signal timing chart 6-385

6

6External input/output functions
(2) External signal operation timing chart (Part 2)
An example of timing chart the servo ON/OFF, selecting the program, selecting the override, starting and
outputting the line No., etc., with external signals is shown in Fig. 6-3.

Fig.6-3:Example of external operation timing chart (Part 2)

SRVON

Override selection input signal

Override value output request

Line number output request

Servo ON input signal

<Output>

IODATA

PROGSEL

PROGOUT

OVRDSEL

OVRDOUT

LINEOUT

START

SRVON

IODATA

IOENA

START

SLOTINIT

SRVOFF

IOENA

１ ８０ ５０ ５

　８０ ５０ ０ １ ５ ５

Program No. 1 Program No. 5

O
pe

ratio
n
 rights req

ue
st

S
ervo

 O
N

S
ervo

 O
F
F

O
ve

rrid
e o

u
tpu

t

O
ve

rrid
e sele

ctio
n

P
ro

gram
 start

P
ro

gram
 selec

tio
n

P
ro

gram
 N

o
. o

utpu
t

O
ve

rrid
e sele

ctio
n

P
ro

gram
 E

N
D

L
in

e
 N

o. o
u
tpu

t

P
ro

gram
 start

L
in

e
 N

o. o
u
tpu

t

P
ro

gram
 N

o
. o

utpu
t

Program selection input signal

<Input>

Numeric value input

Program number output request

Operating status output

Program selection enabled output

Start input

Servo OFF input signal

Operation rights input signal

Numeric value output

Operation rights output signal
S
ervo

 O
N

P
ro

gram
 N

o
. o

utpu
t

P
ro

gram
 selec

tio
n

In servo ON
In servo OFF
-386 External signal timing chart

 6External input/output functions
(3) Example of external operation timing chart (Part 3)
An example of the timing chart for error reset, general-purpose output reset and program reset, etc., with
external signals is shown output in Fig. 6-4.

Fig.6-4:Example of external operation timing chart (Part 3)

START

SRVON

SRVOFF

ERRRESET

OUTRESET

SLOTINIT

IOENA

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

Start input

Servo ON input signal

Servo OFF input signal

Error reset input signal

General-purpose
output signal reset

Program reset

Operation rights input signal

General-purpose output

<Input>

Operation rights output signal

Emergency stop output signal

O
peratio

n
 righ

ts req
u
e
st

P
ro

gram
 start

P
ro

gram
 start

S
ervo

 O
N

S
e
rvo

 O
F
F

S
ervo

 O
N

S
e
rvo

 O
N

S
e
rvo

 O
N

R
estart

R
estart

E
m

e
rge

n
cy sto

p O
N

E
rro

r reset

E
rro

r re
se

t

E
rro

r o
c
c
u
rre

n
c
e

G
e
n
e
ral-

pu
rpo

se
 o

u
tput re

se
t

P
ro

gram
 rese

t

<Output>

Operating status output

Waiting status output

Program selection enabled output

In servo ON
In servo OFF

Error occurring
status output signal

Output signal reset
following parameter
ORST
 External signal timing chart 6-387

6

6External input/output functions
(4) Example of external operation timing chart (Part 4)
An example of the timing chart for jog operation, safe point return and program reset, etc., with external sig-
nals is shown in Fig. 6-5.

Fig.6-5:Example of external operation timing chart (Part 4)

<Input>

START

SLOTINIT

SRVON

IOENA

ERRRESET

JOGENA

JOGM

JOG+

JOG-

SAFEPOS

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

JOGM

JOGENA

１

３

０ ０

００ ２

４

１ ３

１

J1+　J2- Z+

Program reset

Jog enable output signal

<Output>

Recovery work

In servo ON

Jog enable input signal

Jog mode input

Jog mode output

In servo OFF

O
p
e
ratio

n
 righ

ts re
qu

e
st

S
e
rvo O

N

P
rogram

 start

H
 E

rror oc
c
u
rre

n
c
e

S
e
rvo O

N

J
o
g c

om
m

an
d
 J

1
 +

J
o
g c

om
m

an
d
 J

2
 -

J
o
g com

m
an

d end

J
o
g com

m
an

d Z
 +

J
o
g com

m
an

d end

S
afe

 point return start

S
afe

 point return end

P
rogram

 re
se

t

P
rogram

 start

Start input

Servo ON input signal

Error reset input signal

Operation rights input signal

Operation rights output signal

Emergency stop output signal

Operating status output

Waiting status output

Program selection enabled output

Error occurring
status output signal

For 8 axes on the jog feed plus side

For 8 axes on the jog feed plus side

Safe point restore
input signal

E
rro

r re
se

t

-388 External signal timing chart

 6External input/output functions
6.6 Emergency stop input
For wiring and other aspects of the emergency stop input, refer to the separate document entitled
"Controller setup, basic operation, and maintenance."

6.6.1 Robot Behavior upon Emergency Stop Input
When an emergency stop signal is input while the robot is operating, the servo power supply is cut off by
means of hardware control. The robot's tip path and stopping position after the input of an emergency stop
signal cannot be specified. An overrun may occur depending on the robot speed or load condition of the
tool.
 Emergency stop input 6-389

7

7Q & A
7 Q & A

The following lists Q & A.

7.1 Movement

Q A Reference page

What are the features of this robot? The features include the optimum
acceleration/deceleration control, opti-
mum speed control, compliance func-
tion, and multitask function.

Page 11, "2.3 Functions Related to Movement
and Control"

I want to operate the robot tip in linear
motion.

It is possible using the MVS instruction. Page 62, "(2) Linear interpolation movement"
Page 190, " MVS (Move S)"

I want to operate the robot tip in circu-
lar motion.

It is possible using the MVR, MVR2,
MVR3 and MVC instruction.

Page 184, " MVR (Move R)"
Page 186, " MVR2 (Move R2)"
Page 188, " MVR3 (Move R 3)"
Page 183, " MVC (Move C)"

I want to operate the robot tip in arch
motion with ease.

It is possible using the DEF ARCH and
MVA instruction.

Page 149, " DEF ARCH (Define arch)"
Page 181, " MVA (Move Arch)"

I want to operate the robot in accor-
dance with the direction of the hand.
I want to move the robot tip based on
relative value.

It is possible by setting a proximity/
departure distance using the MVS
instruction. It can be done via multipli-
cation or addition of position variables.

Page 190, " MVS (Move S)"
Page 84, "(2) Relative calculation of position
data (multiplication)"
Page 84, "(3) Relative calculation of position
data (Addition)"

I want to skip the robot's singular
points via linear interpolation.

It can be done via an 3-axes XYZ
specification using the TYPE option of
the MVS instruction. Although the 3-
axes XYZ specification gives a linear
path, the tip posture becomes unstable.

Page 190, " MVS (Move S)"

I want to control the robot in a pliable
manner.

It can be done using the CMP TOOL
instruction, etc. Pliableness can be
specified by the hand orientation, in
applicable robot axis units, etc.

Page 134, " CMP TOOL (Composition Tool)"
Page 130, " CMP JNT (Comp Joint)"
Page 132, " CMP POS (Composition Posture)"
Page 137, " CMPG (Composition Gain)"
Page 136, " CMP OFF (Composition OFF)"

I want to turn the robot's tip axis multi-
ple times.

It is possible using the JRC instruction.
It is possible. However, the tip axis can-
not be turned continuously. The axis
stops after each turn.

Page 177, " JRC (Joint Roll Change)"

I want to set a control point at the
hand tip.

It is possible to set using the TOOL
instruction or the parameter "MEXTL."
If only one hand is used, setting via the
parameter is recommended. Perform
the necessary setting before perform-
ing teaching.

Page 217, " TOOL (Tool)"
Page 324, "5.6 Standard Tool Coordinates"

I want to stop the robot for a specified
period.

It is possible using the DLY instruction. Page 160, " DLY (Delay)"

I want to verify the positioning of the
robot.

The stopping pulse range can be spec-
ified using the FINE instruction. Posi-
tioning can also be performed easily
with the DLY instruction.

Page 164, " FINE (Fine)"
Page 160, " DLY (Delay)"
-390 Movement

 7Q & A
I want to increase the robot's tact time. The execution time can be improved by
using the following methods.
1) Perform continuous path operation
using the CNT instruction.
2) Perform optimum acceleration/
deceleration control using the OADL
instruction.
3) Perform optimum speed control
using the SPD instruction.

<In the case of the RV-6S/12S series>
In addition to items 1) through 3)
above, the operation time can be short-
ened by setting a larger value in the
optimum acceleration/deceleration
adjustment rate parameter (JADL). In
the RV-6S/12S series, the acceleration/
deceleration speed is initialized to allow
continuous operation Note1) with a
short wait time (setting of B in the figure
at right) Note2). This setting is suited for
continuous operations that have a short
tact time, such as palletizing work.
Conversely, if quick operations (short
operation time) are required, such as L/
UL work on machined parts, the accel-
eration/deceleration speed can be
increased by initial setting (setting of A
in the figure at right). However, please
note that some setting values of accel-
eration/deceleration speed tend to
cause overload and overheat errors. In
such a case, extend the wait time,
reduce the acceleration/deceleration
speed, or decrease the operating
speed.

Page 138, " CNT (Continuous)"
Page 193, " OADL (Optimal Acceleration)"
Page 213, " SPD (Speed)"

Refer to "JADL" in Page 306, "5 Functions set
with parameters"
Page 257, "M_SETADL"

An excessive speed error occurs even
in the optimum speed control mode.

An excessive speed error may occur
depending on the posture and position
of the robot. In such a case, lower the
speed temporarily only in that segment
using an OVRD instruction.

Page 184, "SPD" reference program
Page 199, "OVRD (Override)"

I want to operate the robot without
stopping at each point.

It is possible using the CNT instruction. Page 138, " CNT (Continuous)"

I want to change the acceleration time
and deceleration time.

Using the ACCEL instruction is possi-
ble for set.

Page 119, " ACCEL (Accelerate)"

I want to execute an automatic return
to the safe point.

A simple safe-point return can be exe-
cuted using the parameter "JSAFE"
and the SAFEPS input signal. The
robot may be moved along a specific
safe path while controlling the current
position, using the user-defined area
function and ZONE instruction.

Refer to "JSAFE" in Page 306, "5 Functions set
with parameters"
Page 328, "5.8 About user-defined area"
Page 304, " ZONE"
Page 305, " ZONE 2"

I want to improve the path accuracy. It may be improved by using a PREC
instruction.

Page 201, " PREC (Precision)"

I want to reduce the robot vibration. Vibration can be suppressed by setting
a smaller acceleration/deceleration rate
with the ACCEL instruction.
Vibrations may also be reduced by
using a PREC instruction.

Page 119, " ACCEL (Accelerate)"
Page 201, " PREC (Precision)"

Q A Reference page

Increased acceleration/deceleration speedAcceleration/deceleration speed [m/sec2]

 = optimum acceleration/deceleration speed [m/sec2]

x ACCEL instruction [%] x parameter JADL [%]

Fig. Relationship between Acceleration/deceleration Speed and Tact Time

 (Conceptual Drawing)

Tact time/1

cycle Operation time

Wait time
B

A
 Movement 7-391

7

7Q & A
An overload error occurs. This error occurs when the motor oper-
ates under severe conditions for more
than the sustainable period of time.
Lower the operating speed, accelera-
tion/deceleration time and so forth.
It is more effective to reduce the accel-
eration/deceleration time than stop-
ping the robot using the delay timer.

Page 199, "OVRD (Override)"
Page 213, "SPD (Speed)"
Page 119, "ACCEL (Accelerate)"
Page 250, "M_LDFACT"
Page 257, "M_SETADL"

I want to limit the movement range of
the robot.

It can be done using the joint move-
ment range parameter "MEJAR," XYZ
movement range parameter "MEPAR,"
free plane limit parameter, etc.

Refer to "MEJAR" and "MEPAR", etc. in Page
306, "5 Functions set with parameters"

How to open and close the hand? The hand can be controlled using the
HOPEN and HCLOSE instructions or
M_IN (90n) and M_OUT (90n) signals.
(n=0 to 7)

Page 171, " HOPEN / HCLOSE (Hand Open/
Hand Close)"
Page 248, " M_IN/M_INB/M_INW"
Page 254, " M_OUT/M_OUTB/M_OUTW"

I want to limit the movement range on
an arbitrary plane.

It can be done using the free plane limit
function.

Page 329, "5.9 Free plane limit"

Is the impact detection function
installed?

Yes.
It is installed in the RV-S/RH-S series.

Page 21, "3.2.9 Impact Detection during Jog
Operation"
Page 141, " COLCHK (Col Check)"
Refer to "COL" in Page 306, "5 Functions set
with parameters"

An excessive difference error occurs
when the ambient temperature of the
robot is low or when starting the robot
after it has been stopped over an
extended period of time.

When starting the robot at a low tem-
perature or after it has been stopped
over an extended period of time, an
excessive difference error may occur
due to a change in the viscosity of
grease. In this case, operate the robot
in actual production after performing a
running-in operation at low speed.For
this purpose, the warm-up operation
mode is provided in the controller's
software version J8 or later. By using
this function, errors may be resolved
also.

Refer to Page 355, "5.19 Warm-Up Operation
Mode".

Note1) Continuous operation: A state in which the operation smoothly continues without overload and/or
overheat error(s).

Note2) The optimum acceleration/deceleration adjustment rate (the rate which is applied to the
acceleration/deceleration speed calculated by optimum acceleration/deceleration control:
parameter JADL) is set below 100%. The setting value varies with models. Please refer to "JADL"
in Page 306, "Table 5-1: List Movement parameter".

Q A Reference page
-392 Movement

 7Q & A
7.2 Program

Q A Reference page

I want to speed up the execution pro-
cessing time of the program.

I want to speed up the execution pro-
cessing time of the program.

Page 345, "5.18 About ROM operation/high-
speed RAM operation function"

I want to execute two or more robot
programs simultaneously.

It can be done using the multitask func-
tion.

Page 86, "4.2 Multitask function"

What are the precautions when using
the multitask function?

See the reference pages. Page 89, "4.2.4 Precautions for creating multi-
task program"
Page 90, "4.2.5 Precautions for using a multitask
program"

I want to call a program from within
another program.

It is possible using the CALLP instruc-
tion.

Page 125, " CALLP (Call P)"

I want to reference common positions
and variables from separate pro-
grams.

External system variables can be used.
Alternatively, a user base program can
be created to use user-defined external
variables.

Program external variables can be
added in the controller's software ver-
sion J1 or later. See the description of
the PRGGBL parameter.

Page 104, "4.3.23 Program external variables"
Page 105, "4.3.24 User-defined external vari-
ables"

I want to calculate the palette position. It is possible using the DEF PLT and
PLT instruction.

Page 157, " DEF PLT (Define pallet)"
Page 200, " PLT (Pallet)"

I want to output and monitor signals,
etc., while the robot is operating.

It is possible to use the DEF ACT or
ACT instruction when multiple paths
are monitored, or using the WTH or
WTHIF instruction when a single path
is monitored. The WTHIF allows for
conditional judgment.

Page 146, " DEF ACT (Define act)"
Page 121, " ACT (Act)"
Page 221, " WTH (With)"
Page 222, " WTHIF (With If)"

I want to monitor the robot to see if it
is at a specified position and generate
an error accordingly.

It can be done using the user-defined
area function or ZONE instruction. A
user error can be generated using the
ERROR instruction.

Page 262, " M_UAR"
Page 304, " ZONE"
Page 305, " ZONE 2"
Page 162, " ERROR (error)"

I want to perform RS-232C communi-
cation with an external PC, etc.

It is possible. Page 337, "5.15 About the communication set-
ting"
Page 198, " OPEN (Open)"
Page 128, " CLOSE (Close)"
Page 175, " INPUT (Input)"
Page 202, " PRINT (Print)"
Page 195, " ON COM GOSUB (ON Communica-
tion Go Subroutine)"

I want to acquire the current position
of the robot.

The data can be referenced using the
P_CURR or J_CURR variable.

Page 268, " P_CURR"
Page 234, " J_CURR"

I want to measure the execution time. It can be measured in milliseconds
using the M_TIMER variable.
10 M_TIMER (1) = 0
20 MOV P1
30 MVS P2
40 M1 = M_TIMER (1)
50 HLT
To check the time in milliseconds, mon-
itor the M1 variable after the program is
stopped.

Page 260, " M_TIMER"

I want the program to generate an
error and stop.

A user error can be generated using
the ERROR instruction.

Page 162, " ERROR (error)"

I want to reset an error generated by
another task in a multitask program.

It is possible to set the start condition
for the task slot to ALWAYS and issue a
RESET ERR instruction.

Page 87, "4.2.3 Operation state of each slot"
Page 206, " RESET ERR (Reset Error)"
 Program 7-393

7

7Q & A
7.3 Operation

I want to use multi-task instructions,
such as XRUN, in programs that are
constantly executed.

You will be able to use them by chang-
ing the setting of the ALWENA parame-
ter.

Refer to "ALWENA" in Page 318, "Table 5-4: List
Program Execution Related Parameter"

I cannot directly execute the XRUN
instruction from the T/B, etc.

You will be able to use them by chang-
ing the setting of the ALWENA parame-
ter.
Controller's software version J1 or
later.

Refer to "ALWENA" in Page 318, "Table 5-4: List
Program Execution Related Parameter"

Q A Reference page

I want to edit programs that are
constantly executed.

To edit programs whose execution attribute is
set to ALWAYS via the SLTn parameter, do so
after canceling the ALWAYS attribute. ALWAYS
programs cannot be edited since they are
constantly executed. Change ALWAYS to
START in the SLTn parameter, then turn off the
controller's power and turn it back on, to stop the
program from being constantly executed.

Page 24, "3.5.1 Creating a program"
Refer to "SLTn" in Page 306, "5 Functions set
with parameters"

I want to numerically correct the position
learned via teaching.

It can be corrected on the T/B position screen. Page 32, "(8) Correcting the MDI (Manual
Data Input)"

I want to cancel the paused status of the
program.

It can be done via a program-reset operation.
This operation can be executed on the T/B
operation panel or using an I/O signal.

Page 41, "(6) Resetting the program"

I want to check the program line by line. It is possible to execute a step feed from the T/B. Page 35, "(1) Step feed"

I want to start with automatic operation
and switch to step feed in the middle to
check the operation.

Use the HLT instruction to perform automatic
operation, then switch to step feed via a T/B
operation.

Page 38, "3.7 Automatic operation"
Page 170, " HLT (Halt)"
Page 35, "(1) Step feed"

I want to move the robot to the position
learned via teaching.

Position jump can be executed from the T/B. Page 30, "(6) Confirming the position data
(Position jump)"

I want to copy, delete or rename the
program.

They can be done on the T/B management
screen.

Page 47, "(3) Copying programs"
Page 49, "(5) Deleting a program"
Page 48, "(4) Changing the program name
(Renaming)"

I want to write-protect the program. They can be done on the T/B management
screen.
They can be done on the T/B management
screen or Personal Computer Support Software.

Page 46, "(2) Program protection function"

I want to write-protect only the position
data.

They can be done on the T/B management
screen.
They can be done on the T/B management
screen or Personal Computer Support Software.

Page 46, "(2) Program protection function"

I want to check the available memory
space.

It can be confirmed on the T/B directory screen. Refer to T/B directory screen in Page 45,
"3.11 Operating the program control screen"

I want to monitor the I/O statuses. It can be done on the T/B monitor screen.
They can be done on the T/B management
screen or Personal Computer Support Software.

Page 50, "(1) Input signal monitor"
Page 51, "(2) Output signal monitor"

I want to monitor the contents of
variables.

It can be done on the T/B monitor screen.
They can be done on the T/B management
screen or Personal Computer Support Software.

Page 52, "(3) Variable monitor"

I want to view the error history. It can be done on the T/B monitor screen.
They can be done on the T/B management
screen or Personal Computer Support Software.

Page 53, "(4) Error history"

I want to release the brake of the robot. It can be done on the T/B brake screen. Page 57, "(4) Releasing the brakes"

I want to view the current position of the
robot.

It can be done on the T/B current position
screen.

Page 29, "(5) Registering the current position
data"

Q A Reference page
-394 Operation

 7Q & A
I want to change the amount of fixed-
dimension feed in jog operation.

It can be set using the parameters "JOGJSP,"
"JOGPSP" and "JOGSPMX."

Refer to "JOGJSP", "JOGPSP" and
"JOGSPMX" in Page 306, "5 Functions set
with parameters"

I want to the program to operate
automatically upon turning on the power.

It can be done using the multitask function. Page 332, "5.11 Automatic execution of
program at power up"

I want to turn ON the servo forcibly
when the robot is outside the movement
range.

It can be done by canceling the LS. Page 44, "3.9 Error reset operation"

I want to retain the 5-digit LED display
on the operation panel even after
changing over the key switch.

The OPDISP parameter can be used to switch
the display in the controller's software version J1
or later.

Refer to "OPDISP" in Page 315, "Table 5-3:
List Operation parameter"

Q A Reference page
 Operation 7-395

7

7Q & A
7.4 External input/output signal

Q A Reference page

I want to check if the robot controller
has started

It can be checked using the dedicated
signal "RCREADY."

Refer to "RCREADY" in Page 371, "6.3
Dedicated input/output"

Is the operation right also needed to
operate external signals?

The operation right is also needed to
control the robot using external I/O
signals. It is also necessary when
operating the command signals, such
as those used to "turn the servo ON"
and "start." Safety-related signals, such
as those used for stopping the
operation and turning the servo OFF
can be executed without operation
right.

I want to monitor the robot via external
signals to see if it is at a specified
position and generate an error
accordingly.

It can be done using the user-defined
area function.

Page 328, "5.8 About user-defined area"
Refer to "USRAREA" in Page 371, "6.3
Dedicated input/output"

I want to select programs using
external signals.

It can be done using the dedicated
signals "PRGSEL" and "IODATA." Set
the program number as a binary value
in the IODATA signal (multiple bits),
and read it via the PRGSEL signal.

Refer to "PRGSEL" and "IODATA" in Page 371,
"6.3 Dedicated input/output"

I want to monitor a low battery. It can be done using the dedicated
signals "BATERR".Replace the battery
without delay when this signal is turned
ON.

Refer to "BATERR" in Page 371, "6.3 Dedicated
input/output"

I want to execute a jog feed using
external signals.

It can be done using the dedicated
signals "JOGENA", "JOGM", "JOG+"
and "JOG-".

Refer to "JOGENA","JOGM", "JOG+" and "JOG-
" in Page 371, "6.3 Dedicated input/output"

I want to check the operation of a
program or signal without operating
the robot.

It can be done using the dedicated
signals "MLOCK". When the operation
is started after this signal turned ON,
the robot will not move physically. Only
the program will run.

Refer to "MLOCK" in Page 371, "6.3 Dedicated
input/output"

I want to cancel the paused status of
the program.

It can be done using the dedicated
signals "SLOTINIT".

Refer to "SLOTINIT" in Page 371, "6.3
Dedicated input/output"

I want to use robot programs to
implement the PLC functions.

It can be done using the multitask
function.
Use one program to perform operation-
related programs.
Use another program to operate signal-
processing programs.
Use common system variables or user-
defined external variables to exchange
information between the programs.

Page 91, "4.2.6 Example of using multitask"
Page 104, "4.3.23 Program external variables"
Page 105, "4.3.24 User-defined external
variables"

I want to reset the L7730 error
temporarily. (Abnormalities in the CC-
Link data link)

It is possible with the parameter E7730. Refer to "E7730" in Page 314, "Table 5-2: List

Signal parameter".
-396 External input/output signal

 7Q & A
7.5 Parameter

Q A Reference page

The parameter(s) I changed have not
been taken effect.

After you change parameters, power
OFF and then ON again.

I want to operate the robot continu-
ously from the power-OFF state.

It can be done using the Continuity
function.

Refer to "CTN" in Page 306, "5 Functions set
with parameters"

I want to set the hand mode that
becomes effective when the power is
turned ON.

It can be done using the parameters
"HANDINIT" and "HANDTYPE."

Refer to "HANDINIT" and "HANDTYPE" in Page
306, "5 Functions set with parameters"
Page 333, "5.12 About the hand type"
Page 334, "5.13 About default hand status"

I want to share the RS-232C port
located on the front side of the con-
troller between an external device
such as a PC or sensor on one hand
and PC support software on the other.

Some protocol-related limitations apply.
See the reference page.

Page 337, "5.15 About the communication set-
ting"

I want to cancel the triggered buzzer. It can be done using the parameters
"BZR".

Refer to "BZR" in Page 306, "5 Functions set
with parameters"
 Parameter 7-397

8

8Collection of Techniques
8 Collection of Techniques
This chapter is intended to provide various sample programs for entry-level to advanced robot program-
ming. This chapter mainly consists of three sections: Entry-Level Edition, Intermediate Edition, and Advance
Edition. Each of these three sections describes the following items:

Item Page
<Entry-Level Edition> This edition is intended for the novices of robot programming, and contains general information necessary

to write robot programs.
8.1.1Describing comprehensive programs 399
8.1.2Managing program versions 405
8.1.3Changing the operating speed in a program 405
8.1.4Detecting fallen works while transporting 406
8.1.5Positioning works accurately 407
8.1.6Awaiting signal ON/OFF during the specified number of seconds 408
8.1.7Interlocking by using external input signals 410
8.1.8Sharing data among programs 412
8.1.9Checking whether the current position and the commanded position are the same 413
8.1.10Shortening the cycle time (entry-level edition) 414

<Intermediate Edition> This edition contains frequently used techniques and the specific information required for programming.
8.2.1How to quickly support for the addition of types 416
8.2.2Convenient ways to use the pallet instruction 417
8.2.3How to write communication programs 418
8.2.4How to reduce teaching points 421
8.2.5Using a P variable in a counter, etc. 423
8.2.6Getting position information when the sensor is on 424

<Advance Edition> This edition contains the information that is not used frequently, but is very helpful in advanced program-
ming.
8.3.1Using the robot as a simplified PLC (sequencer) 426
8.3.2Implementing a mapping function 429
8.3.3Finding out executed lines 431
8.3.4Saving the status when an error has occurred 432
-398

8Collection of Techniques
8.1 Entry-Level Edition
8.1.1 Describing comprehensive programs

Since MELFA-BASIC IV inherits the specifications of the BASIC language, it is generally easy to under-
stand. On the other hand, if large programs are written in MELFA-BASIC IV, they tend to be difficult to
understand because all variables can be accessed from anywhere, and functions containing arguments
and/or return values cannot be described. Isn't there any technique for writing comprehensive programs?

[Technique]
To describe comprehensive programs using a nonstructural language such as BASIC, follow rules (1)
through (5) listed below. Writing programs according to these rules makes the programs easy to under-
stand. However, these rules are just examples, so please modify them or add new rules according to your
environment.

(1) Clarify the structure of a program.
(2) Set up a notation that is easy to read.
(3) Define variables that are effective in a program.
(4) Define arguments and return values in subroutines.
(5) Define variables and labels that are only effective in subroutines.

Each of the above rules is described below in detail.

(1) Clarify the structure of a program
As the first step to write a program, divide the program into multiple blocks as shown in the next page. By
structuring the program like this, it not only makes the program comprehensive, but also makes it possible
to immediately identify the location of a problem in the event of problem occurrence since the program is
clearly segmented. Additionally, because a series of operations are segmented into blocks, they can be eas-
ily used in other programs.
 Entry-Level Edition 8-399

8

8Collection of Techniques
1000 ' Work loader (main program)
1010 ' DATE:2002.04.01 VER 1.1
1020 ' (1)Change *** -> @@@
1030 ' (2)Add $$$
1040 '[Revision history]
1050 ' 2002.03.01 VER 1.0
1060 ' 2002.02.01 VER 0.7

<Program version>
This block describes the information nec-
essary for version management. It is rec-
ommended to use single-byte and
alphanumeric characters so that the pro-
gram version can also be checked by the
Teaching pendant.

1070 ’=== Variable definition ===
1080 DIM ML_DATA(3)
1090 DEF IO X1_REQ=BYTE,8,&H0F
1100 DEF IO Y1_ERR=BYTE,8,&H0F
1110 DEF POS PL_PFRAM
1120 DEF INTE ML_REQ

<Variable definition>
This block describes variables such as
array variables (DIM), signal variables
(DEF IO) and special-use variables (DEF
CHAR/INTE/POS/etc.).

1130 '=== Initialization ===
1140 PL_PFRAM=FRAM(PT001,PT002,PT003)
1150 DEF ACT 1,X1_REQ<>0,GOSUB
*S50ACT1
1160 ACT 1=M_ON
1170 OPEN "COM1:" AS #1
1180 ON COM(1) GOSUB *S60RECV
1190 COM(1) ON

<Initialization>
This block describes the initialization that
is performed only once when the pro-
gram is started, which includes setting
initial values in variables, interrupts, and
communication ports.

1200 '=== Main routine ===
1210 *MAIN
1220 IF ML_REQ=1 THEN
1230 P00TMP=P_ZERO
1240 P00TMP.X=ML_DATA(1)
1250 P00TMP.Y=ML_DATA(2)
1260 P00TMP.Z=ML_DATA(3)
1270 MOV PL_FRAM * P00TMP
1280 ENDIF
1290 IF ML_REQ=&H0F THEN
1300 MX99ERNO=9100
1310 GOSUB *S99ALARM
1320 YL_ERR=MY99RET
1330 IF M_CYS=M_ON THEN END
1340 GOTO *MAIN

<Main routine>
The main routine consists of a section
that is executed first as shown below
when the program is started. It corre-
sponds to cycle stop on the "IF" line.
 *MAIN
 :
 IF M_CYS=M_ON THEN END
 GOTO *MAIN
In general, the program will be easier to
read by calling subroutines created in
function units in order to make the pro-
gram as short as possible.

1350 '=== Subroutine50 ===
1360 *S50ACT1
1370 ML_REQ=X1_REQ
1380 RETURN 0
1390 '=== Subroutine60 ===
1400 *S60RECV
1410 COM(1) STOP
1420 INPUT #1,M60X,M60Y,M60Z
1430 ML_DATA(1)=M60X
1440 ML_DATA(2)=M60Y
1450 ML_DATA(3)=M60Z
1460 COM(1) ON
1470 *L60END
1480 RETURN 0
1490 '=== Subroutine99 ===
1500 *S99ALARM
1510 ERROR MX99ERNO
1520 MY99RET=MX99ERNO
1530 *L99END
1540 RETURN

<Subroutines>
A subroutine is composed of a section
beginning with a label indicating a sub-
routine name and ending with a
RETURN instruction; it is a program cre-
ated in function units that unloads a work
or analyzes received communication
statements, for example.If a subroutine
is called by a GOSUB instruction from
the main routine or another subroutine, it
returns to the line following the called
line upon finishing processing.
If a subroutine is called by an interrupt, it
returns to the line called by RETURN 0/1
or to the line following the called line.
-400 Entry-Level Edition

8Collection of Techniques
(2) Set up a notation that is easy to read
By giving some thought to a notation, easy-to-read programs can be created.

Indent Indent in a subroutine, FOR to NEXT loop, IF to ENDIF block. Etc.

Allocate a blank column and a symbol column after a line number, and then describe text
following these columns. The symbol column denotes a column in which an * (asterisk) that
indicates a label or an ' (apostrophe) that indicates a comment is described. Also, indent
two characters for IF, FOR, etc. Begin a line number with line 1000 for easier viewing with-
out any character shift.

Label jump Jump by specifying a line number directly using GOTO or GOSUB

Line number jump is prohibited as it will interfere with the visibility of programs. Be sure to
jump by providing labels.
(Example)
1150 DEF ACT 1,X1_REQ<>0,GOSUB *S50ACT1
1180 ON COM(1) GOSUB *S60RECV
1340 GOTO *MAIN

Comment An explanatory statement that is described in a program using an REM
instruction or an ' (apostrophe)

Please enter a comment in a section that seems to be difficult to understand by just looking
at the program, such as the meaning of a program delimiter, the explanation about the input
and output of a subroutine, and the meaning of a complex calculating expression.
(Example)
1330 IF M_CYS=M_ON THEN END 'Ends if the cycle stop request is ON

1500 '=== Subroutine 30 ===
1510 ' Move to the specified position.
1520 ' Input : MX30POS (Moving destination position number)
1530 ' Output : MY30RET (Normal end: 1, Abnormal end: 0)
1540 *S30MVPOS

1000 *S50CALC

1010 MY50ANS=MX50CNT+1

1020 RETURN
 Indent

 Symbol column

 Space column

 Line number
 Entry-Level Edition 8-401

8

8Collection of Techniques
(3) Define variables that are effective in a program
Although the values of the local variables in MELFA-BASIC IV can be referenced or rewritten from any-
where within a program, only the variables that conform to the following rules are defined as local variables
in using this convention.

Local variables
effective in a

program

These variables can be used commonly between the main routine and
subroutines. They are used for the result of a frame instruction, the output result
of an interrupt function and so forth that can be referenced by anyone.

1st character: Indicates the variable type
(M: numeric value, P: orthogonal position, J: joint position, C: character string, etc.).
2nd character: Indicates that it is a local variable (L).
3rd character: "_" (underscore)
4th to 8th characters: Any character string (5 characters)
(Example)
1110 DEF POS PL_PFRAM
1140 PL_PFRAM=FRAM(PT001,PT002,PT003)
1270 MOV PL_FRAM * P00TMP

Variables for
teaching

These variables are subjects of teaching from the Teaching Box, or used as data
such as offset values. The values of these variables can be referenced from
anywhere in a program, but cannot be rewritten--i.e., reference only.

1st character: Indicates the variable type (P, J).
2nd character: Indicates that it is a teaching/data variable (T or D).
3rd to 8th characters: Any character string (up to 6 characters)
(Example)
PT001 -> For storing the teaching result
PD001 -> For storing the offset amount in relation to PT001

Variables for
signal I/O

These variables are used for reading and writing the signals defined by a DEF IO
instruction. There are variables for inputs and outputs; input signals are
reference only, and output signals are write only.According to the MELFA-BASIC
IV specification, referencing output signal variables and writing to input signal
variables are not allowed.

1st character: Indicates the variable type (X: input signal, Y: output signal).
2nd character: Indicates that it is a local variable (L).
3rd character: "_" (underscore)4th to 8th characters: Any character string (up to 5 charac-
ters)
(Example)
1090 DEF IO X1_REQ=BYTE,8,&H0F
1100 DEF IO Y1_ERR=BYTE,8,&H0F
-402 Entry-Level Edition

8Collection of Techniques
(4) Define arguments and return values in subroutines.
If GOSUB is used in MELFA-BASIC IV, it jumps to the specified label or line number, and then returns to the
jump source location with a RETURN. In this convention explicit input and output (argument and return
value) are defined in a subroutine for use.
However, recursive calls are not supported due to the language specification.

Subroutine names
A subroutine has a unique number, which is also reflected in the subroutine
name. In addition, this number is added to variable names and label names that
are effective in a subroutine.

1st character: Indicates a subroutine (S).
2nd and 3rd characters: Subroutine number (01 to 99)
4th to 8th characters: Any character string (up to 5 characters)
* "* (asterisk)" must be attached to the beginning of a label.
* The use of subroutine number 00 is not allowed since it is used by the main routine.
* Be sure to describe the explanation on the function and I/O variables of each subroutine.
(Example)
1360 *S50ACT1
1400 *S60RECV
1490 *S99ALARM

Arguments and
return value of a

subroutine

These variables are used for reading and writing the signals defined by a DEF IO
instruction. There are variables for inputs and outputs; input signals are
reference only, and output signals are write only.According to the MELFA-BASIC
IV specification, referencing output signal variables and writing to input signal
variables are not allowed.

1st character: Indicates the variable type (M, P, J, C, etc.).
2nd character: Indicates either an input or output (Input: X, output: Y).
3rd and 4th characters: Indicates the subroutine number.
5th to 8th characters: Any character string (up to 4 characters)
(Example)
1500 '=== Subroutine 30 ===
1510 ' Explanation of subroutine
1520 ' Input: MX30POS (explanation of input variable)
1530 ' Output: MY30RET (explanation of output variable)
1540 *S30MVPOS
1550 MOV PTPOS(MX30POS)
1560 MY30RET=MX30POS
1570 RETURN
 Entry-Level Edition 8-403

8

8Collection of Techniques
(5) Define variables and labels that are only effective in subroutines
In MELFA-BASIC IV it is generally possible to access all variables and labels from anywhere within a pro-
gram. However, since they can be written from anywhere, on the other hand, it becomes unclear when and
where a certain variable was set when it was referenced. Therefore, we have fostered an idea of variables
and labels that can only be used within a certain subroutine.
However, since variables and labels can be accessed from anywhere in terms of the language specification,
please consider this as a rule in creating programs.

Effective labels in a
subroutine

Label names used within a subroutine; no duplicate label names are used since
each of them has a subroutine number.

1st character: Indicates a label (L).
2nd and 3rd characters: Indicates a subroutine number.
4th to 8th characters: Any character string (up to 5 characters)
* "* (asterisk)" must be attached to the beginning of a label.
(Example)
1470 *L60END
1530 *L99END

Effective variables in
a subroutine

Variable names used within a subroutine; no duplicate variable names are used
since each of them has a subroutine number.

1st character: Indicates the variable type (M, P, J, C, etc.).
2nd and 3rd characters: Indicates a subroutine number.
4th to 8th characters: Any character string (up to 5 characters)
(Example)
1230 P00TMP=P_ZERO
1420 INPUT #1,M60X,M60Y,M60Z
-404 Entry-Level Edition

8Collection of Techniques
8.1.2 Managing program versions
As we create programs, it's getting harder to distinguish between old and new programs as the number of
revised programs increases. Isn't there any good technique to track program versions?

[Technique]
In creating programs already created programs are often edited again in order to add specifications, modify
functions, fix bugs, etc. However, when the programs are edited several times, it is sometimes hard to track
which one is the latest program. Version management is thus necessary. There are several ways to manage
versions. We will introduce comparatively general methods, and convenient methods when using the CRn-
500 series.

(1) Writing the version in a comment
Writing the program editing history in the corresponding program is the easiest way. In addition, it is ideal to
describe the version at the beginning of the program so that it can also be checked from the Teaching Box.
The items that should be described include the program name, editing date, version and editing history out-
line. The following shows an example of description:

(2) Writing the version in the USERMSG parameter
Some robot systems may use multiple programs. In such a case, the entire robot system version is useful in
addition to the program version. The robot system version can be checked by using the USERMSG param-
eter as long as there is a Teaching Box. This can be achieved by describing up to 64 single-byte characters
of information including the system name, version, and date of creation in the USERMSG parameter in the
specified format from the Maintenance Tool of the Personal Computer Support Software or from the Teach-
ing Box.

8.1.3 Changing the operating speed in a program
How can we change the operating speed in a program when a work can be held more accurately if the
speed is decreased while holding and releasing the work, when a work may be damaged unless the speed
is decreased because the work may slightly interfere while unloading and inserting, or when it is necessary
to perform a fine speed adjustment in order to shorten the cycle time?

[Technique]
Use the OVRD, JOVRD or SPD instruction.
OVRD: Effective regardless of the movement type. The speed display on the operation panel does not

change.
JOVRD:Effective during joint movement.
SPD: Effective only during linear (circular, circular arc) movement.

1000 'Work loader (main program)
1010 ' DATE:2002.04.01 VER 1.1
1020 ' (1)Change *** -> @@@
1030 ' (2)Add $$$
1040 '[Revision history]
1050 ' 2002.03.01 VER 1.0
1060 ' 2002.02.01 VER 0.7
 Entry-Level Edition 8-405

8

8Collection of Techniques
8.1.4 Detecting fallen works while transporting
There are problems of fallen works in a robot system, which are caused by the decreased holding power
due to air leak, incomplete holding due to an input of a damaged work, a drop of a work due to an interfer-
ence with a peripheral device and so forth. How can we quickly detect any abnormality when such a prob-
lem occurs while transporting a work and stop the robot?

[Technique]
A conventional method uses interrupts to detect such events whose occurrences cannot be predicted. An
interrupt is a method that monitors the status of signal or variables, and make a specific subroutine execute
when a change occurs. This technique is very useful as it can be used in various applications, not limited to
the detection of fallen works.
The method introduced here monitors signals that change when an abnormality occurs while transporting a
work, and then sets up interrupts. Next, it turns on an interrupt at a timing when an abnormality should be
detected, and turns off an interrupt at a timing when detection should be stopped.
To use interrupts, specify the "interrupt condition" and the "call destination when the condition is met" by
using the DEF ACT instruction. It is advisable to declare interrupts at the beginning of a program unless a
large number of interrupts will be used.

[Implementation example]
The following shows an example in which the robot is stopped immediately when a fallen work is detected
while transporting works using a suction hand, and notifies an error according to each operation.

Point list I/O signal list
PT01
PT02
PT03
PT04
PT99

:Holding point
:Front of the holding position
:Front of the mounting position
:Mounting position
:Retreat point

M_IN(8)
M_IN(9)
M_IN(901)

:Unloading allowed
:Mounting allowed
:Work detection sensor (holding when ON)
-406 Entry-Level Edition

8Collection of Techniques
8.1.5 Positioning works accurately
One of the main purposes of using a robot is to accurately place works at the target position. It is enough to
just place works at approximate positions if a system is equipped with a positioning device. However, con-
sidering the cost, installation space and cycle time, in many cases, you just want to use a robot to accurately
position works. How can we just use the robot to accurately position works?

[Technique]
For accurate positioning using just a robot, it is necessary for the robot to hold and release works at exact
positions. To achieve this, use the FINE instruction. If there is a margin in the cycle time, it is simple and
effective to insert the DLY instruction after the move instruction.

Program Comment
1000 DEF ACT 1,M_IN(901)=M_OFF GOTO *S50FALL,S 'Setting an interrupt for fallen

works.
Attach "S" to the argument, so that
the robot decelerates and stops
when it drops a work.1010 '

1020 PL_ZON1=P99-(10,10,10,1,1,1,10,10)(0,0) Calculate in advance because com-
putation cannot be performed within
the functions.

1030 PL_ZON2=P99+(10,10,10,1,1,1,10,10)(0,0)
1040 ML_ZCHK=ZONE(P_CURR,PL_ZON1,PL_ZON2) 'Check on the retreat point.
1050 IF ML_ZCHK=0 THEN MOV PT99 'If not there, move to the retreat point.
1060 '
1070 *MAIN
1080
1090
1100
1110
1120
1130
1140
1150

 OVRD 100 'Move to the Front of the holding position
 MOV PT02 'by increasing the speed.
*L00WAITG
 IF M_IN(8)=M_OFF THEN *L00WAITG 'Wait until unloading is allowed.
 OVRD 30 'Move to the holding position
 MVS PT01 'by reducing the speed.
 HCLOSE 1 'Hold a work.
 DLY 0.1 'Wait for a while.

In principle, set the operating speed
to 100% in programs that place
importance in speed, and lower the
speed only when necessary.

1160 ACT 1=M_ON 'Set the fallen work interrupt to ON. The interrupt becomes valid from
here.

1170
1180
1190
1200
1210
1220
1230

 MVS PT02 'Set the fallen work interrupt to ON.
 OVRD 100 'Move to the front of the mounting position
 MOV PT03 'by increasing the speed.
*L00WAITP
 IF M_IN(9)=M_OFF THEN *L00WAITP 'Wait until mounting is allowed.
 OVRD 30 'Move to the mounting position
 MVS PT04 'by reducing the speed.

1240
1250
1260
1270
1280

 ACT 1=M_OFF 'Set the fallen work interrupt to OFF.
 HOPEN 1 'Release the work.
 DLY 0.1 'Wait for a while.
 OVRD 100 'Move to the front of the mounting position
 MVS PT03 'by increasing the speed.

Disable the interrupt before releasing
the work.

1290
1300
1310
1320
1330

 GOTO *MAIN 'Go to the next work.
'
*S50FALL
 ERROR 9102 'Error output
 END
 Entry-Level Edition 8-407

8

8Collection of Techniques
8.1.6 Awaiting signal ON/OFF during the specified number of seconds
It takes some time until the holding confirmation signal to turn ON depending on the characteristics of the
hand after the hold command is issued, for example. How can we check signal ON/OFF during only the
specified period of time?

[Technique]
Since no special instruction is provided for this purpose, we will introduce a subroutine that can achieve this
function. By creating several subroutines that can be used for general purposes, the efficiency of program-
ming can be improved, and easy-to-understand programs can be created.

[Implementation example]
This example loads/unloads works, assuming the case in which the hold confirmation signal cannot be
obtained immediately although the hand issues the hold command and/or the release command to the suc-
tion sensor.

Point list I/O signal list
PT01 :Holding point
PT02 :Front of the holding position
PT03 :Front of the mounting position
PT04 :Mounting position

M_IN(901) :Vacuum pressure sensor (holding when ON)
M_OUT(901) :Suction instruction (holding when ON)

Program Comment
1000 *MAIN
1010 OVRD 100 'Move to the front unloading position
1020 MOV PT02 'by increasing the speed.
1030 MVS PT01 'Move to the unloading position .
1040 M_OUT(901)=M_ON 'Output the hold command.
1050 MX50SIG=901
1060 MX50SEC=3.0
1070 GOSUB *S50WON 'Wait for the holding confirmation signal to turn ON.

Set arguments for the subroutine.

1080 IF MY50SKP=1 THEN GOTO *L40ALARM 'An error for detecting timeout
1090 OVRD 10 'Move to the front unloading position
1100 MVS PT02 'by reducing the speed.
1110 '
1120 OVRD 100 'Move to the front of the mounting position
1130 MOV PT03 'by increasing the speed.
1140 OVRD 10 'Move to the front of the mounting position
1150 MVS PT04 'by reducing the speed.
1160 M_OUT(901)=M_OFF 'Release the work.
1170 MX51SIG=901
1180 MX51SEC=3.0
1190 GOSUB *S51WOFF 'Wait for the holding confirmation signal to turn OFF.
1200 IF MY51SKP=1 THEN GOTO *L40ALARM 'An error for detecting timeout
1210 OVRD 100 'Move to the front of the mounting position
1220 MVS PT03 'by increasing the speed.
1230 GOTO *MAIN
1240 '
1250 *L40ALARM 'Error handling
1260 ERROR 9100
1270 END
1280 '

Set arguments for the subroutine.
-408 Entry-Level Edition

8Collection of Techniques
1290 '---------- Wait for signal ON for specified number of seconds ----------
1300 ' IN:MX50SIG Monitor signal
1310 ' MX50SEC No. of seconds to monitor (s)
1320 'OUT:MY50SKP 0: normal end, 1: TIMEOUT
1330 *S50WON
1340 M_TIMER(1)=0 'Timer reset
1350 MY50SKP=1 'Output value reset
1360 M50SEC=MX50SEC * 1000 'Seconds Milliseconds
1370 *L50WON1
1380 IF M_TIMER(1)>M50SEC THEN *L50WON2 'End if timeout occurs.
1390 IF M_IN(MX50SIG)=1 THEN MY50SKP=0 'Set an output value if the signal turns

ON.
1400 IF MY50SKP=0 THEN *L50WON2 'End as signal ON was confirmed.
1410 GOTO *L50WON1 '
1420 *L50WON2
1430 RETURN
1440 '

It is useful to write a title and I/O spec-
ification in subroutines that are used
for general purposes.

1450 '---------- Wait for signal OFF for specified number of seconds ----------
1460 ' IN:MX51SIG Monitor signal No.
1470 ' MX51SEC No. of seconds to monitor (s)
1480 'OUT:MY51SKP 0: normal end, 1: TIMEOUT
1490 *S51WOFF
1500 M_TIMER(1)=0 'Timer reset
1510 MY51SKP=1 'Output value reset
1520 M51SEC=MX51SEC * 1000 'Seconds Milliseconds
1530 *L51WOF1
1540 IF M_TIMER(1)>M51SEC THEN *L51WOF2 'End if timeout occurs.
1550 IF M_IN(MX51SIG)=0 THEN MY51SKP=0 'Set an output value if the signal turns
OFF.
1560 IF MY51SKP=0 THEN *L51WOF2 'End as signal OFF was confirmed.
1570 GOTO *L51WOF1
1580 *L51WOF2
1590 RETURN
1590 RETURN
 Entry-Level Edition 8-409

8

8Collection of Techniques
8.1.7 Interlocking by using external input signals
After a robot is incorporated into a system, the robot will be seldom operated by itself. How can we interlock
the robot with peripheral units?

[Technique]
To achieve this, it is necessary to use the input and output of external signals. To simply turn ON/OFF I/O
signals, use M_IN and M_OUT. Also, it is useful to use the DEF IO instruction as it allows to handle multiple
signals together and name signals.

[Implementation example]
A system as shown below is assumed in this example. Also refer to the timing chart. In this system, the
robot unloads works supplied by the feeder unit when there is a mounting board in the unload unit, and
mounts four works on each mounting board. Once the mounting of the four works is complete, the robot out-
puts the work completion signal, and then the unload unit unloads the completed mounting board.

Point list I/O signal list
PTGET
PTPUT
PT99
PL_FRM
PL_POS(4)

:Holding position
:Calculated mounting position
:Retreat point
:Board origin position
:Mounting position on the board (relative coordinates)

M_IN(8)
M_IN(9)

M_OUT(8)

:Sensor 1 (unloading from the feeder unit allowed)
:Sensor 2 (Mounting onto the board allowed)

:Work completed

 Feeder unit

Unload unit

Sensor 1

Sensor 2

Unloading allowed (sensor 1 input)

Unloading allowed (sensor 2 input)

Work completed (upper PLC output)

Mounting board
-410 Entry-Level Edition

8Collection of Techniques
Program Comment
1000 DIM PL_POS(4)
1010 DEF IO XL_GET=BIT,8 'Allow unloading signal
1020 DEF IO XL_PUT=BIT,9 'Allow mounting signal
1030 DEF IO YL_OUT=BIT,8 'Work completion signal
1040 PL_FRM=FRAM(PTO,PTX,PTY)
1050 MOV PT99 'Return to the retreat point.
1060 HOPEN 1 'Place the hand in the release state.
1070 '
1080 *MAIN
1090 IF XL_PUT=M_OFF THEN *MAIN 'Wait for the completion of preparing the unload unit.
1100 M00NUM=0 'Reset the number of parts mounted on the board.
1110 WHILE M00NUM<4 'Loop until four works are mounted.
1120 MOV PTGET,50 'Move to the front of the holding position.
1130 *L00WAIT1
1140 IF XL_GET=M_OFF THEN *L00WAIT1 'Wait if a part has not been supplied.
1150 MOV PTGET 'Move to the holding position.
1160 HCLOSE 1 'Hold a work.
1170 MOV PTGET,50 'Move to the front of the holding position.
1180 PTPUT=PL_FRM*PL_POS(M00NUM+1) 'Calculate the mounting position.
1190 MOV PTPUT,50 'Move to the front of the mounting position.
1200 MOV PTPUT 'Move to the mounting position.
1210 HOPEN 1 'Release the work.
1220 MOV PTPUT,50 'Move to the front of the mounting position.
1230 M00NUM=M00NUM+1 'No. of mounted parts + 1
1240 WEND 'Move to the next part.
1250 YL_OUT=M_ON 'Turn ON the work completion signal once 4 parts have been

mounted.
1260 *L00WAIT2
1270 IF XL_PUT=M_ON THEN *L00WAIT2 'Wait until the completed board is unloaded.
1280 YL_OUT=M_OFF 'Turn OFF the work completion signal.
1290 GOTO *MAIN 'Move to the next board.

Make the program easy-to-
understand by assigning the
signals to variables.

Wait until the allow mounting
signal to turn OFF.

Wait until the allow mounting
signal to turn OFF.

Turn ON the work completion
signal

Turn OFF the work completion
signal.
 Entry-Level Edition 8-411

8

8Collection of Techniques
8.1.8 Sharing data among programs
It is necessary to reference the same data when we want to execute two or more programs together in order
to obtain the results of calculations done by another program, or have another program retain position data.
How can we accomplish this?

[Technique]
Wen sharing data among programs, it is not possible to directly reference the data of another program.
Therefore, data must be transferred via program external variables (see Section 4.3.23 on page 101) or
user-defined external variables (see Section 4.3.24 on page 102).

[Implementation example]
This example transfers data PT001() retained by subprograms to the main program by using program exter-
nal variables or user-defined external variables.

Program Comment
<Example of using system external variables>
Main program
1010 CALLP "SUB1" 'Execute subprogram (SUB1.PRG).
1020 MOV P_100(1)
1030 MOV P_100(2)
 :
1010 CALLP "SUB2" 'Execute subprogram (SUB2.PRG).
1020 MOV P_100(1)
1030 MOV P_100(2)
 :

Subprogram (SUB*.PRG)
1000 DIM PT001(5)
1010 FOR M01=1 TO 5
1020 M_100(M01)=PT001(M01) 'Copy own data into an external variable.
1030 NEXT
1040 END

The contents of position data
can be completely switched by
just calling a subroutine.

Prepare the same program
with different position data.

<Example of using user external variables>
Base program (BASE.PRG)
1000 DIM POS P_POS(5)

Main program
1000 DIM POS P_POS(5)
1010 CALLP "SUB1" 'Execute subprogram (SUB1.PRG).
1020 MOV P_POS(1)
1030 MOV P_POS(2)
 :
1010 CALLP "SUB2" 'Execute subprogram (SUB2.PRG).
1020 MOV P_POS(1)
1030 MOV P_POS(2)
 :

Subprogram (SUB*.PRG)
1000 DIM POS P_POS(5)
1010 DIM PT001(5)
1020 FOR M01=1 TO 5
1030 M_POS(M01)=PT001(M01) 'Copy own data into an external variable.
1040 NEXT
1050 END

After installation, set
"BASE.PRG" in parameter
PRGUSR, and reset the power.
-412 Entry-Level Edition

8Collection of Techniques
8.1.9 Checking whether the current position and the commanded position are the same
There are instances in which we want to determine whether the robot is located at the desired position, for
example, when the robot should be located at the initial position at startup, when we want to check whether
the robot has reached the target position, or when we want to change the path to return to the retreat point
according to the position at startup. How can we determine this?

[Technique]
Since there are several ways to check positions, select the most suitable one according to use.

(1) Use a user area
It is the best way to use a user area to check the robot posture at startup, for instance, which is not changed
frequently, of which the check area is small, or which is likely to be changed later. Up to eight user areas can
be registered. This method have two advantages: it is constantly checked regardless of whether the pro-
gram is started, and it can be changed easily by just changing parameters as it does not depend on the pro-
gram. For more information, see Section 5.3, "About user-defined area" on page 280.

(2) Use the ZONE function and ZONE 2 function
Use these functions to check whether the robot is in the designated area in a program. ZONE checks
whether the robot is in a cube, and ZONE 2 checks whether the robot is in a spherical or cylindrical body.

(3) Use the DIST function
If performing a simple check is sufficient--for example, checking whether the robot has reached the target
position, it can be checked by calculating the distance between the target position and the current position
(P_CURR) using the DIST function. However, be aware that angles are not considered.
Also, to check the deviation between the target position and the current position when using the compliance
function, it is convenient to reference M_CMPDST.

(4) Compare each component of position variables
To check whether each position component is within the specified range, compare each component as in
the program shown below. For example, the following program checks that the value of PX52A is near
PX52B. The X component is +/-0.01mm, the Y component is +/-10.0mm, and the Z component is not
checked. When the A, B and C components are within the range of +/-1.0 degree, "1" is set in output value
MY52RET.
Caution) The A, B and C components are output in radians when elements are taken out. Using the RAD

function, 1.0 degree is converted into radians and then used for checking.

Program
1000 'PX52A 'Coordinate 1 to be checked
1010 'PX52B 'Coordinate 2 to be checked
1020 'MY52RET '1 when PX52A is near PX52B, 0 for others
1030 *S52PSCHK 'A subroutine to check position change
1040 MY52RET=0 'Initialize the return value.
1050 IF ABS(PX52B.X-PX52A.X)>0.01 THEN GOTO *L52END
1060 IF ABS(PX52B.Y-PX52A.Y)>10.0 THEN GOTO *L52END
1070 'No check is performed for Z components.
1080 IF ABS(PX52B.A-PX52A.A)>RAD(1.0) THEN GOTO *L52END
1090 IF ABS(PX52B.B-PX52A.B)>RAD(1.0) THEN GOTO *L52END
1100 IF ABS(PX52B.C-PX52A.C)>RAD(1.0) THEN GOTO *L52END
1110 MY52RET=1 'Set the return value again.
1120 *L52END
1130 RETURN
 Entry-Level Edition 8-413

8

8Collection of Techniques
8.1.10 Shortening the cycle time (entry-level edition)
You wan to make the robot produce more. In many cases, it means to shorten the cycle time. What kinds of
methods are available to easily reduce the cycle time?

[Technique]
Here, we will introduce basic check items to reduce the cycle time.

(1) Check whether speed control is appropriate.
Do you always revert the speed after decreasing it using the OVRD instruction and the SPD instruction? In
writing programs, use the maximum operating speed in general, and decrease the speed only when neces-
sary. If the speed is decreased, be sure to execute OVRD 100 and SPD M_NSPD (optimum speed control
mode) and revert the speed to the maximum speed.

(2) Set up or reduce relay points.
In most cases when moving from one work point (for example, a holding position) to another work point (for
example, a mounting position), it will pass through relay points. Have these relay points been set up at
appropriate locations? Relay points should be reduced and optimized so that the target position can be
reached with as few operations as possible. There is also another method that sets up a relay point just
before the target position, even if it is possible to move to the target position by a single instruction, so that
the operation can be performed at the maximum position to the very limit.

(3) Review the operation path in order to perform smooth path connection as much as possible.
Review the operation path currently in use or on the drawings. Use the CNT instruction if there is no interfer-
ence with peripheral units when passing through relay points. This will prevent the speed at the relay points
from decreasing; thus, improving the speed.

[Implementation example]
Three programs that perform the identical operation are shown successively on the next page. All of these
programs move the robot from the starting position (TP03) to the target position (PT01) by passing through
the front position (PT02).
The second and third blocks employ a technique to reduce the cycle time.

Block 1:Moves the robot from the starting position (TP03) to the target position (PT01) by passing
through the front position (PT02).

Block 2:Moves the robot at the maximum speed to the very limit by providing a relay point in front of the
target position (PT01).

Block 3:Moves the robot further by passing through inside relay points.
Each of the above three blocks measures the cycle time using the M_TIMER function, and stores the result
in the corresponding M01, M02 and M03 variables. Check the differences of each cycle time.

Point list I/O signal list
PT01
PT01
PT01

: Target position
: Front position
:Starting position

None
-414 Entry-Level Edition

8Collection of Techniques
Program Comment
1000 MOV PT03 'Move to the starting position.
1010 '=== Block 1 ===
1020 M_TIMER(1)=0 'Timer reset
1030 OVRD 100 'Move to the front position by
1040 MOV PT02 'increasing to the maximum speed.
1050 OVRD 10 'Move to the target position by
1060 MVS PT01 'reducing the speed.
1070 DLY 0.1 '
1080 OVRD 100 'Move to the front position by
1090 MVS PT02 'increasing to the maximum speed.
1100 MOV PT03 'Move to the starting position.
1110 DLY 0.1 'Measure the time after stopping
1120 M01=M_TIMER(1) 'completely.

Regular description method

1130 '=== Block 2 ===
1140 M_TIMER(1)=0 'Timer reset
1150 OVRD 100 'Move to the front position by
1160 MOV PT02 'increasing to the maximum speed.
1170 MVS P01,-10 'Move to the front of the front position.
1180 OVRD 10 'Move to the target position by
1190 MVS PT01 'reducing the speed.
1200 DLY 0.1 '
1210 OVRD 100 'Move to the front position by
1220 MVS PT02 'increasing to the maximum speed.
1230 MOV PT03 'Move to the starting position.
1240 DLY 0.1 'Measure the time after stopping
1250 M02=M_TIMER(1) 'completely.

Method that added the preced-
ing position

1260 '=== Block 3 ===
1270 M_TIMER(1)=0 'Timer reset
1280 OVRD 100 'Pass through inside by increasing to
1290 CNT 1 'the maximum speed (enabled).
1300 MOV PT02 'Move to the front position.
1310 CNT 0 'Pass through inside (disabled).
1320 MVS PT01,-10 'Move to the front of the front position.
1330 OVRD 10 'Move to the target position by
1340 MVS PT01 'reducing the speed.
1350 DLY 0.1 '
1360 OVRD 100 'Move to the front position by
1370 MVS PT02 'increasing to the maximum speed.
1380 MOV PT03 'Move to the starting position.
1390 DLY 0.1 'Measure the time after stopping
1400 M03=M_TIMER(1) 'Completely.

Method that added CNT
 Entry-Level Edition 8-415

8

8Collection of Techniques
8.2 Intermediate Edition
8.2.1 How to quickly support for the addition of types

There are not too many types and layers are not changed frequently, so it is not necessary to install a host
computer. But, it is troublesome to do teaching every time. Is there any good way to change and use posi-
tion data?

[Technique]
The program should be divided into the main program and data programs, and one data program should be
created for each type. This method allows to store data for each type or group in a separate program. Use
external variables to transfer data between data programs and the main program. Each data program con-
tains position data and a program that writes that position data into an external variable. Thus, by starting a
specific data program from the main program, the desired data can be written into an external variable.

[Implementation example]
In this example, the data programs ("WK1.PRG" - "WK63.PRG) corresponding to the type numbers
obtained from the external input signals are started, and position data is transferred from each of the data
programs to the main program via system external variable (P_100()).

Program Comment
<Main program>
1000
1010
1020

 DEF IO XL_SETNO=BIT,8 'Complete type number setting.
 DEF IO XL_PRGNO=BYTE,10,&H3F 'Receive type numbers 1 to 63.
'

1030
1040
1050
1060
1070

*MAIN
 IF XL_SETNO=M_OFF THEN *MAIN 'Loop until the type numbers are received.
 C00PRG$="WK"+STR$(XL_PRGNO) 'Generate a program name.
 CALLP C00PRG$ 'Write data into an external variable.
 '

1080
1090
1100
1110
1120
1130
1140

 FOR M00WK=1 TO 10 'No, of work count
 P00TMP=P_100(M00WK) 'Generate position data.
 MOV P00TMP,50 'Move to the front of the target position.
 MOV P00TMP 'Move to the target position.
 DLY 1
 MOV P00TMP,50 'Move to the front of the target position.
 NEXT M00WK 'Move to the next work.

1150 GOTO *MAIN 'Go to next layer data.
1160 END

<Data programs: "WK1.PRG" - "WK63.PRG">
1000
1010
1020
1030
1040

 DIM PTDATA(10) 'Data storage area
 FOR M01=1 TO 10 'No. of work count
 P_100(M01)=PTDATA(M01) 'Copy data into an external variable.
 NEXT M01 '
 END
-416 Intermediate Edition

8Collection of Techniques
8.2.2 Convenient ways to use the pallet instruction
Generally, the pallet instruction is associated with taking out parts from lattice-like parts boxes or stacking
boxes on a distribution pallet, but it can be used in various ways. We will explain convenient ways to use the
pallet instruction here.

[Technique]
(1) The pallet instruction can be used on a free plane.

The pallet instruction is associated with a lattice on a plane placed on ground from its name, but it can actu-
ally be used on any flat planes.

The pallet instruction can define lattices as shown in the illustration above. This makes it possible, for exam-
ple, to easily create coordinates such as the holding position and front position of works arranged in layers.
Of course, it is possible to calculate these positions without using the pallet instruction, but using the pallet
instruction can reduce the cycle time since calculations can be performed with a single instruction.

(2) The pallet instruction can be used in a row.

As shown in the illustration above, it is not necessary to teach all works when holding works arranged in a
row. By using the pallet instruction, the rest of works can be interpolated as long as teaching is performed on
the first and last works.

*For regular lattice-like pallets, see Page 71, "4.1.2 Pallet operation".

Define as palette 1.

Define as palette 2. Pull-out position

Moving posture

Unloading position
 Intermediate Edition 8-417

8

8Collection of Techniques
[Implementation example]
In the case of "works arranged in layers," the program can be streamlined by defining the work unloading
position and pull-out position as pallet 1, and the pull-out position and moving posture as pallet 2. Also, in
the case of "works arranged in a row," this can be accomplished by giving the same position variable twice
to the argument specified by the DEF PLT instruction.

8.2.3 How to write communication programs
How should we program to connect a robot with a personal computer and PLCs with a communication cable
in order to issue work requests?

[Technique]
There are several ways to program, and various specifications can be supported ranging from simply using
the INPUT instruction to wait until some sort of command is received to reading by multi-tasking in advance.
When classified broadly, the following three types of methods can be used. The features of these methods
are listed below.

Program Comment
<In the case of works arranged in layers>
PT1:Bottom layer PT2:Top layer
PT3:Front of the bottom layer PT4:Front of the top layer
PT5:Moving posture of the bottom layer PT6:Moving posture of the top layer (for 5 layers)
1000 DEF PLT 1,PT1,PT2,PT3,PT4,5,2,2
1010 DEF PLT 2,PT5,PT6,PT5,PT6,5,1,1
1020 PTMP1 = PLT 1,1 'Get the bottom layer position.
1030 PTMP2 = PLT 1,5 'Get the top layer position.
1040 PTMP3 = PLT 1,5+1 'Get the position in front of the bottom layer
1050 PTMP4 = PLT 1,5+5 'Get the position in front of the top layer.
1060 PTMP5 = PLT 2,1 'Get the moving posture of the bottom layer.
1070 PTMP6 = PLT 2,5 'Get the moving posture of the top layer.

<In the case of works arranged in a row>
P1: 1st position, P2: Nth position (when 10 works are lined up)
1000 DEF PLT 1,PT1,PT2,PT1,PT2,10,1,1
1010 PTMP1 = PLT 1, 1 'Get the 1st position.
1020 PTMP2 = PLT 1,10 'Get the 10th position.

Degree of
programming

difficulty
Method Explanation

Low INPUT instruction only Programs can be written in an extremely simple manner. However, because the
INPUT instruction does not end until something is received, the robot cannot do
anything during that period. For more information about this method, see Page
337, "5.15 About the communication setting".

Medium Communication inter-
rupt

Reception processing is performed only when some sort of work instruction is
received. Thus, other work can be performed as long as there is no work
instruction. However, the robot operation will stop if a work instruction is
received while in operation.

High Multi-tasking Because communication can be carried out concurrently with robot operation, it
is possible to perform transport work while reading instructions in advance and
analyzing complicated text received. Thus, consecutively requested operations
can be executed one by one without stopping the robot.
-418 Intermediate Edition

8Collection of Techniques
[Implementation example]
Here, the following two types of methods are introduced among the three methods mentioned in Technique.
Communication interrupt method
Multi-tasking method

(1) Communication interrupt method
The following shows an example of a program that uses an communication interrupt. After receiving a com-
mand ("GET" or "PUT" in this example) from communication line 1, this program performs corresponding
processing, and sends a completion command ("FIN" in this example) upon completion of processing.

Communication interrupt method Comment
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

 OPEN "COM1:" AS #1 'Open communication line 1 with file No. 1 (#1).
 ON COM(1) GOSUB *S98COMRC 'Setting for communication interrupt
'
 ML_REQ=0 'Clear the work request flag
 COM(1) ON 'Set to wait for communication.
*MAIN 'Beginning of the main loop
 GOSUB *S50CHECK 'Regular operation until reception
 SELECT ML_REQ 'If a work request arrives
 CASE 1
 GOSUB *S51GET 'Call a work routine
 GOSUB *S99FIN 'Work completed
 BREAK
 CASE 2
 GOSUB *S52PUT 'Call a work routine
 GOSUB *S99FIN 'Work completed
 BREAK
 END SELECT
 GOTO *MAIN
'

1190
1200
1210
1220
1230
1240

*S50CHECK 'Regular operation
 COM(1) ON 'Set to wait for communication.
'Describe regular work.
 COM(1) STOP 'Stop waiting for communication.
 RETURN
'

Enable a communication inter-
rupt while in regular operation

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

*S51GET 'When "GET" is received
 ' Describe the work when "GET" is received.
 RETURN
'
*S52PUT 'When "PUT" is received
 ' Describe the work when "PUT" is received
 RETURN
'
*S98COMRC 'Communication interrupt callback
 INPUT #1,C98CMD$ 'Load the character string received.
 ML_REQ=0 'Clear the request reception flag.
 IF C98CMD$="GET" THEN ML_REQ=1 'If "GET"
 IF C98CMD$="PUT" THEN ML_REQ=2 'If "PUT"
 RETURN 1
'
*S99FIN
 PRINT #1,"FIN" 'Send a completion report.
 ML_REQ=0 'Clear the work request flag.
 RETURN
 Intermediate Edition 8-419

8

8Collection of Techniques
(2) Multi-tasking method
The following programs are examples of communication using multi-tasking. After receiving a command
("GET" or "PUT" in this example) from communication line 1, these programs perform corresponding pro-
cessing, and send a completion command ("FIN" in this example) upon completion of processing.
First, the main program is started in task slot 1, and the communication program in task slot 2. The commu-
nication program in task slot 2 is started with the startup condition = ALWAYS.
Checking as to whether or not there is a reception by the communication program and transmission
requests from the main program to the communication program are done by using external variables. Exter-
nal variable M_100(10) is used to check whether or not there is a reception by the communication program,
and external variable M_05 is used for transmission requests from the main program to the communication
program. Considering cases when the communication program would receive a command again before the
main program completes post-reception processing, the communication program uses a maximum of 10
reception buffers (external variable M_100(10)).

Multi-tasking method Comment
<Main program>
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

*MAIN
 IF M_01 = M_02 THEN GOTO *MAIN 'If a queue is empty, nothing is performed.
M_01 = (M_01 MOD 10) + 1 'Read index + 1
 SELECT M_100(M_01)
 CASE 1
 GOSUB *S51GET 'Call a work routine.
 M_05=1 'Request to send the end of work.
 BREAK
 CASE 2
 GOSUB *S52PUT 'Call a work routine.
 M_05=1 'Request to send the end of work.
 BREAK
 END SELECT
 GOTO *MAIN
'
*S51GET 'Perform work based on the command received.
 ' Describe processing when "GET" is received.
 RETURN
'
*S52PUT 'Perform work based on the command received.
 ' Describe processing when "PUT" is received.
 RETURN

Read the read index after add-
ing 1 to it.

<Communication program>
1000
1010
1020
1030

 CLOSE #1 'Close communication line 1.
 OPEN "COM1:" AS #1 'Open communication line 1 with #1.
 ON COM(1) GOSUB *S98COMRC 'Set a communication interrupt.
'

1040
1050
1060

 M_01=1 'Clear the read index
 M_02=1 'Clear the write index
 COM(1) ON 'Set to wait for communication.

An index for using M_100() as
a reception queue.

1070
1080
1090
1100

*MAIN 'Beginning of the main loop
 IF M_05=1 THEN GOSUB *S99FIN 'Wait for a send request
 GOTO *MAIN
'

Check the send request
(M_05) from the main program.

1110
1120
1130
1140

*S98COMRC '
 INPUT #1,C98CMD$ 'Input the character string received.
 IF C98CMD$="GET" THEN M_100(M_02)=1 ' IF "GET"
 IF C98CMD$="PUT" THEN M_100(M_02)=2 ' IF "PUT"

Subroutine for communication
interrupts

1150
1160
1170

 M_02=(M_02 MOD 10) + 1 'Write index + 1
 RETURN 1
'

Add 1 to the write index after
writing.

1180
1190
1200
1210

*S99FIN
 PRINT #1,"FIN" 'Send a completion report.
 M_05=0 'Clear the work request flag.
 RETURN
-420 Intermediate Edition

8Collection of Techniques
8.2.4 How to reduce teaching points
I wrote a program for a teaching operation, but the operation cannot be carried out smoothly because there
are too many teaching points. Is there any way to reduce the number of teaching points?

[Technique]
For the robot to handle works and access peripheral units or move to remote points in an appropriate man-
ner, there must be positions for the robot to pass through. However, it is not always necessary to perform
teaching. In many cases, the number of teaching points can be reduced by setting relative positions* from
certain positions and utilizing these positions.
*In contrast, teaching points (positions from the OP of the robot) are called absolute positions.

Please look at the illustration above. Two methods are available for the robot to hold and lift a work:
(1) Teach two points of the holding position and the retreat position.
(2) Teach the holding point, and use the position multiplied by an offset as the retreat position.

Method (2) requires a calculation, but it only needs one teaching point. Furthermore, this method only
requires to teach one point of the holding position again, whereas method (1) requires two points to be
taught when teaching again.

Robot coordinates

Offset

Retreat position

Holding position
 Intermediate Edition 8-421

8

8Collection of Techniques
[Implementation example]
In the following example, position calculations are performed using the "+" operator in order to lift in the
upper air in the robot coordinate system. To obtain the retreat position in the tool coordinate system when a
6-axial robot is used, for example, perform relative position calculations using the "*" operator, or perform
calculations using the second argument (proximity distance) of the MOV or MVS instruction.

[Others]
This is a special example, but when using an RC-1000GHW*C or similar double-hand robot, the amount of
teaching can be reduced by half if teaching is done for one hand instead of for both hands, and then both
hands are supported by correcting the Z component.
Also, if a work position is located at constant intervals, the intermediate positions can be interpolated by
using the pallet instruction.

Program Comment
<Teaching method>
1000 MOV PGET 'Move to the holding position (teaching).
1010 MOV PAPR 'Move to the retreat position (teaching).
1020 HLT

<Offset method (robot coordinate system)>
1000 PAPR=PGET+POFS 'Calculate the retreat position.
1010 MOV PGET 'Move to the holding position (teaching).
1020 MOV PAPR 'Move to the retreat position (specifying a calculated value).
1030 HLT

<Offset method (tool coordinate system)>
1000 PAPR=PGET*POFS 'Calculate the retreat position.
1010 MOV PGET 'Move to the holding position (teaching).
1020 MOV PAPR 'Move to the retreat position (specifying a calculated value).
1030 '
1040 MOV PGET 'Move to the holding position (teaching).
1050 MOV PGET,-50 'Move to the retreat position (specifying a proximity distance).
1060 HLT

Note1)

Note1)Be careful as the directions of the tool coordinates are reversed between horizontal multi-joint
robots and vertical multi-joint robots.
-422 Intermediate Edition

8Collection of Techniques
8.2.5 Using a P variable in a counter, etc.
I want to initialize a program when it is installed on a controller. How can I initialize a counter that is not ini-
tialized when the power is turned off or the program is restarted in daily operations?

[Technique]
To achieve this, you can use an external variable, but an operation such as initializing the variable after
installation is required. Here, we will introduce a technique to achieve this by using a position variable. Posi-
tion variables are normally used to store coordinate values, but information other than coordinate values
can also be stored in each component of a position variable. Unlike numeric variables and string variables,
position variables can be saved as a part of a program just like instruction lines. By utilizing this characteris-
tic, it is possible to initialize programs when they are installed, and use them as counters that will not be
reset thereafter.

[Implementation example]
This example shows a program that counts how many times the power is turned on and off after installation.

(1) Add the following position data to the program.
PDATA = (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)(0.0 , 0.0)
X component: Initialization flag, Y component: Counter value

(2) Describe the following codes at the beginning or the program or in the initialization routine.

(3) Write "1" in PDATA.X, and save or back up the program in a batch.
This clears the counter (PDATA.Y) to 0 once each time this program is loaded or restored, and the
counter is counted up each time the power is turned on and off thereafter. However, the counter is
counted up every time the beginning of the program is executed, so be sure not to return to the
beginning of the program.

Program Comment
<Main program>
1000 IF PDATA.X=1 THEN
1010 PDATA.Y=0
1020 PDATA.X=0
1030 ENDIF
1040 PDATA.Y=PDATA.Y + 1
1050 '
1060 '
1070 *LOOP
1080 'Main routine
1090 GOTO *LOOP
 Intermediate Edition 8-423

8

8Collection of Techniques
8.2.6 Getting position information when the sensor is on
Is there any way to read the coordinates of a robot when the sensor is turned on and off without stopping the
robot so that the coordinates can be used for compensation operations? Also, how can we increase accu-
racy?

[Technique]
If you can stop the robot when sensing, it is desirable to use an interrupt; if you don't want to stop the robot,
it is desirable to use a multi-task. If you will be using an interrupt, refer to the description of the DEF IO
instruction for more information. Here, we will explain the method that uses a multi-task.
Two key points for reading the coordinates of the robot at the timing when the sensor is turned on and off
are as follows:

(1) Match the sensor ON timing and the timing to read position information as much as possible.
Even when the program detects the sensor being turned on, it is meaningless if the robot advances
before actually reading coordinates. The detection of sensor ON and the reading of coordinates
should be carried out on the same line as much as possible. Because of this reason, reading the
coordinates inside a loop is much more effective than using an interrupt.

(2) Check the sensor at high speed as much as possible.
It is obvious that more accurate data can be obtained by measuring 20 times than 10 times in a sec-
ond. It is recommended to increase the priority of the sensing program as much as possible using
the PRIORITY instruction at least during sensing.
-424 Intermediate Edition

8Collection of Techniques
[Implementation example]
In this example, the main program is started in task slot 1, and the sensing program is set as starting condi-
tion = ALWAYS and started in task slot 2. For the instruction from the main program to the sensing program,
an external variable (M_01) is used.
A robot whose hand is equipped with two sensors (input signals 901 and 902) scans from PT01 to PT02 by
a linear interpolation operation at 50 mm/sec, and reads the position coordinates where each of these two
sensors are turned on. The current positions read are passed to the main program using external variables
(P_01 and P_02). An error is issued if the robot finishes scanning with either of the sensors not turning on.

Program Comment
<Main program>
1000 M_01=0
1010 MOV PT01 'Move to the front of the sensing position
1020 SPD 50 'Reduce the speed to the sensing speed.
1030 M_01=1 'Request to start sensing.
1040 PRIORITY 1,1 'Status in which the sensing program is given priority
1050 PRIORITY 10,2
1060 MVS PT02 'Move to the target position.
1070 PRIORITY 1,1 'Status in which the sensing program is given priority
1080 PRIORITY 1,2
1090 IF M_01=1 THEN 'End sensing
1100 M_01=0 'if sensing has not been completed.
1110 ERROR 9100 'Generate an error.
1120 ELSE
1130 'Processing using P_01 and P_02
1140 PTMP = (P_01 + P_02) / 2
1150 MVS PTMP 'Move to a mid-point where the sensor was turned on.
1160 HLT
1170 ENDIF

<Sensing program>
1000 WAIT M_01=1 'Wait for a sensing request.
1010 MS1=0
1020 MS2=0
1030 *LOOP
1040 IF MS1=0 AND M_IN(901) THEN P_01=P_CURR(1) 'Read the current position.
1050 IF MS1=0 AND M_IN(901) THEN MS1=1 'Sensor 1 input completed
1060 IF MS2=0 AND M_IN(902) THEN P_02=P_CURR(1) 'Read the current position.
1070 IF MS2=0 AND M_IN(902) THEN MS2=1 'Sensor 1 input completed
1080 IF (MS1=0 OR MS2=0) AND M_01=1 THEN *LOOP
1090 M_01=0
1100 END

Execute sensor checking and
coordinate reading on the
same line.
 Intermediate Edition 8-425

8

8Collection of Techniques
8.3 Advance Edition
8.3.1 Using the robot as a simplified PLC (sequencer)

Can the multi-task function of a robot be used to perform signal processing without using a PLC when con-
figuring a robot system?

[Technique]
Although it cannot be said that the multi-task function is totally equivalent to the PLC, it can be used for sim-
ple processing such as controlling a conveyer or controlling lamp ON/OFF.
If the number of standard external I/O points is insufficient, extend the number of signal points by using an
optional parallel I/O module.

[Implementation example]
Create a program for processing signals, and start it with the ALWAYS attribute. The program will start at the
same time when the robot's power is turned on, which will not stop even if an error occurs externally. Do not
make any description to stop processing using the ERROR , HLT and/or WAIT instructions in this program.

As an example, a palletized system as shown in the illustration below is assumed, where a work conveyer
and a palette conveyer are controlled by the robot. After thoroughly designing a signal processing program,
program it in MELFA-BASIC IV.

Input signal list Output signal list
M_IN(8)
M_IN(9)
M_IN(10)
M_IN(11)

:Work detection sensor
:Palette detection sensor
:Palette removing sensor
:Palette removal request signal

M_OUT(8)
M_OUT(9)
M_OUT(10)
M_OUT(11)
M_OUT(12)
M_OUT(13)
M_OUT(14)
M_OUT(15)

:Work conveyer ON/OFF
:Work stopper ON/OFF
:Work positioning unit ON/OFF
:Palette input conveyer ON/OFF
:Palette removal conveyer ON/OFF
:Palette input stopper ON/OFF
:Palette positioning stopper ON/OFF
:Palette positioning unit ON/OFF

Work conveyer

Control stopper Work

detection

sensor

Positioning unit

Positioning unit

Palette conveyer

(IN)

Palette conveyer

(OUT)

Palette detection sensor

Positioning stoppe

Palette removing

sensor

Input stopper

Robot
-426 Advance Edition

8Collection of Techniques
Work detection

sensor
Work pusher

Work pusher

Timer 1

Work detection

sensor
Work stopper

Work detection

sensor
Work conveyer

Removal request
In removing

operation

In removing

operation
Palette detection

sensor

Removing

sensor

In removing

operation
Removal

conveyer
Palette detection

sensor

Palette pusher

Timer 1 (2 sec)

Palette

pusher

In removing

operation

Input stopper

In removing

operation
Work detection

sensor

Input conveyer

Work detection

sensor

Positioning

stopper

Work detection

sensor

*1

*2

*3

*4

*5

*6

*7

*8
 Advance Edition 8-427

8

8Collection of Techniques
Program Comment
1000 MTMLOOP=100*1000 'No. of seconds per loop (100 seconds)
1010 M_TIMER(1)=0 'Timer initialization
1020 MTM01=0 'Timer variable initialization
1030 MIN08=0 'A variable to retain the status of the work detection sensor
1040 MIN09=0 'A variable to retain the status of the palette detection sensor
1050 MIN11=0 'A variable to retain the palette removal request signal
1060 MPLTOUT=0 'A variable for in palette removing operation
1070 '
1080 *LOOP
1090 'N-second timer creation
1100 IF M_TIMER(1)>MTMLOOP THEN 'Clear the timer to 0 if the designated
1110 M_TIMER(1)=0 'number of seconds has been exceeded.
1120 IF MTM01+MTMLOOP>0 THEN MTM01=MTM01-MTMLOOP 'A timer variable
1130 ENDIF
1140 '
1150 '##### Work conveyer #####
1160 MUPPLS08=(M_IN(8) AND MIN08=0) 'Generate a rise of the detection sensor.
1170 MIN08=M_IN(8)
1180 '=== Ladder *1 ===
1190 IF MUPPLS08 THEN MTM01=M_TIMER(1) 'Reset the timer when a rising pulse is detected.
1200 MTMOUT01=M_IN(8) AND (M_TIMER(1)-MTM01>2000) 'Set to ON after 2 seconds.
1210 '=== Ladder *2 ===
1220 IF MUPPLS08 OR (M_OUT(10) AND MTMOUT01=0) THEN M_OUT(10)=1 ELSE M_OUT(10)=0
1230 '=== Ladder *3, *4 ===
1240 IF M_IN(8) THEN 'When the work detection sensor is ON
1250 M_OUT(9)=1 'Stopper ON
1260 M_OUT(8)=0 'Conveyer OFF
1270 ELSE 'When the work detection sensor is ON
1280 M_OUT(9)=0 ' Stopper OFF
1290 M_OUT(8)=1 ' Conveyer ON
1300 ENDIF
1310 '
1320 '##### Palette conveyer #####
1330 MUPPLS09=(M_IN(9) AND MIN09=0) 'Generate a rise of the detection sensor.
1340 MIN09=M_IN(9)
1350 MUPPLS11=(M_IN(11) AND MIN11=0) 'Generates a rise of a removal request.
1360 MIN11=M_IN(11)
1370 '=== Ladder *5 ===
1380 IF MUPPLS11 OR (MPLTOUT AND (M_IN(9) OR M_IN(10))) THEN MPLTOUT=1 ELSE MPL-

TOUT=0
1390 '=== Ladder *6 ===
1400 IF MPLTOUT THEN M_OUT(12)=1 ELSE M_OUT(12)=0
1410 '=== Ladder *7 ===
1420 IF MUPPLS09 OR (M_OUT(15) AND MPLTOUT=0) THEN M_OUT(15)=1 ELSE M_OUT(15)=0
1430 '=== Ladder *8 ===
1440 IF MPLTOUT=0 THEN 'When not in removing operation
1450 IF M_IN(9) THEN 'When the palette detection sensor is ON
1460 M_OUT(13)=1 'Input stopper ON
1470 M_OUT(11)=0 'Input conveyer OFF
1480 ELSE
1490 M_OUT(13)=0 'Input stopper OFF
1500 M_OUT(11)=1 'Input conveyer ON
1510 ENDIF
1520 M_OUT(14)=1 'Positioning stopper ON
1530 ELSE
1540 M_OUT(14)=0 'Positioning stopper OFF
1550 ENDIF
1560 GOTO *LOOP

Unit: msecBe aware of
duplications with timers
used by other programs.

Set a 100-second loop for
overflow control of the
timer. Clear the timer
when an overflow is
detected, and deduct the
reference time from the
timer variable.
A rising edge is detected.

Because the timer cannot
be described in one line,
two lines are used.

Be sure to set either ON
or OFF.

It is designed as a retain-
ing circuit.
-428 Advance Edition

8Collection of Techniques
8.3.2 Implementing a mapping function
The robot moves to the designated location to fetch works, but sometimes operators process them or dam-
aged works are removed in advance, so works are not always present. Although the robot can move to the
next work if no work is present when the robot tries to fetch one, this method will extend the cycle time. How
can we detect the presence of works in advance?

[Technique]
One available method is to detect the present of works in advance by installing an optical sensor at the tip of
the robot's hand and scanning over works (this method is called mapping). However, in this case, because
the processing speed of the robot controller will be limited, it may not be able to fetch works at the maximum
speed.

[Implementation example]
It is desirable to use a multi-task and have the robot's operation performed by the main task and the reading
from the sensor by the subtask. Try to write a program that can run at high speed by describing the sensor
reading routine short and simple. Also, manipulate priority dynamically, and the priority of the subtask
should be changed between normal operation and mapping execution.

In this example, the robot scans works lined up in a row using a non-contact sensor (using external input
signal 901), checks whether each work is located where it should be (reference position), and only grabs a
work if present (work holding processing not installed). For checking, whether or not works are present are
determined by executing a calibration program once when all works are present at the time of system star-
tup in order to obtain the reference position, and by comparing the reference position with the scan data
obtained by a mapping operation performed before the robot grabs a work. When the difference between
the reference data and the scan data is +/-10 mm or less, it is determined that a work is present.
Please execute this program according to the following procedure:

(1) Start the sensing program in slot 2 with the ALWAYS attribute.
(2) Start the calibration program when all works are present, and get the reference position.
(3) Start the main program.

Specification I/O signal list
M_01 :Sensing request
M_100() :Work detection result storage destination
P_100() :Sensing result storage destination
P_101() :Reference value storage destination

M_IN(8) :Work request signal
M_OUT(8) :Work completion signal
M_IN(901) :Sensor input

 Sensor

Work detection check area

Sensor signal status

Work detection status
 Advance Edition 8-429

8

8Collection of Techniques
Program Comment
<Main program (start in slot 1)>
1000 WAIT M_IN(8)=M_ON 'Wait for the work request signal to turn on.
1010 MOV PT1 'Move to the sensing starting point.
1020 M_01=M_ON 'Start sensing.
1030 SPD 30 'Reduce the speed to the sensing speed.
1040 MVS PT2 'Move to the sensing end position.
1050 DLY 0.1 'Wait until it stops completely.
1060 M_01=M_OFF 'End sensing.

The same codes as those of
the calibration program should
be used.

1070 SPD M_NSPD 'Revert the speed.
1080 MVS PT1 'Return to the sensing starting point.
1090 '
1100 M01RANGE=10.0 'Work judgment range is 10 mm.
1110 FOR M01=1 TO 10 'Compare with 10 reference data.
1120 M_100(M01)=0 'Clear the detection flag.
1130 FOR M00=1 TO 10 'Compare with 10 scan data.
1140 M01DIST=DIST(P_101(M01),P_100(M00)) 'Determine that a work is present
1150 IF M01DIST<M01RANGE THEN 'if within the distance range between the scan value

and reference value.
1160 M_100(M01)=1 'A work is determined to be present.
1170 M00=10 'Exit from the FOR loop.
1180 ENDIF
1190 NEXT M00
1200 NEXT M01
1210 '
1220 FOR M02=1 TO 10 'There should be 10 works.
1230 IF M_100(M02)=0 THEN *L01SKIP 'Skip if there is no work.
1240 ' GOSUB *S50WKGET 'Work holding processing (not installed)
1250 *L01SKIP
1260 NEXT
1270 M_OUT(8)=M_ON 'Set the work completion signal to ON.
1280 WAIT M_IN(8)=M_OFF 'Wait until the work request signal turns OFF.
1290 M_OUT(8)=M_OFF 'Set the work completion signal to OFF.
1300 END

<Sensing program (start in slot 2 with ALWAYS attribute)>
1000 *S01SENS
1010 PRIORITY 10,1 'Standard status
1020 PRIORITY 1,2
1030 M_01=M_OFF 'Set the sensing request signal to OFF.
1040 M01POS=1 'Clear the storage destination counter.
1050 WAIT M_01=M_ON 'Wait until the sensing request signal turns ON.
1060 PRIORITY 1,1 'Status in which the sensing program is given priority
1070 PRIORITY 10,2
1080 *L01LOOP
1090 IF M_01=M_OFF THEN *S01SENS 'End if the sensing request signal is OFF.
1100 IF M_IN(901)=M_ON THEN 'Save the current position
1110 P_100(M01POS)=P_CURR 'when the sensor turns ON.
1120 M01POS=M01POS+1 'Storage destination counter + 1
1130 WAIT M_IN(901)=M_OFF 'Wait until the sensor turns OFF.
1140 ENDIF
1150 GOTO *L01LOOP

The current position is stored
in a system external variable.
Use a user external variable if
more than 10.

<Calibration program (start in slot 1)>
1000 MOV PT1 'Move to the sensing starting point.
1010 M_01=M_ON 'Start sensing.
1020 SPD 30 'Reduce the speed to the sensing speed.
1030 MVS PT2 'Move to the sensing end position.
1040 DLY 0.1 'Wait until it stops completely.
1050 M_01=M_OFF 'End sensing.
1060 SPD M_NSPD 'Revert the speed.
1070 MVS PT1 'Return to the sensing starting point.
1080 '
1090 FOR M01=1 TO 10 'Copy the sensing result to
1100 P_101(M01)=P_100(M01) 'calibration data.
1110 NEXT M01 '
1120 HLT

In some cases, it is desirable to
scan several times and obtain
the average.
-430 Advance Edition

8Collection of Techniques
8.3.3 Finding out executed lines
I am debugging the programs I created, and want to know which lines were executed when an error
occurred? Is there any good method to find that out?

[Technique]
This controller employs the round-robin method by which all programs are executed one line at a time if the
priority of the programs has not been changed. So, by using this method, all of the currently executed lines
can be obtained by a multi-task. Look at lines 1050 and 1060 in the following program.

1050 PRIORITY 1, 1 ' Execute 6 lines of this program while
1060 PRIORITY 6, 2 ' executing one line of the main program.

This means that six lines of this program is executed in task slot 2 while one line of the main program is exe-
cuted in task slot 1. These six lines correspond to lines 1070 through 1120.

[Implementation example]
To execute this example program, start this program in task slot 2 with the ALWAYS attribute, and start the
main program in task slot 1. If you are starting this program in other than task slot 2, also change the priority
setting on line 1060. The logs of executed line in task slot 1 are stored in variable MLN (100), and are over-
written from the beginning once the storage area becomes full.

Program Comment
1000 DIM MLN(100) 'Storage area for 100 lines
1010 FOR M01=1 TO 100 'Clear the storage area.
1020 MLN(M01)=-1
1030 NEXT
1040 MIDX=1
1050 PRIORITY 1,1 'Execute 6 lines of this program while
1060 PRIORITY 6,2 'executing 1 line of the main program.
1070 *LOOP
1080 MBF=MIDX 'Save the previous ID.
1090 MIDX=(MIDX MOD 100)+1 'Ring buffer ID
1100 MLN(MIDX)=M_LINE(1) 'Save the current line No.
1110 IF MLN(MBF)=MLN(MIDX) THEN MIDX=MBF 'Return if no line has been changed.
1120 GOTO *LOOP
 Advance Edition 8-431

8

8Collection of Techniques
8.3.4 Saving the status when an error has occurred
Is there any method to save the status when an error has occurred?

[Technique]
Robot programs have startup attributes (START, ALWAYS, ERROR), and the startup condition can be
changed by using these attributes. In your case, you can create a program having the ERROR attribute that
is started when an error has occurred, and save the status at the time of error occurrence.

[Implementation example]
Set the task slot that uses this program as follows:
Startup condition = ERROR (executed when an error occurs)
Operating mode = CYC (ends after executing one cycle.)
(See the Page 318, " SLT*".)
In this example, the information of past five errors is saved in variable PERINF (,). The following content
are saved:

1) Number of the error occurred
2) Number of the line where an error occurred
3) Remaining distance to the target position
4) Position (orthogonal coordinates) of the robot when an error occurred

It is also possible to change the information to be saved depending on the error content (line 1110 and suc-
ceeding lines).
When using this program for the first time, verify that M_01 is "0." This clears the counter at the storage des-
tination. Subsequently, every time an error occurs, this program is called and information is written into vari-
able PERINF (,). The latest information is an element indicated by M_01, and is a ring buffer.

Program Comment
<Get error information program>
1000 DIM PERINF(5,5) 'Allocate an area for saving past 5 errors.
1010 IF M_01=0 THEN 'Clear only once.
1020 M_01=1 'No. of error occurrences
1030 M_02=1 'Ring buffer ID
1040 ENDIF
1050 'Those independent of the error type
1060 PERINF(M_02,1).X=M_01 'No. of error occurrences
1070 PERINF(M_02,1).Y=M_ERRNO 'No. of the error occurred
1080 PERINF(M_02,1).Z=M_LINE(1) 'No. of the line where an error occurred
1090 PERINF(M_02,2).X=M_RDST 'Remaining distance to the target position
1100 PERINF(M_02,3)=P_CURR 'Current position
1110 'Change information to be saved depending on the error content.
1120 SELECT M_ERRNO
1130 CASE 2802
1140 'Write information to be acquired when error 2802 occurred into PERINF.
1150 'PERINF(M_02,4).X=M_???
1160 'PERINF(M_02,5)=P_???
1170 BREAK
1180 CASE 9100
1190 'Write information to be acquired when error 9100 occurred into PERINF.
1200 BREAK
1210 DEFAULT
1220 'Write information to be acquired when an unexpected error occurred into PERINF.
1230 BREAK
1240 END SELECT
1250 '

It is possible to change infor-
mation to be saved according
to the error content.

1260 M_01=M_01+1
1270 M_02=(M_02 MOD 5)+1 'Generate an ID as a ring buffer.
1280 END

Increase the count of the buffer
index.
-432 Advance Edition

 9Appendix
9 Appendix
9.1 Reference Material
9.1.1 About sink/source type of the standard external input and output

There are two types of external input/output circuit specifications: sink type and source type. The circuit
specification type specified by the customers at ordering is built into the product (sink type for general Japa-
nese/international products, and source type for CE mark products for Europe). The external input/output
circuit built into the controller as standard is explained below, together with the two types of circuit specifica-
tions mentioned above.

(1) Electrical specifications of input/output circuit
The external input circuit specification is shown in Table 9-1. The external output circuit specification is
shown in Table 9-2.

Table 9-1:Electrical specifications of input circuit

Table 9-2:Electrical specifications of output circuit

Item Specifications Internal circuit
Type DC input <Sink type>

 <Source type>

No. of input points 32 or 16 Note1)

Note1)The number of input points differ with robot type. Refer to the separate manual "Standard
specifications".

Insulation method Photo-coupler insulation
Rated input voltage DC12V/DC24V
Rated input current Approx. 3mA/approx. 7mA
Working voltage range 1 0.2VDC to 26.4VDC(ripple rate within 5%)
ON voltage/ON current 8VDC or more/2mA or more
OFF voltage/OFF current 4VDC or less/1 mA or less
Input resistance Approx. 3.3k É¹
Response time OFF-ON 1 0ms or less(DC24V)

ON-OFF 1 0ms or less(DC24V)
Common method 8 points per common
External wire connection method Connector

Item Specifications Internal circuit
Type Transistor output <Sink type>

 <Source type>

No. of output points 32 or 16 Note1)

Note1)The number of output points differ with robot type. Refer to the separate manual "Standard
specifications".

Insulation method Photo-coupler insulation
Rated load voltage DC12V/DC24V
Rated load voltage range DC 1 0.2 Å`30V(peak voltage 30VDC)
Max. load current 0.1 A/point (1 00 Åì)
Leakage current at OFF 0.1 mA or less
Max. voltage drop at ON DC0.9V(TYP.)
Response time OFF-ON 2ms or less (hardware response time)

ON-OFF 2ms or less (Resistance load) (hardware response
time)

Fuse rating Fuse 3.2A (one per common) Replacement not pos-
sible

Common method 4 points per common (common terminal: 4 points)
External wire connection method Connector
External power
supply

Voltage DC12/24V(DC10.2Å`30V)
Current 60mA (TYP. 24VDC per common) (base drive current)

3.3K Input

820

24V/12V
(COM)

3.3K Input

820

0V(COM)

(24/12V)

Outline

(0V)Fuse

Fuse (24/12V)

Outline

(0V)
 Reference Material 9-433

9

9Appendix
(2) Connection example
Shows the connection example with a Mitsubishi PLC. The Fig. 9-1 is the sink type example, and the Fig. 9-
2 is the source type example.

Fig.9-1:Connection with a Mitsubishi PLC (Example of sink type)
*The input/output circuit external power supply (24 VDC) must be prepared by the customer.

Fig.9-2:Connection with a Mitsubishi PLC (Example of source type)
*The input/output circuit external power supply (24 VDC) must be prepared by the customer.

60mA
(24/12V)

Output

Fuse
(0V)

(COM)

AX41C
(Mitsubishi programmable
controller)

AY51C
(Mitsubishi programmable
controller)

＋24V

24V

COM

X

Y

24V

…
…

Input

Parallel I/O interface
（Output）

(Input)

3.3K

CTL＋

Output

Input

External
power supply

CTLG
24G

COM

External
power supply

24G
24V

…
…

<Sink type>

60mA
(24/12V)

Output

Output

Fuse

(0V)

(COM)

AX81C

AY81C

＋24V

24G

24V

COM

24G

External
power supply

X

Y

24V

24V

(Output)

(Input)

3.3K

CTLG

CTL＋

External
power supply

Input

Input

…
…

…
…

<Source type>
-434 Reference Material

 9Appendix
(3) Connector pin assignment
A list of connector pin numbers and signal assignments of the external input/output card is shown below.
In case of the CR1-571 controller, the assignments of pin numbers differ between the sink type and source
type. Table 9-3 and Table 9-4 show the connector pin assignments of the sink type and source type, respec-
tively.
For other controllers, the pin assignments are the same for the sink type and source type. Table 9-5 and
Table 9-6 show the connector pin assignments of CN100 and CN300, respectively.

*For CR1 controller
Table 9-3:Connector pin No. and signal assignment list (CR1 controller: sink type)

Pin
No. Line color Note1)

Note1) "Line color" shows the line color of the external input/output cable 2A-CBL **.

Function name
Pin
No.

Line color
Note1)

Function name

General-purpose Dedicated/power supply,
common General-purpose Dedicated/power supply,

common
1 Orange/Red A FG 26 Orange/Blue A FG
2 Gray/Red A 0V:For pins 4-7 27 Gray/Blue A 0V:For pins 29-32
3 White/Red A 12V/24V:For pins 4-7 28 White/Blue A 12V/24V:For pins 29-32
4 Yellow/Red A General-purpose output 0 Running 29 Yellow/Blue A General-purpose output 4
5 Pink/Red A General-purpose output 1 Servo on 30 Pink/Blue A General-purpose output 5
6 Orange/Red B General-purpose output 2 Error 31 Orange/Blue B General-purpose output 6
7 Gray/Red B General-purpose output 3 Operation rights 32 Gray/Blue B General-purpose output 7
8 White/Red B 0V:For pins 10-13 33 White/Blue B 0V:For pins 35-38
9 Yellow/Red B 12V/24V:For pins 10-13 34 Yellow/Blue B 12V/24V:For pins 35-38
10 Pink/Red B General-purpose output 8 35 Pink/Blue B General-purpose output 12
11 Orange/Red C General-purpose output 9 36 Orange/Blue C General-purpose output 13
12 Gray/Red C General-purpose output 10 37 Gray/Blue C General-purpose output 14
13 White/Red C General-purpose output 11 38 White/Blue C General-purpose output 15
14 Yellow/Red C COM0:For pins 15-22 Note2)

Note2) Sink type:24V/12V(COM), Source type:0V(COM)

39 Yellow/Blue C COM1:For pins 40-47 Note1)

15 Pink/Red C General-purpose input 0 Stop(All slot) Note3)

Note3) The assignment of the dedicated input signal "STOP" is fixed.

40 Pink/Blue C General-purpose input 8
16 Orange/Red D General-purpose input 1 Servo off 41 Orange/Blue D General-purpose input 9
17 Gray/Red D General-purpose input 2 Error reset 42 Gray/Blue D General-purpose input 10
18 White/Red D General-purpose input 3 Start 43 White/Blue D General-purpose input 11
19 Yellow/Red D General-purpose input 4 Servo on 44 Yellow/Blue D General-purpose input 12
20 Pink/Red D General-purpose input 5 Operation rights 45 Pink/Blue D General-purpose input 13
21 Orange/Red E General-purpose input 6 46 Orange/Blue E General-purpose input 14
22 Gray/Red E General-purpose input 7 47 Gray/Blue E General-purpose input 15
23 White/Red E Reserved 48 White/Blue E Reserved
24 Yellow/Red E Reserved 49 Yellow/Blue E Reserved
25 Pink/Red E Reserved 50 Pink/Blue E Reserved
 Reference Material 9-435

9

9Appendix
Table 9-4:Connector pin No. and signal assignment list (CR1 controller: source type type)

Pin
No.

Line color
Note1)

Note1) "Line color" shows the line color of the external input/output cable 2A-CBL **.

Function name
Pin
No.

Line color
Note1)

Function name

General-purpose Dedicated/power supply,
common General-purpose Dedicated/power supply,

common
1 Orange/Red A FG 26 Orange/Blue A FG
2 Gray/Red A 0V:For pins 4-7, 10-13 27 Gray/Blue A 0V:For pins 29-32, 35-38
3 White/Red A 12V/24V:For pins 4-7, 10-13 28 White/Blue A 12V/24V:For pins 29-32,

35-38
4 Yellow/Red A General-purpose output 0 Running 29 Yellow/Blue A General-purpose output 4
5 Pink/Red A General-purpose output 1 Servo on 30 Pink/Blue A General-purpose output 5
6 Orange/Red B General-purpose output 2 Error 31 Orange/Blue B General-purpose output 6
7 Gray/Red B General-purpose output 3 Operation rights 32 Gray/Blue B General-purpose output 7
8 White/Red B Reserved 33 White/Blue B Reserved
9 Yellow/Red B Reserved 34 Yellow/Blue B Reserved
10 Pink/Red B General-purpose output 8 35 Pink/Blue B General-purpose output 12
11 Orange/Red C General-purpose output 9 36 Orange/Blue C General-purpose output 13
12 Gray/Red C General-purpose output 10 37 Gray/Blue C General-purpose output 14
13 White/Red C General-purpose output 11 38 White/Blue C General-purpose output 15
14 Yellow/Red C COM0:For pins 15-22 Note2)

Note2) Sink type:24V/12V(COM), Source type:0V(COM)

39 Yellow/Blue C COM1:For pins 40-47 Note1)

15 Pink/Red C General-purpose input 0 Stop(All slot) Note3)

Note3) The assignment of the dedicated input signal "STOP" is fixed.

40 Pink/Blue C General-purpose input 8
16 Orange/Red D General-purpose input 1 Servo off 41 Orange/Blue D General-purpose input 9
17 Gray/Red D General-purpose input 2 Error reset 42 Gray/Blue D General-purpose input 10
18 White/Red D General-purpose input 3 Start 43 White/Blue D General-purpose input 11
19 Yellow/Red D General-purpose input 4 Servo on 44 Yellow/Blue D General-purpose input 12
20 Pink/Red D General-purpose input 5 Operation rights 45 Pink/Blue D General-purpose input 13
21 Orange/Red E General-purpose input 6 46 Orange/Blue E General-purpose input 14
22 Gray/Red E General-purpose input 7 47 Gray/Blue E General-purpose input 15
23 White/Red E Reserved 48 White/Blue E Reserved
24 Yellow/Red E Reserved 49 Yellow/Blue E Reserved
25 Pink/Red E Reserved 50 Pink/Blue E Reserved
-436 Reference Material

 9Appendix
*For CR2/CR3/CR4/CR7/CR8/CR9 controller
Table 9-5:Connector CN100pin No. and signal assignment list (CR2/CR3/CR4/CR7/CR8/CR9 controller: sink and source common)

Table 9-6:Connector CN300pin No. and signal assignment list (CR2/CR3/CR4/CR7/CR8/CR9 controller: sink and source common)

Pin
No.

Line color
Note1)

Note1) "Line color" shows the line color of the external input/output cable 2A-CBL **.

Function name Pin
No
.

Line color
Note1)

Function name

General-purpose Dedicated/power supply,
common General-purpose Dedicated/power supply,

common

1 Orange/Red A FG 26 Orange/Blue A FG
2 Gray/Red A 0V:For pins 4-7 27 Gray/Blue A 0V:For pins 29-32
3 White/Red A 12V/24V:For pins 4-7 28 White/Blue A 12V/24V:For pins 29-32
4 Yellow/Red A General-purpose output 0 Running 29 Yellow/Blue A General-purpose output 4
5 Pink/Red A General-purpose output 1 Servo on 30 Pink/Blue A General-purpose output 5
6 Orange/Red B General-purpose output 2 Error 31 Orange/Blue B General-purpose output 6
7 Gray/Red B General-purpose output 3 Operation rights 32 Gray/Blue B General-purpose output 7
8 White/Red B 0V:For pins 10-13 33 White/Blue B 0V:For pins 35-38
9 Yellow/Red B 12V/24V:For pins 10-13 34 Yellow/Blue B 12V/24V:For pins 35-38
10 Pink/Red B General-purpose output 8 35 Pink/Blue B General-purpose output 12
11 Orange/Red C General-purpose output 9 36 Orange/Blue C General-purpose output 13
12 Gray/Red C General-purpose output 10 37 Gray/Blue C General-purpose output 14
13 White/Red C General-purpose output 11 38 White/Blue C General-purpose output 15
14 Yellow/Red C COM0:For pins 15-22 Note2)

Note2) Sink type:24V/12V(COM), Source type:0V(COM)

39 Yellow/Blue C COM1:For pins 40-47 Note1)

15 Pink/Red C General-purpose input 0 Stop(All slot) Note3)

Note3) The assignment of the dedicated input signal "STOP" is fixed.

40 Pink/Blue C General-purpose input 8

16 Orange/Red D General-purpose input 1 Servo off 41 Orange/Blue D General-purpose input 9
17 Gray/Red D General-purpose input 2 Error reset 42 Gray/Blue D General-purpose input 10
18 White/Red D General-purpose input 3 Start 43 White/Blue D General-purpose input 11
19 Yellow/Red D General-purpose input 4 Servo on 44 Yellow/Blue D General-purpose input 12
20 Pink/Red D General-purpose input 5 Operation rights 45 Pink/Blue D General-purpose input 13
21 Orange/Red E General-purpose input 6 46 Orange/Blue E General-purpose input 14
22 Gray/Red E General-purpose input 7 47 Gray/Blue E General-purpose input 15
23 White/Red E Reserved 48 White/Blue E Reserved
24 Yellow/Red E Reserved 49 Yellow/Blue E Reserved
25 Pink/Red E Reserved 50 Pink/Blue E Reserved

Pin
No.

Line color
Note1)

Note1) "Line color" shows the line color of the external input/output cable 2A-CBL **.

Function name
Pin
No.

Line color
Note1)

Function name

General-purpose Dedicated/power supply,
common General-purpose Dedicated/power supply,

common

1 Orange/Red A FG 26 Orange/Blue A FG
2 Gray/Red A 0V:For pins 4-7 27 Gray/Blue A 0V:For pins 29-32
3 White/Red A 12V/24V:For pins 4-7 28 White/Blue A 12V/24V:For pins 29-32
4 Yellow/Red A General-purpose output 16 29 Yellow/Blue A General-purpose output 20
5 Pink/Red A General-purpose output 17 30 Pink/Blue A General-purpose output 21
6 Orange/Red B General-purpose output 18 31 Orange/Blue B General-purpose output 22
7 Gray/Red B General-purpose output 19 32 Gray/Blue B General-purpose output 23
8 White/Red B 0V:For pins 10-13 33 White/Blue B 0V:For pins 35-38
9 Yellow/Red B 12V/24V:For pins 10-13 34 Yellow/Blue B 12V/24V:For pins 35-38
10 Pink/Red B General-purpose output 24 35 Pink/Blue B General-purpose output 28
11 Orange/Red C General-purpose output 25 36 Orange/Blue C General-purpose output 29
12 Gray/Red C General-purpose output 26 37 Gray/Blue C General-purpose output 30
13 White/Red C General-purpose output 27 38 White/Blue C General-purpose output 31
14 Yellow/Red C COM0:For pins 15-22

Note2)

Note2) Sink type:24V/12V(COM), Source type:0V(COM)

39 Yellow/Blue C COM1:For pins 40-47 Note1)

15 Pink/Red C General-purpose input 16 40 Pink/Blue C General-purpose input 24
16 Orange/Red D General-purpose input 17 41 Orange/Blue D General-purpose input 25
17 Gray/Red D General-purpose input 18 42 Gray/Blue D General-purpose input 26
18 White/Red D General-purpose input 19 43 White/Blue D General-purpose input 27
19 Yellow/Red D General-purpose input 20 44 Yellow/Blue D General-purpose input 28
20 Pink/Red D General-purpose input 21 45 Pink/Blue D General-purpose input 29
21 Orange/Red E General-purpose input 22 46 Orange/Blue E General-purpose input 30
22 Gray/Red E General-purpose input 23 47 Gray/Blue E General-purpose input 31
23 White/Red E Reserved 48 White/Blue E Reserved
24 Yellow/Red E Reserved 49 Yellow/Blue E Reserved
25 Pink/Red E Reserved 50 Pink/Blue E Reserved
 Reference Material 9-437

HEADQUARTERS

MITSUBISHI ELECTRIC EUROPE
EUROPE B.V.
German Branch
Gothaer Straße 8
D-40880 Ratingen
Phone: +49 (0)2102 486-0
Fax: +49 (0)2102 486-1120
e mail: megfamail@meg.mee.com
MITSUBISHI ELECTRIC FRANCE
EUROPE B.V.
French Branch
25, Boulevard des Bouvets
F-92741 Nanterre Cedex
Phone: +33 1 55 68 55 68
Fax: +33 1 55 68 56 85
e mail: factory.automation@fra.mee.com
MITSUBISHI ELECTRIC IRELAND
EUROPE B.V.
Irish Branch
Westgate Business Park, Ballymount
IRL-Dublin 24
Phone: +353 (0) 1 / 419 88 00
Fax: +353 (0) 1 / 419 88 90
e mail: sales.info@meir.mee.com
MITSUBISHI ELECTRIC . ITALY
EUROPE B.V
Italian Branch
Via Paracelso 12
I-20041 Agrate Brianza (MI)
Phone: +39 (0)39 / 60 53 1
Fax: +39 (0)39 / 60 53 312
e mail: factory.automation@it.mee.com
MITSUBISHI ELECTRIC SPAIN
EUROPE B.V.
Spanish Branch
Carretera de Rubí 76-80
E-08190 Sant Cugat del Vallés
(Barcelona)
Phone: +34 9 3 / 565 3160
Fax: +34 9 3 / 589 1579
e mail: industrial@sp.mee.com
MITSUBISHI ELECTRIC UK
EUROPE B.V.
UK Branch
Travellers Lane
GB-Hatfield Herts. AL10 8 XB
Phone: +44 (0)1707 / 27 61 00
Fax: +44 (0)1707 / 27 86 95
E-mail: automation@meuk.mee.com
MITSUBISHI ELECTRIC JAPAN
CORPORATION
Office Tower “Z” 14 F
8-12,1 chome, Harumi Chuo-Ku
Tokyo 104-6212
Phone: +81 3 6221 6060
Fax: +81 3 6221 6075
MITSUBISHI ELECTRIC USA
AUTOMATION
500 Corporate Woods Parkway
Vernon Hills, IL 60061
Phone: +1 847 / 478 21 00
Fax: +1 847 / 478 22 83

EUROPEAN REPRESENTATIVES

GEVA AUSTRIA
Wiener Straße 89
AT-2500 Baden
Phone: +43 (0)2252 / 85 55 20
Fax: +43 (0)2252 / 488 60
e mail: office@geva.at
Koning & Hartman b.v. BELGIUM
Researchpark Zellik
Pontbeeklaan 43
BE-1731 Brussels
Phone: +32 (0)2 / 467 17 51
Fax: +32 (0)2 / 467 17 45
e mail: info@koningenhartman.com
AutoCont CZECH REPUBLIC
Control Systems s.r.o.
Nemocnicni 12
CZ-70200 Ostrava 2
Phone: +420 59 / 6152 111
Fax: +420 59 / 6152 562
e mail: consys@autocont.cz
HERSTAD + PIPER A/S DENMARK
Jernholmen 48 C
DK-2650 Hvidovre
Phone: +45 (0) 36 / 77 40 00
Fax: +45 (0) 36 / 77 77 40
e mail: mail@herstad-piper.dk
Beijer Electronics OY FINLAND
Ansatie 6a
FIN-01740 Vantaa
Phone: +358 (0)9 / 886 77 500
Fax: +358 (0)9 / 886 77 555
e mail: info@beijer.fi
Kouvalias GREECE
Robot + Vision Systems
25, El. Venizelou Ave
GR-17671 Kallithea
Phone: +30 22950 / 42902/3/4
Fax: +30 22950 / 42690
e mail: info@kouvalias.com
Axicont Automatika Kft. HUNGARY
Reitter F. U. 132
HU-1131 Budapest
Phone: +36 (0)1 / 412-0882
Fax: +36 (0)1 / 412-0883
e mail: office@axicont.hu

EUROPEAN REPRESENTATIVES

Koning & Hartman b.v. NETHERLANDS
Donauweg 2 B
NL-1000 AK Amsterdam
Tel: +31 (0)20 / 587 76 00
Fax: +31 (0)20 / 587 76 05
e mail: info@koningenhartman.com
Beijer Electronics AS NORWAY
Teglverksveien 1
NO-3002 Drammen
Phone: +47 (0)32 / 24 30 00
Fax: +47 (0)32 / 84 85 77
e mail: info@beijer.no
MPL Technology Sp. z o.o. POLAND
ul. Sliczna 36
PL-31-444 Kraków
Phone: +48 (0)12 / 632 28 85
Fax: +48 (0)12 / 632 47 82
e mail: krakow@mpl.pl
INEA SR d.o.o.
Karadjordjeva 12/260
SCG-113000 Smederevo
Phone: +381 (0)26 / 617 163
Fax: +381 (0)26 / 617 163
e mail: vladstoj@yubc.net
AutoCont Control s.r.o. SLOVAKIA
Radlinského 47
SK-02601 Dolný Kubín
Phone: +421 435868 210
Fax: +421 435868 210
e mail: info@autocontcontrol.sk
INEA d.o.o. SLOVENIA
Stegne 11
SI-1000 Ljubljana
Phone: +386 (0)1- 513 8100
Fax: +386 (0)1- 513 8170
e mail: inea@inea.si
Beijer Electronics AB SWEDEN
Box 426
S-20124 Malmö
Phone: +46 (0)40 / 35 86 00
Fax: +46 (0)40 / 35 86 02
e mail: info@beijer.se
ECONOTEC AG SWITZERLAND
Postfach 282
CH-8309 Nürensdorf
Phone: +41 (0)1 / 838 48 11
Fax: +41 (0)1 / 838 48 12
e mail: info@econotec.ch
GTS TURKEY
Darülaceze Cad. No. 43 Kat. 2
TR-80270 Okmeydani-Istanbul
Phone: +90 (0)212 / 320 1640
Fax: +90 (0)212 / 320 1649
e mail: gts@turk.net

EURASIAN REPRESENTATIVES

ELEKTROSTYLE RUSSIA
Poslannikov Per., 9, Str.1
RU-107005 Moscow
Phone: +7 095 / 542-4323
Fax: +7 095 / 956-7526
e mail: info@estl.ru
ELEKTROSTYLE RUSSIA
Krasnij Prospekt 220-1,Office 312
RU-630049 Novosibirsk
Phone: +7 3832 / 10 66 18
Fax: +7 3832 / 10 66 26
e mail: info@estl.ru
ICOS RUSSIA
Industrial Computer Systems Zao
Ryazanskij Prospekt, 8A, Office 100
RU-109428 Moscow
Phone: +7 095 232-0207
Fax: +7 095 232-0327
e mail: mail@icos.ru

MIDDLE EAST REPRESENTATIVE

ILAN & GAVISH LTD ISRAEL
Automation Service
24 Shenkar St., Kiryat Arie
IL-49001 Petach-Tiqva
Phone: +972 (0) 3 / 922 18 24
Fax: +972 (0) 3 / 924 07 61
e mail: iandg@internet-zahav.net

AFRICAN REPRESENTATIVE

CBI Ltd SOUTH AFRICA
Private Bag 2016
ZAF-1600 Isando
Phone: +27 (0) 11 / 928 2000
Fax: +27 (0) 11 / 392 2354
e mail: cbi@cbi.co.za

INDUSTRIAL AUTOMATION

MITSUBISHI ELECTRIC

MITSUBISHI ELECTRIC
Gothaer Strasse 8 Phone: +49 2102 486-0 Fax: +49 2102 486-7170 www.mitsubishi-automation.de
D-40880 Ratingen Hotline: +49 1805 000-765 megfa-mail@meg.mee.com www.mitsubishi-automation.com

RO
B

11
/0

5
-P

rin
te

d
in

Ge
rm

an
y

	1 Before starting use
	1.1 Using the instruction manuals
	1.1.1 The details of each instruction manuals
	1.1.2 Symbols used in instruction manual

	1.2 Safety Precautions
	1.2.1 Precautions given in the separate Safety Manual

	2 Explanation of functions
	2.1 Operation panel (O/P) functions
	(1) Explanation of buttons on the operation panel
	(2) About the status number display

	2.2 Teaching pendant (T/B) functions
	(1) Display screens and functions
	(2) Function of each key
	2.2.1 Operation rights

	2.3 Functions Related to Movement and Control

	3 Explanation of operation methods
	3.1 Operation of the teaching pendant menu screens
	(1) Screen tree
	(2) Selecting a menu

	3.2 Jog Feed (Overview)
	3.2.1 Types of jog feed
	3.2.2 Speed of jog feed
	3.2.3 JOINT jog
	3.2.4 TOOL jog
	3.2.5 XYZ jog
	3.2.6 3-axis XYZ jog
	3.2.7 CYLNDER jog
	3.2.8 Switching Tool Data
	3.2.9 Impact Detection during Jog Operation
	(1) Impact Detection Level Adjustment during Jog Operation

	3.3 Opening/Closing the Hands
	3.4 Aligning the Hand
	3.5 Programming
	3.5.1 Creating a program
	(1) Opening the program edit screen
	(2) Creating a program
	(3) Completion of program creation and saving programs
	(4) Correcting a program
	(5) Registering the current position data
	(6) Confirming the position data (Position jump)
	(7) Correcting the current position data
	(8) Correcting the MDI (Manual Data Input)
	(9) Deleting position data
	(10) Display on the position edit screen
	(11) Saving the program

	3.6 Debugging
	(1) Step feed
	(2) Step return
	(3) Step feed in another slot
	(4) Step jump

	3.7 Automatic operation
	(1) Setting the operation speed
	(2) Selecting the program No.
	(3) Starting automatic operation
	(4) Stopping
	(5) Resuming automatic operation from stopped state
	(6) Resetting the program

	3.8 Turning the servo ON/OFF
	3.9 Error reset operation
	3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled
	3.11 Operating the program control screen
	(1) Program list display
	(2) Program protection function
	(3) Copying programs
	(4) Changing the program name (Renaming)
	(5) Deleting a program

	3.12 Operating the monitor screen
	(1) Input signal monitor
	(2) Output signal monitor
	(3) Variable monitor
	(4) Error history

	3.13 Operation of maintenance screen
	(1) Setting the parameters
	(2) Initializing the program
	(3) Initializing the battery consumption time
	(4) Releasing the brakes
	(5) Setting the origin
	(6) Displaying the clock data for maintenance

	3.14 Operation of the setting screen
	(1) Setting the time

	4 MELFA-BASIC IV
	4.1 MELFA-BASIC IV functions
	4.1.1 Robot operation control
	(1) Joint interpolation movement
	(2) Linear interpolation movement
	(3) Circular interpolation movement
	(4) Continuous movement
	(5) Acceleration/deceleration time and speed control
	(6) Confirming that the target position is reached
	(7) High path accuracy control
	(8) Hand and tool control

	4.1.2 Pallet operation
	4.1.3 Program control
	(1) Unconditional branching, conditional branching, waiting
	(2) Repetition
	(3) Interrupt
	(4) Subroutine
	(5) Timer
	(6) Stopping

	4.1.4 Inputting and outputting external signals
	(1) Input signals
	(2) Output signals

	4.1.5 Communication
	4.1.6 Expressions and operations
	(1) List of operator
	(2) Relative calculation of position data (multiplication)
	(3) Relative calculation of position data (Addition)

	4.1.7 Appended statement

	4.2 Multitask function
	4.2.1 What is multitasking?
	4.2.2 Executing a multitask
	4.2.3 Operation state of each slot
	4.2.4 Precautions for creating multitask program
	(1) Relationship between number of tasks and processing time
	(2) Specification of the maximum number of programs executed concurrently
	(3) How to pass data between programs via external variables
	(4) Confirmation of operating status of programs via robot status variables
	(5) The program that operates the robot is basically executed in slot 1.
	(6) How to perform the initialization processing via constantly executed programs

	4.2.5 Precautions for using a multitask program
	(1) Starting the multitask
	(2) Display of operation status

	4.2.6 Example of using multitask
	(1) Robot work details.
	(2) Procedures to multitask execution

	4.3 Detailed specifications of MELFA-BASIC IV
	(1) Program name
	(2) Command statement
	(3) Variable
	4.3.1 Statement
	4.3.2 Appended statement
	4.3.3 Line
	4.3.4 Line No.
	4.3.5 Label
	4.3.6 Types of characters that can be used in program
	4.3.7 Characters having special meanings
	(1) Uppercase and lowercase identification
	(2) Underscore (_)
	(3) Apostrophe (')
	(4) Asterisk (*)
	(5) Comma (,)
	(6) Period (.)
	(7) Space

	4.3.8 Data type
	4.3.9 Constants
	4.3.10 Numeric value constants
	(1) Decimal number
	(2) Hexadecimal number
	(3) Binary number
	(4) Types of constant

	4.3.11 Character string constants
	4.3.12 Position constants
	(1) Coordinate, posture and additional axis data types and meanings
	(2) Meaning of structure flag data type and meanings

	4.3.13 Joint constants
	(1) Axis data format and meanings

	4.3.14 Angle value
	4.3.15 Variables
	4.3.16 Numeric value variables
	4.3.17 Character string variables
	4.3.18 Position variables
	4.3.19 Joint variables
	4.3.20 Input/output variables
	4.3.21 Array variables
	4.3.22 External variables
	4.3.23 Program external variables
	4.3.24 User-defined external variables
	4.3.25 Creating User Base Programs
	4.3.26 Robot status variables

	4.4 Logic numbers
	4.5 Functions
	(1) User-defined functions
	(2) Built-in functions

	4.6 List of Instructions
	(1) Instructions related to movement control
	(2) Instructions related to program control
	(3) Definition instructions
	(4) Multi-task related
	(5) Others

	4.7 Operators
	4.8 Priority level of operations
	4.9 Depth of program's control structure
	4.10 Reserved words
	4.11 Detailed explanation of command words
	4.11.1 How to read the described items
	4.11.2 Explanation of each command word
	ACCEL (Accelerate)
	ACT (Act)
	BASE (Base)
	CALLP (Call P)
	CHRSRCH (Character search)
	CLOSE (Close)
	CLR (Clear)
	CMP JNT (Comp Joint)
	CMP POS (Composition Posture)
	CMP TOOL (Composition Tool)
	CMP OFF (Composition OFF)
	CMPG (Composition Gain)
	CNT (Continuous)
	COLCHK (Col Check)
	COLLVL (Col Level)
	COM ON/COM OFF/COM STOP (Communication ON/OFF/STOP)
	DEF ACT (Define act)
	DEF ARCH (Define arch)
	DEF CHAR (Define Character)
	DEF FN (Define function)
	DEF INTE/DEF FLOAT/DEF DOUBLE (Define Integer/Float/Double)
	DEF IO (Define IO)
	DEF JNT (Define Joint)
	DEF PLT (Define pallet)
	DEF POS (Define Position)
	DIM (Dim)
	DLY (Delay)
	ERROR (error)
	END (End)
	FINE (Fine)
	FOR - NEXT (For-next)
	FPRM (FPRM)
	GETM (Get Mechanism)
	GOSUB (RETURN)(Go Subroutine)
	GOTO (Go To)
	HLT (Halt)
	HOPEN / HCLOSE (Hand Open/Hand Close)
	IF...THEN...ELSE...ENDIF (If Then Else)
	INPUT (Input)
	JOVRD (J Override)
	JRC (Joint Roll Change)
	LOADSET (Load Set)
	MOV (Move)
	MVA (Move Arch)
	MVC (Move C)
	MVR (Move R)
	MVR2 (Move R2)
	MVR3 (Move R 3)
	MVS (Move S)
	OADL (Optimal Acceleration)
	ON COM GOSUB (ON Communication Go Subroutine)
	ON ... GOSUB (ON Go Subroutine)
	ON ... GOTO (On Go To)
	OPEN (Open)
	OVRD (Override)
	PLT (Pallet)
	PREC (Precision)
	PRINT (Print)
	PRIORITY (Priority)
	RELM (Release Mechanism)
	REM (Remarks)
	RESET ERR (Reset Error)
	RETURN (Return)
	SELECT CASE (Select Case)
	SERVO (Servo)
	SKIP (Skip)
	SPD (Speed)
	SPDOPT (Speed Optimize)
	TITLE (Title)
	TOOL (Tool)
	TORQ (Torque)
	WAIT (Wait)
	WHILE-WEND (While End)
	WTH (With)
	WTHIF (With If)
	XCLR (X Clear)
	XLOAD (X Load)
	XRST (X Reset)
	XRUN (X Run)
	XSTP (X Stop)
	Substitute
	(Label)

	4.12 Detailed explanation of Robot Status Variable
	4.12.1 How to Read Described items
	4.12.2 Explanation of Each Robot Status Variable
	C_DATE
	C_MAKER
	C_MECHA
	C_PRG
	C_TIME
	C_USER
	J_CURR
	J_COLMXL
	J_ECURR
	J_FBC/J_AMPFBC
	J_ORIGIN
	M_ACL/M_DACL/M_NACL/M_NDACL/M_ACLSTS
	M_BRKCQ
	M_BTIME
	M_CMPDST
	M_CMPLMT
	M_COLSTS
	M_CSTP
	M_CYS
	M_DIN/M_DOUT
	M_ERR/M_ERRLVL/M_ERRNO
	M_EXP
	M_FBD
	M_G
	M_HNDCQ
	M_IN/M_INB/M_INW
	M_JOVRD/M_NJOVRD/M_OPOVRD/M_OVRD/M_NOVRD
	M_LDFACT
	M_LINE
	M_MODE
	M_ON/M_OFF
	M_OPEN
	M_OUT/M_OUTB/M_OUTW
	M_PI
	M_PSA
	M_RATIO
	M_RDST
	M_RUN
	M_SETADL
	M_SKIPCQ
	M_SPD/M_NSPD/M_RSPD
	M_SVO
	M_TIMER
	M_TOOL
	M_UAR
	M_WAI
	M_WUPOV
	M_WUPRT
	M_WUPST
	P_BASE/P_NBASE
	P_COLDIR
	P_CURR
	P_FBC
	P_SAFE
	P_TOOL/P_NTOOL
	P_ZERO

	4.13 Detailed Explanation of Functions
	4.13.1 How to Read Described items
	4.13.2 Explanation of Each Function
	ABS
	ALIGN
	ASC
	ATN/ATN2
	BIN$
	CALARC
	CHR$
	CINT
	CKSUM
	COS
	CVI
	CVS
	CVD
	DEG
	DIST
	EXP
	FIX
	FRAM
	HEX$
	INT
	INV
	JTOP
	LEFT$
	LEN
	LN
	LOG
	MAX
	MID$
	MIN
	MIRROR$
	MKI$
	MKS$
	MKD$
	POSCQ
	POSMID
	PTOJ
	RAD
	RDFL 1
	RDFL 2
	RND
	RIGHT$
	SETFL 1
	SETFL 2
	SETJNT
	SETPOS
	SGN
	SIN
	SQR
	STRPOS
	STR$
	TAN
	VAL
	ZONE
	ZONE 2

	5 Functions set with parameters
	5.1 Movement parameter
	5.2 Signal parameter
	5.3 Operation parameter
	5.4 Command parameter
	5.5 Communication parameter
	5.6 Standard Tool Coordinates
	5.7 About Standard Base Coordinates
	5.8 About user-defined area
	5.9 Free plane limit
	5.10 Automatic return setting after jog feed at pause
	5.11 Automatic execution of program at power up
	(1) First, create an ALWAYS program and an operating program.
	(2) Set the parameter.
	(3) Turn the power ON.

	5.12 About the hand type
	5.13 About default hand status
	5.14 About the output signal reset pattern
	5.15 About the communication setting
	(1) Overview
	(2) Performing data link with the outside using RS-232C
	(3) Notes on using both the PC support software and the data link software on standard port
	(4) How to ensure stable communication between the personal computer support software and the robot controller.

	5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
	5.17 About the singular point adjacent alarm
	(1) Operations that generate an alarm
	(2) Operations that do not generate an alarm

	5.18 About ROM operation/high-speed RAM operation function
	(1) Overview
	(2) Procedures for switching between ROM and RAM
	(3) Switching to the ROM operation
	(4) Display during the ROM operation
	(5) Program editing during the ROM operation
	(6) Switching to the RAM operation
	(7) Switching to the high-speed RAM operation(DRAM operation)

	5.19 Warm-Up Operation Mode
	(1) Functional Overview
	(2) Function Details
	(3) If alarms are generated

	5.20 About singular point passage function
	(1) Overview of the function
	(2) Singular point passage function in jog operation
	(3) Singular point passage function in position data confirmation (position jump)
	(4) Singular point passage function in automatic operation
	TYPE (Type)

	6 External input/output functions
	6.1 Types
	6.2 Connection method
	6.3 Dedicated input/output
	6.4 Enable/disable status of signals
	6.5 External signal timing chart
	6.5.1 Individual timing chart of each signal
	(1) RCREADY (Controller's power ON completion output)
	(2) ATEXTMD (Remote mode output)
	(3) TEACHMD (Teach mode output)
	(4) ATTOPMD (Auto mode output)
	(5) IOENA (Operation right input signal/operation right output signal)
	(6) START (Start input/operating output)
	(7) STOP (Stop input/aborting output)
	(8) STOPSTS (Output during stop signal input)
	(9) SLOTINIT (Program reset input/program selectable output)
	(10) ERRRESET (Error reset input/output during error occurrence)
	(11) SRVON (Servo ON input/output during servo ON))
	(12) SRVOFF (Servo OFF input/servo ON disable output)
	(13) AUTOENA (Auto operation input/auto operation enable output)
	(14) CYCLE (Cycle stop input/output during cycle stop operation)
	(15) MELOCK (Machine lock input/output during machine lock)
	(16) SAFEPOS (Return to retreat point input/output during return to retreat point)
	(17) BATERR (Low battery voltage output)
	(18) OUTRESET (General-purpose output signal reset request input)
	(19) HLVLERR (Output during high level error occurrence)
	(20) LLVLERR (Output during low level error occurrence)
	(21) CLVLERR (Output during warning level error occurrence)
	(22) EMGERR (Output during emergency stop)
	(23) SnSTART (Slot n start input/output during slot n operation)
	(24) SnSTOP (Slot n stop input/output during slot n aborting)
	(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)
	(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)
	(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)
	(28) PRGSEL (Program selection input) * This is used together with the numeric value input (IODATA).
	(29) OVRDSEL (Override selection input) * This is used together with the numeric value input (IODATA).
	(30) IODATA (Numeric value input/numeric value output) * This is used together with PRGSEL, OVRDSEL, PRGOUT, LINEOUT, OVRDOUT or ERROUT.
	(31) PRGOUT (Program number output request input/outputting program number) * This is used together with the numeric value output (IODATA).
	(32) LINEOUT (Line number output request input/outputting line number) * This is used together with the numeric value output (IODATA).
	(33) OVRDOUT (Override value output request/outputting override value) * This is used together with the numeric value output (IODATA).
	(34) ERROUT (Error number output request/outputting error number) * This is used together with the numeric value input (IODATA).
	(35) JOGENA (Jog enable input/output during jog enabled)
	(36) JOGM (Jog mode input/jog mode output)
	(37) JOG+ (Input for 8 axes on jog feed plus side)
	(38) JOG- (Input for 8 axes on jog feed minus side)
	(39) HNDCNTLn (Mechanical n hand output signal status)
	(40) HNDSTSn (Mechanical n hand input signal status)
	(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)
	(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)
	(43) USRAREA (User-specified area 8 points output)
	(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up operation mode output signal)
	(45) MnWUPMD (Mechanism n warm-up operation status output signal)

	6.5.2 Timing chart example
	(1) External signal operation timing chart (Part 1)
	(2) External signal operation timing chart (Part 2)
	(3) Example of external operation timing chart (Part 3)
	(4) Example of external operation timing chart (Part 4)

	6.6 Emergency stop input
	6.6.1 Robot Behavior upon Emergency Stop Input

	7 Q & A
	7.1 Movement
	7.2 Program
	7.3 Operation
	7.4 External input/output signal
	7.5 Parameter

	8 Collection of Techniques
	8.1 Entry-Level Edition
	8.1.1 Describing comprehensive programs
	(1) Clarify the structure of a program
	(2) Set up a notation that is easy to read
	(3) Define variables that are effective in a program
	(4) Define arguments and return values in subroutines.
	(5) Define variables and labels that are only effective in subroutines

	8.1.2 Managing program versions
	(1) Writing the version in a comment
	(2) Writing the version in the USERMSG parameter

	8.1.3 Changing the operating speed in a program
	8.1.4 Detecting fallen works while transporting
	8.1.5 Positioning works accurately
	8.1.6 Awaiting signal ON/OFF during the specified number of seconds
	8.1.7 Interlocking by using external input signals
	8.1.8 Sharing data among programs
	8.1.9 Checking whether the current position and the commanded position are the same
	(1) Use a user area
	(2) Use the ZONE function and ZONE 2 function
	(3) Use the DIST function
	(4) Compare each component of position variables

	8.1.10 Shortening the cycle time (entry-level edition)
	(1) Check whether speed control is appropriate.
	(2) Set up or reduce relay points.
	(3) Review the operation path in order to perform smooth path connection as much as possible.

	8.2 Intermediate Edition
	8.2.1 How to quickly support for the addition of types
	8.2.2 Convenient ways to use the pallet instruction
	(1) The pallet instruction can be used on a free plane.
	(2) The pallet instruction can be used in a row.

	8.2.3 How to write communication programs
	(1) Communication interrupt method
	(2) Multi-tasking method

	8.2.4 How to reduce teaching points
	8.2.5 Using a P variable in a counter, etc.
	8.2.6 Getting position information when the sensor is on

	8.3 Advance Edition
	8.3.1 Using the robot as a simplified PLC (sequencer)
	8.3.2 Implementing a mapping function
	8.3.3 Finding out executed lines
	8.3.4 Saving the status when an error has occurred

	9 Appendix
	9.1 Reference Material
	9.1.1 About sink/source type of the standard external input and output
	(1) Electrical specifications of input/output circuit
	(2) Connection example
	(3) Connector pin assignment

